Metagraph-based Learning on Heterogeneous Graphs

Page view(s)
50
Checked on Jan 14, 2025
Metagraph-based Learning on Heterogeneous Graphs
Title:
Metagraph-based Learning on Heterogeneous Graphs
Journal Title:
IEEE Transactions on Knowledge and Data Engineering
Publication Date:
24 June 2019
Citation:
Y. Fang et al., "Metagraph-based Learning on Heterogeneous Graphs," in IEEE Transactions on Knowledge and Data Engineering. doi: 10.1109/TKDE.2019.2922956
Abstract:
Data in the form of graphs are prevalent, ranging from biological and social networks to citation graphs and the Web. In particular, most real-world graphs are heterogeneous, containing objects of multiple types, which present new opportunities for many problems on graphs. Consider a typical proximity search problem on graphs, which boils down to measuring the proximity between two given nodes. Most earlier studies on homogeneous or bipartite graphs only measure a generic form of proximity, without accounting for different “semantic classes”—for instance, on a social network two users can be close for different reasons, such as being classmates or family members, which represent two distinct semantic classes. Learning these semantic classes are made possible on heterogeneous graphs through the concept of metagraphs. In this study, we identify metagraphs as a novel and effective means to characterize the common structures for a desired class of proximity. Subsequently, we propose a family of metagraph-based proximity, and employ a supervised technique that automatically learns the right parameters to suit the desired semantic class. In terms of efficiency, we develop a symmetry-based matching algorithm to speed up the computation of metagraph instances. Empirically, extensive experiments reveal that our metagraph-based proximity could substantially outperform the best competitor by more than 10%, and our matching algorithm can reduce matching time by more than half. As a further generalization, we aim to derive a general node and edge representation for heterogeneous graphs, in order to support arbitrary machine learning tasks beyond proximity search. In particular, we propose the finer-grained anchored metagraph, which is capable of discriminating the roles of nodes within the same metagraph. Finally, further experiments on the general representation show that we could outperform the state of the art significantly and consistently across various machine learning tasks.
License type:
PublisherCopyrights
Funding Info:
Description:
(c) 2019 IEEE.
ISSN:
1041-4347
1558-2191
2326-3865
Files uploaded:

File Size Format Action
metagraph.pdf 2.41 MB PDF Open