An Entorhinal-Hippocampal Model for Simultaneous Cognitive Map Building

An Entorhinal-Hippocampal Model for Simultaneous Cognitive Map Building
Title:
An Entorhinal-Hippocampal Model for Simultaneous Cognitive Map Building
Other Titles:
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence and the Twenty-Seventh Innovative Applications of Artificial Intelligence Conference
DOI:
Publication Date:
10 February 2015
Citation:
Abstract:
Hippocampal place cells and entorhinal grid cells have been hypothesized to be able to form map-like spatial representation of the environment, namely cognitive map. In most prior approaches, either neural network methods or only hippocampal models are used for building cognitive maps, lacking biological fidelity to the entorhinal-hippocampal system. This paper presents a novel computational model to build cognitive maps of real environments using both place cells and grid cells. The proposed model includes two major components: (1) A competitive Hebbian learning algorithm is used to select velocity-coupled grid cell population activities, which path-integrate self-motion signals to determine computation of place cell population activities; (2) Visual cues of environments are used to correct the accumulative errors intrinsically associated with the path integration process. Experiments performed on a mobile robot show that cognitive maps of the real environment can be efficiently built. The proposed model would provide an alternative neuro-inspired approach for robotic mapping, navigation and localization.
License type:
PublisherCopyrights
Funding Info:
I2R
Description:
Full paper can be downloaded from the Publisher's URL provided.
ISBN:

Files uploaded:
File Size Format Action
There are no attached files.