Locating Self-Collection Points for Last-Mile Logistics Using Public Transport Data

Page view(s)
3
Checked on Sep 10, 2022
Locating Self-Collection Points for Last-Mile Logistics Using Public Transport Data
Title:
Locating Self-Collection Points for Last-Mile Logistics Using Public Transport Data
Other Titles:
Lecture Notes in Computer Science
Keywords:
Publication Date:
17 April 2015
Citation:
Abstract:
Delivery failure and re-scheduling cause the delay of services and increase the operation costs for logistics companies. Setting up self-collection points is an effective solution that is attracting attentions from many companies. One challenge for this model is how to choose the locations for self-collection points. In this work, we design a methodology for locating self-collection points. We consider both the distribution of a company’s potential customers and the people’s gathering pattern in the city. We leverage on citizens’ public transport riding records to simulate how the crowds emerge for particular hours. We reasonably assume that a place near to a people crowd is more convenient for customers than a place far away for self parcel collection. Based on this, we propose a kernel transformation method to re-evaluate the pairwise positions of customers, and then do a clustering.
License type:
PublisherCopyrights
Funding Info:
Description:
ISSN:
0302-9743
Files uploaded:

Files uploaded:

File Size Format Action
camera-ready.pdf 2.86 MB PDF Open