Young, T., Xing, F., Pandelea, V., Ni, J., Cambria, E. (2022). Fusing Task-Oriented and Open-Domain Dialogues in Conversational Agents. Proceedings of the AAAI Conference on Artificial Intelligence, 36(10), 11622–11629. https://doi.org/10.1609/aaai.v36i10.21416
Abstract:
The goal of building intelligent dialogue systems has largely been separately pursued under two paradigms: task-oriented dialogue (TOD) systems, which perform task-specific functions, and open-domain dialogue (ODD) systems, which focus on non-goal-oriented chitchat. The two dialogue modes can potentially be intertwined together seamlessly in the same conversation, as easily done by a friendly human assistant. Such ability is desirable in conversational agents, as the integration makes them more accessible and useful. Our paper addresses this problem of fusing TODs and ODDs in multi-turn dialogues. Based on the popular TOD dataset MultiWOZ, we build a new dataset FusedChat, by rewriting the existing TOD turns and adding new ODD turns. This procedure constructs conversation sessions containing exchanges from both dialogue modes. It features inter-mode contextual dependency, i.e., the dialogue turns from the two modes depend on each other. Rich dependency patterns such as co-reference and ellipsis are included. The new dataset, with 60k new human-written ODD turns and 5k re-written TOD turns, offers a benchmark to test a dialogue model's ability to perform inter-mode conversations. This is a more challenging task since the model has to determine the appropriate dialogue mode and generate the response based on the inter-mode context. However, such models would better mimic human-level conversation capabilities. We evaluate two baseline models on this task, including the classification-based two-stage models and the two-in-one fused models. We publicly release FusedChat and the baselines to propel future work on inter-mode dialogue systems.
License type:
Publisher Copyright
Funding Info:
This research / project is supported by the Agency for Science, Technology and Research (A*STAR) - AME Programmatic Grant
Grant Reference no. : A18A2b0046
Description:
This material may not be retransmitted or redistributed without permission in writing from The Association for the Advancement of Artificial Intelligence. Permission to use document is granted, provided that (1) the copyright notice appears in all copies and that both the copyright notice and this permission notice appear, (2) use of such documents is for personal use only, and will not be copied or posted on any network computer or broadcast in any media, and (3) no modifications of any documents are made.