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Abstract 

 

With the continuous increment in global population growth, compounded by post-pandemic food 

security challenges due to labor shortages, effects of climate change, political conflicts, limited 

land for agriculture, and carbon emissions control, addressing food production in a sustainable 

manner for future generations is critical. Microorganisms are potential alternative food sources 

that can help close the gap in food production. For the development of more efficient and yield-

enhancing products, it is necessary to have a better understanding on the underlying regulatory 

molecular pathways of microbial growth. Nevertheless, as microbes are regulated at multi-omics 

scales, current research focusing on single omics (genomics, proteomics or metabolomics) 

independently is inadequate for optimizing growth and product output. Here, we discuss digital 

twin (DT) approaches that integrate systems biology and artificial intelligence (AI) in analyzing 

multi-omics datasets, to yield a microbial replica model for in silico testing before production. DT 

models can thus provide a holistic understanding of microbial growth, metabolite biosynthesis 

mechanisms, as well as identifying crucial production bottlenecks. Our argument, therefore, is to 

support the development of novel DT models that can potentially revolutionize microorganism-

based alternative food production efficiency. 
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Highlights: 

 

1. Microorganism-based alternative food should be considered as a source for proteins and 

metabolites as it holds great potential for addressing future food security challenges. 

2. Research in this field faces significant challenges due to the highly reductionist nature of 

the conventional research methodologies, raising the need to develop more innovative 

approaches. 

3. Recent advancements in multi-omics data generation offer novel opportunities to identify 

and optimize essential biosynthesis pathways or networks for desired food proteins or 

metabolic products. 

4. The integration of data science, machine learning, and systems biology through Digital 

Twins modeling has potential to revolutionize sustainable alternative food sources by 

comprehensively identifying and addressing critical biosynthesis bottlenecks. 
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Introduction  

Food security has become a major discussion topic in recent years due to the exponential 

population growth, drastic climatic changes, and current geopolitical conflicts wars, which 

collectively disrupt the overall world food production and distribution [1]. Moreover, traditional 

farming techniques are being criticized for emitting large amounts of harmful greenhouse gasses 

[2]. It is, therefore, important to explore alternative methods for future food supplementation. 

Microbial products, derived from bacteria, fungi, and microalgae, can provide promising 

alternatives to traditional food sources. Microorganisms can produce a wide range of high-value 

ingredients besides being an excellent source of nutritive proteins [3,4]. Therefore, it is important 

to explore microorganisms for future food supplementation.  

Bacteria, such as Methylophilus methylotrophus, Rhodopseudomonas palustris, and 

Haloarcula sp., produce 50-80% protein (dry cell weight), and are characterized by small cell sizes 

and high multiplication [5]. Yeasts like Saccharomyces cerevisiae and Candida tropicalis have 

superior nutritional quality and can grow at an acidic pH level, making them excellent sources of 

protein [3]. Filamentous fungi, such as Aspergillus niger and Fusarium venenatum, contain up to 

63% protein [6]. Microalgae, like Chlorella sorokiniana and Arthrospira platensis (spirulina), can 

generate protein levels up to 70% of cell biomass and produce yields 20 to 50 times higher than 

soybeans [7].  

Similarly, microorganisms have already been widely used in the manufacture of natural 

food ingredients and additives. Among these are food colorants derived from Monascus species 

filamentous fungi, which have been shown to possess antimicrobial and antioxidant properties [8]. 

Vitamins, terpenoids, steroids, amino acids, lactic acid, functional proteins (texturants), 
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oligosaccharides, sweeteners, flavors and enzymes are other examples of food ingredients 

produced successfully by metabolic engineering microorganisms [9].   

The extraordinary achievements in molecular biology, biochemistry, real-time monitoring, 

and data management over the past several decades have led to the widespread usage of 

microorganisms. However, microbial bioprocesses face challenges from the social and marker 

perspective such as regulatory issues, safety concerns, sensory attributes, consumer perceptions, 

and social acceptance. Additionally, limitations such as production optimization and costs are 

impacting the future of alternative food as a viable option [10]. To overcome these barriers and 

promote microbial manufacturing processes, further research and innovations are required [11] 

[12].   

Here we discuss Digital Twin (DT) modeling to address some of the key challenges. A DT 

model is generally defined as a virtual model of a process, product, or service that bridges the 

physical and digital (in silico) worlds in real time [13]. DT is becoming increasingly popular in a 

variety of industries, including medicine, manufacturing, engineering, and aerospace, and playing 

a vital role in their current revolutions. The DT modeling interest arises due to recent advances in 

the rapid collection, storage and sharing of data, and the development of computers that can use 

complex models and algorithms in a reasonable timeframe [29,30]. For example, it has been 

applied to integrate numerous clinical and molecular multi-omic datasets, and to predict outcomes 

for pancreatic cancer patients and disease survival [14]. Here, we discuss how DT can be used to 

integrate multi-omics datasets with machine learning analytics to understand microbial behavior 

and improve bioprocesses, and to develop an interactive platform between a physical system and 

its digital replica. As a result, we hope for more accurate predictions and the resultant platform can 

be adopted in a more sustainable way for microbial manufacturing.  
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Multi-Omics Data Generation and its Analytics 

An indispensable way to deeply investigate an organism’s biology and metabolism is the “omics’ 

approach. Today, we can generate large scale omics (e.g., genomics, transcriptomics, proteomics, 

metabolomics) datasets with ease and within a reasonable cost. This can push the idea of finding 

alternative proteins to the forefront as it is possible to obtain detailed information relating to the 

organism’s genotype, biosynthetic and metabolic capacities, as well as its potential for increasing 

protein productivity [15]. By using next-generation sequencing technologies, the study of genome 

and genetic changes within multiple species becomes affordable, while proteomics focuses on 

proteins involved in the maintenance of cell structure, organization, and metabolic functions. 

Metabolomics focuses on metabolites and their metabolic pathways.  

The omics analyses provide insight into the phenotypes of microorganisms. Genome and 

RNA sequencing (DNA-Seq and RNA-Seq) and mass spectrometry (MS) are among the most 

widely used analytical technologies employed today to study genomics, transcriptomics, 

proteomics and metabolomics [16]. The generated data can correlate to the sensory, nutritional, 

and safety of alternative proteins and microbial-based food ingredients, for example, increasing 

nutritional quality of fermented soybean pastes [17], and assessing the safety or identification of 

toxic compounds [18]. Even though omics data can be generated swiftly and reliably, if these data 

are not analyzed systemically and rigorously, the outcome can still be suboptimal. 

Although single omics approaches have led to a better understanding of complex biological 

processes, cells are regulated at a multi-omics level. Thus, a key challenge now is in analyzing 

these data collectively, rather than individually, to explore the complex signals that are encoded 

across multiple modalities. In recent years, the integration of multi-omics data has become integral 
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to the field of food science, representing the most effective approach to gain a deep and holistic 

understanding of complex traits, molecular interactions, and robust target molecules. To date, 

multi-omics methods have provided systems-level biological insights, into nutritional markers 

[19], molecular processes involved in food intake and deficiencies [20], gut/diet-health 

relationships [21], clustering of samples [22], and the roles of microorganisms in fermented foods 

[23].  Multi-omics data integration strategies can be classified into four distinct categories, based 

on the applied mathematical algorithms: early, intermediate, late, and hierarchical integration 

[24,25]. Nevertheless, multi-omics analytics or machine learning does not provide mechanistic and 

dynamic understanding of biosynthesis pathways. For example, if the intention is to increase a 

metabolic output, we need to know how the metabolic fluxes are distributed over time and whether 

their regulatory bottlenecks prevent optimum output.  

 

Metabolic engineering and design–build–test–learn (DBTL) cycles 

For increasing the metabolic flux toward a product of interest, the metabolic engineering field 

adopts genetic interventions of any known rate-limiting steps or bottlenecks within the metabolic 

pathways [26–29]. Although this field has shown success in numerous metabolic applications, 

fundamental limitations do exist. This is due to a significant lack of knowledge regarding the 

regulation of biosynthesis networks and cellular physiology. To overcome this, metabolic 

engineers have developed iterative design–build–test–learn (DBTL) cycles for microbial strain 

optimization (Figure 1). These cycles aim to develop a product strain iteratively, each time 

incorporating changes from the previous learning cycle. Systems biology, especially the dynamic 

modeling of cellular networks using differential equations [1], and machine learning methods 

allow to learn from data and propose new strain designs for the next DBTL cycle.  



 8 

After proposing the best strain, these need to be tested for bioreactor fermentation 

processes, from small lab scales of 1–2L to large industrial >1000L bioreactors. As bioreactor 

fermentation is a complex heterogenous process, several dynamic modelling approaches are used 

[1]. However, the bioprocess model mostly considers only the extracellular conditions and growth 

rates for optimization of batch, fed batch or continuous processes [30,31]. The overall design and 

optimization to improve titer/yield/rate (TYR) of bioprocessing of desired microbial products is 

essential. Today DBTL is widely used in labs and industries, nevertheless, evaluating its overall 

effectiveness remains a challenge. As mentioned above, the recent generation of multi-omics 

datasets warrants a new strategy to improve the current DBTL cycles.  

 

DT Modeling 

A range of measuring technologies are first required to generate key data for developing the digital 

counterpart of the real-world entity [32]. For biology or microbial applications, these can be time-

series multi-omics and even imaging datasets (Figure 1).  Next, multi-omics machine learning 

analysis can be performed to elucidate the key genes, proteins or metabolites expressed and their 

related pathways (Figure 2). With this information, DT models are required to process the complex 

data and make a virtual representation for in silico testing. The models are based on known 

governing equations, such as biochemical rate laws, or machine learning models to create a digital 

representation of the physical entity. In this way, it will be likely for combinatorial pathway 

optimization considering multi-omics regulation. 

In an increasingly interconnected, multi-disciplinary and data-driven world, DT 

approaches, thus, offer a powerful method for innovation and problem-solving. These virtual 

models are used for in-depth analysis, simulation, and optimization of the physical counterpart, 
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providing valuable insights and facilitating decision-making in various industries, mostly in 

manufacturing and infrastructure management [33], although a few attempts have been made for 

healthcare, agriculture and food research. DT has been applied to production systems to optimize 

the planning and commissioning of the manufacturing process. It helps to decrease downtime by 

virtually testing a system before running it and verifying the entire operation in advance [34]. This 

can be adopted for alternative food research, since having this technology allows in-depth analysis, 

simulation, prediction and optimization of the in silico model before actual experimentation of the 

physical entity [35] (Figure 1). 

For engineering organisms, the models mainly encompass two broad approaches: dynamic 

modeling and constraint-based modeling [36]. Dynamic models are constructed using differential 

equations leveraging known biochemical reactions and their kinetics to predict metabolic 

outcomes, such as to understand key regulatory mechanisms and pathway bottleneck enzymes or 

reactions. Alternatively, constraint-based models, such as Flux Balance Analysis (FBA), set 

constraints for reactions and are well-suited for large-scale applications where kinetic laws and 

parameter values are largely unknown. FBA could efficiently model thousands of metabolites and 

reactions, making it invaluable for gene contribution analysis and pathway design [37]. These 

models need to be innovatively extended to incorporate information of gene and protein 

expressions/activities affecting the metabolic pathways.  

There are also other approaches such as transcriptional control and ensemble modeling 

which can be adopted for DT modeling. Transcriptional control involves modifying gene 

regulation by manipulating promoter regions, necessitating a deep understanding of regulatory 

elements [38,39]. Ensemble modeling integrates multiple models or training sets to predict overall 
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pathway outcomes. This approach is particularly useful when detailed kinetic parameters are 

lacking [40].  

Different modeling strategies can develop DTs for microbial metabolic engineering to 

improve alternative food production in diverse biotechnological applications [41]. Moreover, they 

provide a platform for investigating complex systems in silico, leading to a better understanding 

of the system’s dynamics and the relationships between its components. Although metabolic 

engineering offers potential to produce alternative food, and ingredients, many technical 

challenges remain, including low genetic engineering efficiency and unsafe heterologous genetic 

components, as well as the high cost of medium components [42]. To overcome these challenges, 

DT can be used to pre-evaluate proposed genetic engineering tools and methods virtually before 

testing in the laboratory. It can also be employed to visualize the organism’s behavior and 

metabolites produced under different carbon sources and environmental parameters aiming to 

select the cheapest and most efficient medium components and incubation conditionals. 

By employing sensor technologies with other mathematical and predictive models, DT can 

bring a real-time virtual view of the alternative food manufacturing process based on their 

metabolic activities, growth behavior, and incubation conditions. That might help to select the best 

microorganisms for alternative food production and design novel proteins with improved 

nutritional value, safety, taste, and texture. DT can also utilize the data collected over time to 

provide accurate virtual representations of physical objects, including highly dynamic and 

complex proteins and microbial metabolites from non-conventional sources, concerning their 

sensory, safety, and nutritional qualities.  
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DT Application in Food Production and Research 

DT is implemented in food production to address challenges such as quality, safety, complexity, 

cost, losses, and waste [43]. For instance, it is possible to monitor an alternative food 

manufacturing bioprocess in real-time using DT, which reduces the risk of system failures and 

optimizes the use of materials and human resources. A recent demonstration showed that sensors 

and Internet of Things (IoT) technology could be used in DT to collect real-time food supply chain 

data and facilitate informed decision-making without interfering with actual operations [44].  

The application of DT to food production can also provide valuable predictions in normal 

and unusual circumstances. As an example, DT has been employed to estimate the remaining shelf 

life of finished products with real-time monitoring and virtual operations such as maintenance 

[45]. In addition, accurate predictions were obtained using DT after conducting scenario analysis 

and assessing the impact of possible disruptions during the manufacturing process. Virtual 

simulations can extend the application of DT beyond evaluating food quality within the existing 

food system to forecasting the effects of certain future changes [46]. 

A potential benefit of DT in microbial derived food production is the ability to integrate 

complex data from a variety of sources, including multi-omics and data generated during microbial 

growth optimization, scale up, safety and quality assessments. As a result, it may be possible to 

identify the key regulatory bottleneck or emerging bottlenecks that limit their potential industrial 

applications. DT can be used to integrate data from multiple sources, facilitating accurate 

simulations, assessments, and optimizations of layout design and operational processes [47]. 

Finally, by reducing the costs associated with testing, simulating scenarios, and improving quality, 

DT enables companies to cutdown costs and improve productivity and quality. Specifically, testing 

and validating new manufacturing processes and equipment can be accomplished through DT [48]. 
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Meanwhile, operator training can be conducted prior to implementation in the real world, which 

enhances the efficiency of production through a reduction in human error [49].  

The overall benefit of DT approach can leverage off of the recent advancements in omics 

technologies, genome engineering, synthetic biology, and high-throughput screening of optimal 

microbial strains for further improvement (Table 1). The DT approach could likely show the 

optimum biological network configuration for increasing the TYR values of products. This can be 

extended up to bioprocess modeling scale to offer smart manufacturing processes, as well as a 

reduction in cost and time, enable quick corrections to be made, optimize and accelerate the 

production bioprocess, and allow precise and cost-effective decisions to be made.  

 

Challenges of DT 

Every in-silico approach will have its limitations. Dynamic modeling relies heavily on biochemical 

parameters, such as reaction kinetics and flux ranges, which can be challenging to ascertain 

[36,50]. Bottom-up modeling, dependent on experimental data for parameter determination, is 

hindered by the extensive labor and cost involved in gathering kinetic information for all enzymes 

in a pathway or network. Moreover, the significant disparities between in vitro and in vivo 

experimental data present additional hurdles. The iterative nature of data collection further extends 

the timeframe required for modeling. Furthermore, as the model scale expands to cover larger 

networks involved, so does the need for more reliable and reproducible experimental data, leading 

to heightened expenses and a reduction in accuracy of predictions [51,52]. 
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Top-down approaches leverage time-series metabolomic data to indirectly infer kinetics, 

flux rates, or metabolite concentrations through causation and correlation networks [51]. Causation 

networks establish cause-effect relationships between metabolites, while correlation networks 

employ mathematical and statistical techniques to determine likely connections between enzymes 

and metabolites [53]. Despite the use of optimization algorithms to estimate model parameters, the 

intricate, often nonlinear relationships within metabolic models and the variability of parameters 

hamper the accuracy of these fitting algorithms. Nevertheless, top-down approaches have found 

success in analyzing simple linear response pathways or mass-action kinetic models with low 

parameter sensitivity [54,55].  

In most modeling strategies, the reliance on high-quality experimental data presents a 

significant hurdle. Access to diverse data types, including metabolite concentrations, genomic 

sequences, and gene expression data, is necessary, and while many bioinformatics resources 

aggregate this data, the challenge lies in identifying the right datasets and analytical approaches. 

This underscores the growing importance of novel data mining and analytics methods, including 

artificial intelligence, to harness the wealth of available data effectively [56]. 

The integration of AI or machine learning (ML) into DT holds immense potential in 

addressing various challenges within the field. ML, a subset of artificial intelligence, empowers 

computers to autonomously analyze data based on predefined rules or pattern recognition models. 

While AI has made substantial strides in different fields, it has yet to realize its full potential in 

alternative food research [57]. Identifying metabolic pathways, especially when the pathway is 

poorly understood or the gene responsible needs to be transferred to a model organism for 

manipulation, is a critical step [58]. ML algorithms plays a pivotal role in the identification of 

essential enzymes and genes within metabolic pathways. Classifiers like support vector machines, 
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logistic regression and decision tree-based models have been instrumental in predicting gene 

essentiality, aiding in the selection of potential drug targets and drug side effect analysis. ML 

leverages network topology, gene homologies, and gene expression data to make predictions, and 

its superior accuracy compared with traditional mathematical models has been experimentally 

validated [59]. 

Furthermore, the increasing volume of -omics data has necessitated data-driven 

approaches, where ML methods perfectly fit. Integrating ML with omics data allows for improved 

predictions and qualitative insights, outperforming traditional kinetic models. As ML continues to 

evolve, it presents a promising frontier for advancing DT for alternative food research, offering 

innovative solutions to the challenges of single cell proteins (SCPs, protein-rich microbial 

products) production and beyond [1,57,60]. 

 

 

Future Projections  

Integrating omics data generation, data analytics, machine learning and systems biology into DT 

model offers a very promising path for advancing alternative food research that leads to healthier, 

affordable, and nutritious food sources. However, a major hurdle is the scarcity of high-throughput 

multi-omics data, especially for microbial strains related to alternative food production, such as 

SCPs, crucial for holistic organism analysis and pathway discovery. Addressing this requires the 

generation of comprehensive omics data and the development of online resources, such as meta-

databases, for community access. Furthermore, standardized data design is crucial for these 

resources to enhance their utility [61]. 

Training machine learning models in metabolic engineering poses another data problem, 

demanding quantitative data for multiple conditions. Scaling up experiments from lab to industrial 
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settings introduces significant differences, necessitating specialized data. While databases like 

LASER and jQMM exist, they often lack the data necessary for AI modeling in DT [62,63]. This 

shortage calls for an emphasis on producing high-quality quantitative data, fostering collaboration, 

and data-sharing efforts in the field. 

The "black box problem" inherent in AI and machine learning methods raises concerns 

about the transparency and interpretability of the models, especially in complex biological systems 

[64]. Addressing this, explainable artificial intelligence (XAI) methods hold promise for making 

AI outcomes more understandable to humans, facilitating model improvements.  

Genome annotation for food-safe and GRAS organisms also demands specific attention, as 

many remain under-studied or unannotated. Improved ML-based genome annotation and pathway 

prediction methods are essential for harnessing the full potential of AI in wild and metabolic 

engineering, even in the absence of genome sequences [36]. Overcoming these challenges will be 

crucial as we explore the DT efforts to enhance metabolic engineering strategies for alternative 

food production. 

There are several challenges that occur during the production of microbial-based foods and 

ingredients that are correlated to the metabolic activities of microorganisms and impact yields, 

sensory, and safety of the final products, as stated above. To address this complexity, the next 

logical step is to forecast how these components will interact with one another. This would 

undoubtedly be an intriguing topic for future DT research. Instead of looking at a single prototype, 

we may eventually have access to a visualization that demonstrates how these diversity interactions 

occur in greater depth.  

Traceability and identification of critical control points (CCPs) are two other aspects that 

contribute to the food system, including alternative foods and ingredients [65]. With the help of 
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DT's virtual presentation of the biomanufacturing process in future studies, it is possible to detect 

CCPs and improve the efficiency of the traceability system. It can also be adapted to effectively 

predict CCP failure and its corrective actions, thereby improving the safety of alternative food 

generated products in a more sustainable way. 

Future research should also consider waste management systems, how they can be 

visualized by DT, allowing users to monitor, quickly analyze, and fix problems before they occur. 

This saves both time and money by decreasing downtime and avoiding costly failures. The 

collected data overtime by DT can be used to optimize waste management processes and identify 

opportunities for improvement. Overall, it is an imperative to support the research and 

development of multi-disciplinary based DT models that have potential for sustainable alternative 

food production in the foreseeable future. 

 

Conclusion 

The integration of Digital Twin (DT) modeling with sensor technologies and predictive models 

offers a transformative approach to address challenges in food production and research. By 

leveraging real-time data collection and virtual simulations, DT enables continuous monitoring 

and optimization of alternative food manufacturing processes, reducing the risk of failures and 

improving resource utilization. Moreover, DT provides valuable insights into food quality, safety, 

and shelf-life estimation, facilitating informed decision-making and scenario analysis. 

In microbial-derived food production, DT's ability to integrate complex data from various 

sources, including multi-omics and growth optimization, enhances our understanding of key 

regulatory bottlenecks and facilitates process optimization. By reducing testing costs and 

improving productivity and quality, DT accelerates innovation in food manufacturing while 
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enabling efficient operator training and equipment validation. Furthermore, DT's application 

extends to bioprocess modeling, offering smart manufacturing processes and enabling quick 

corrections and precise decision-making in alternative food production. 

Despite its potential, DT encounters several challenges that must be addressed to fully 

leverage its benefits. Dynamic modeling approaches rely heavily on accurate parameters, 

presenting challenges in parameter determination and experimental data collection. Similarly, top-

down modeling approaches face difficulties in accurately inferring kinetics and flux rates due to 

the complexity and variability of metabolic models. However, the integration of AI and machine 

learning (ML) into DT offers opportunities to overcome these challenges. ML algorithms play a 

crucial role in pathway identification, gene essentiality prediction, and omics data analysis, 

improving the accuracy and efficiency of metabolic engineering strategies. Moreover, explainable 

AI methods hold promise for enhancing the transparency and interpretability of ML models, 

addressing concerns about their applicability in complex biological systems. 

Looking ahead, we suggest that overcoming challenges related to data scarcity, scalability, 

and interpretability is essential for advancing DT in alternative food research. Generating 

comprehensive multi-omics data, developing standardized data resources, and fostering 

collaboration are critical steps in this direction. Additionally, improving genome annotation and 

pathway prediction methods for food-safe organisms will unlock the full potential of AI in 

metabolic engineering. Furthermore, future research should explore the potential of DT in 

addressing complexities related to microbial-based food production, including interactions 

between components and waste management. By visualizing biomanufacturing processes, 

identifying critical control points, and optimizing waste management systems, DT can contribute 

to improving the efficiency, safety, and sustainability of alternative food production. 
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Overall, the adoption of DT approaches promises to leverage recent advancements in omics 

technologies, genome engineering, and synthetic biology to optimize bioprocesses, reduce costs, 

and enhance the competitiveness of alternative foods and ingredients. With its potential to enhance 

productivity, quality, and sustainability in food production, DT represents a significant step 

forward in addressing the challenges faced by the food industry in meeting the growing demand 

for nutritious and sustainable food sources.  
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Tables 

 

Table 1: Selected cases of microbial manufacturing process optimization using omics analyses. 

Microorganisms Observations Omics analyses Achievements References  

Yarrowia lipolytica Low lipid 

production 

Metabolomics  Glycerol led to ↑ yield (promote long 

chain fatty acids synthesis) 

[66] 

Saccharomyces cerevisiae Low levels of 

carotenoids  

Transcriptomics Zinc and copper ions ↑ yield (regulate 

related genes)  

[67] 

Streptomyces albulus pH impact on ε-

poly-L-lysine 

Transcriptomics pH shock ↑ yield (prompt key genes and 

enhance cell respiration) 

[68] 

Aurantiochytrium Sp.  Temperature 

effect on 

generated lipid 

types 

Transcriptomics and 

lipidomics 

↑ Docosahexaenoic and eicosadienoic 

acid acids at 5oC and 15oC, respectively 

(regulate activity of key enzymes) 

[69] 

Rhodosporidium toruloides Oil accumulation 

during starvation 

Genomic, transcriptomic 

proteomics 

Provided different substance to ↑ lipid 

production under nutritionally limiting 

medium 

[70,71] 

Penicillium chrysogenum Low performance 

when scale up 

Integrating computational 

fuid dynamics and cellular 

reaction dynamics 

Design a rational strategy for the scale-

up process 

 [72] 
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Figure Legend 
Figure 1. The Design, Build, Test, Learn Iterative Cycle of Metabolic Engineering. The iterative process of metabolic 

engineering, encompassing four key stages: The Design stage where the problem is identified, and the pathway along with the host 

organism are selected. The Build stage involves the selection, synthesis, and assembly of components for integration into the host. 

The Test stage where engineered strains are scrutinized to produce target molecules, such as transcripts, proteins, and metabolites. 

Finally, the Learn stage entails analyzing the data gathered from testing and utilizing it to inform future iterations of the cycle. 

 
Figure 2. Workflow for multi-omics data integration, next-generation dynamic model and digital twin development. The 

process involves collecting raw individual omics data (e.g., genomics, metagenomics, proteomics, and metabolomics) for specific 

phenotypes, which is followed by a proper quality control process to remove less informative features. Next, the researcher chooses 

one of the integration strategies from the listed options: the early integration method, merging all omics datasets to create a single 

large matrix of multi-omics data; the intermediate integration method allows the analysis of multi-omics datasets together, focusing 

on finding common latent states that can reveal the underlying biological mechanisms; Late integration analyzes each data set 

separately and later integrates its result into a joint model, and Hierarchical integration leveraging prior knowledge of the regulatory 

relationships between the different omics layers to extract the most relevant information. Various supervised or unsupervised 

machine learning methods are subsequently employed to analyze and select the most distinctive features for each phenotype of 

interest and map them into biological pathways. From an empirical standpoint, the most current data integration algorithms can 

distinguish into six categories: matrix factorization-based, correlation-based, network-based, Bayesian, fusion-based, and 

multivariate analysis [73,74]. The use of one or more of these algorithms depends upon the specific research objectives and their 

relevance to the different biological challenges addressed by multi-omics studies. Indeed, these algorithms have been incorporated 

into various tools, including web-based platforms such as OmicsNet, PaintOmics, Asterics and others, and development 

environments like mixOmics, as outlined by [75]. The resultant data is used for the construction of a dynamics model using the 

multi-omics pathways network topology (considered as input) obtained from the previous steps.  Next, the metabolic network 

topology is adjusted to fit the time-series multi-omics data of molecular profiles and in silico knockouts are used to increase the 

yield of desired proteins and to guide the re-engineering of the microbial strain. Finally, the predictions of the dynamic models are 

validated experimentally, and a digital twin is created to be used to achieve better understanding of the processes involved in 

alternative food production. 
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