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tomography. Varying the pump power of the SPDC, we generated different states which exhibit non-Gaussian
behavior.
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1. Introduction
Quantum information processing solely based on Gaus-
sian states and Gaussian operations is a largely matured
field of research. The preparation of squeezed states -
the ubiquitous resource in many Gaussian protocols - has
experienced large progress in recent years. States with a
high purity or a high degree of squeezing have been pro-
duced [1–4]. Moreover, Gaussian projectors can be im-
plemented using homodyne detection, which is capable
of reaching near-unity detection efficiency [1]. Finally,
Gaussian displacement operations combined with low-
noise linear feedback have been implemented with high
quality [5–8]. This progress has lead to the implemen-
tation of various Gaussian protocols such as quantum
teleportation [9], quantum key distribution [10], quan-
tum cloning [11], quantum secret sharing [12] and quan-
tum computation [13, 14].

However, several no-go theorems exist for systems con-
sisting of purely Gaussian states and Gaussian opera-
tions. With this constrained set of states and oper-
ations it is impossible to perform entanglement distil-
lation [15–17], quantum error correction [18], universal
quantum computing [19, 20], quantum bit commitmen-
t [21], and to violate Bell’s inequality [22]. To realize
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these protocols, non-Gaussian approaches are required.
This non-Gaussianity can be injected into the system
at different stages. It can enter through a non-Gaussian
measurement strategy [23–25], non-Gaussian noise char-
acteristics [26], or it can be incorporated through a non-
Gaussian state preparation strategy [27–32].

Important examples of a pure non-Gaussian state
are the photon number eigenstates, the Fock states
|n⟩, (n=1, 2...). Such states have been prepared and ful-
ly characterized in optical systems using SPDC followed
by a non-Gaussian heralding measurement [33–40]. An-
other family of non-Gaussian states, which has gained
much interest in recent years, are the Schrödinger cat
states which are superpositions of two coherent states of
different phase, |α⟩ ± | − α⟩. Despite the constituents
being Gaussian, the superposition exhibits strong non-
Gaussianity which is sufficient for the realization of var-
ious protocols, examples being the realization of quan-
tum computation[27, 41–43], error correction of Gaus-
sian noise[30] and the violation of Bell’s inequality [31].

It has been demonstrated that such coherent state
superpositions (CSS) with a moderate amplitude α .
1 can be well approximated by a photon-subtracted
squeezed state [44], or equivalently, a squeezed single-
photon state. Fidelities between the ideal CSS state and
the photon-subtracted squeezed state as a function of the
excitation, α, of the CSS and the degree of squeezing of
the squeezed state are shown in Fig. 1. The moder-



2

ate amplitude of the CSS can be non-deterministically
amplified to a larger amplitude CSS by means of linear
interference and heralding based on photon counting or
homodyne detection events [28, 45–47]. A large CSS can
also be prepared through a conditional homodyne mea-
surement on a Fock state in which the amplitude of the
CSS state scales with the number of photons in the Fock
state [49].

Fig. 1. Fidelity between a photon-subtracted squeezed state
and an ideal coherent state superposition, |α⟩ − | − α⟩ for
different degrees of squeezing. It can be seen that the fidelity
remains high, F > 0.9, for α up to 1, provided the squeezing
degree is not too large.

Inspired by these ideas for the generation of CSS
and motivated by the potential applications, various
groups have realized photon subtraction with squeezed
states [48–52, 54, 55]. These implementations have been
carried out either with continuous-wave (CW) or pulsed
light sources, and with wavelengths ranging from the
near-infrared to the telecommunication regime. The
photon subtraction has been carried out using an asym-
metric beamsplitter that reflects a small portion of the
light in which a photon is measured and thus subtracted
from the squeezed state. The measurement has been re-
alized with single-photon avalanche photodiodes (APD)
as well as with photon-number-resolving transition edge
sensors.

The largest directly measured value of the Wigner
function negativity is −0.171 and it is obtained us-
ing continuous wave (CW) squeezed states [56]. Us-
ing pulsed instead of CW squeezed light, the report-
ed negativities as well as the purities of the generat-
ed non-Gaussian states are much lower. Despite the
lower quality of the generated states, there has been
much interest in pulsed experiments due to the relative
simplicity of the experimental setup and the inherent
temporal confinement of the generated states. Previ-
ous pulsed experiments on generating CSS with a nega-

tive Wigner function have employed femtosecond pulsed
lasers [35, 52]. In these experiments, the nonlinear crys-
tal used for squeezed light generation was kept in the
sub-millimeter range in order to avoid the detrimental
effects of of group velocity dispersion (GVD) and gain
induced diffraction [57].

By using picosecond instead of femtosecond pulses,
the group velocity dispersion is largely reduced, and thus
it is possible to employ a longer nonlinear crystal. (It
is also beneficial in quantum communication as
picosecond pulses do not suffer much from chro-
matic dispersion in the transmission line (optical
fiber). Furthermore, the useful synchronization
can be kept, which allows efficient noise suppres-
sion. THIS SENTENCE NEED BE REVISED!!)
Based on picosecond pulses, a squeezing of 5 dB
was observed, which was inferred to a squeezing
of 9.7 dB after loss correction [53]. Namekata et al.
have recently realized a non-Gaussian operation by using
a 5-ps pulsed fibre laser at 1560 nm and a 3-mm long,
periodically poled, lithium niobate waveguide. Howev-
er, no negative values in the measured Wigner functions
were observed due to the low overall efficiency of the
experiment and the low modal purity of the generated
states [54].

In this paper, we present the first experimental
demonstration of CSS with a negative Wigner function
in the ps-pulsed regime. Single photons are subtract-
ed from squeezed vacuum states produced in a 3-mm
long quasi-phase matched periodically poled KTiOPO4
(PPKTP) crystal pumped by 4.6-ps laser pulses at 830
nm. The generated photon-subtracted squeezed vacu-
um states are measured and characterized with various
squeezing factors. All the experimental results demon-
strate strong non-Gaussian properties and the largest
directly measured negativity was 0.023 without any loss-
corrections.
2. Experiment
A CSS state with a small amplitude can be approximat-
ed by a photon subtracted squeezed state, and it can
be fully characterized by means of its Wigner function
which is obtainable by homodyne tomography. In the
following we present the different parts of our experi-
mental setup to generate and characterize a CSS. We
introduce the two required parametric processes (up-
conversion and down-conversion), the photon subtrac-
tion setup, and finally the homodyne detector. We also
briefly discuss a simple model for predicting the perfor-
mance of the experiment.

The experimental setup is shown in Fig. 2. We used a
cavity-dumped Titanium-Sapphire pulsed laser (Tiger-
PS, Time-Bandwidth Products), which produced near-
ly Fourier-transform-limited pulses with duration 4.6 ps
at 830 nm with an average energy up to 40 nJ and a
repetition rate of 815 kHz. With a WS6 HighFinesse
Wavelength Meter, the center wavelength and its band-
width of the pulses were measured to be 829.7 nm and
0.16 nm, corresponding to a spectral width of 70 GHz.
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Fig. 2. Schematic of the experimental setup. The cavity
dumped laser emits 4.6 ps optical pulses at 830 nm with a
repetition frequency of 815 kHz. ABS1: 90/10 beamsplitter,
BF: blue filter, DM: dichroic mirror, RF: red filter, ABS2:
Asymmetric beamsplitter with R = 7.7%, SMF: single-mode
fiber, IF: interference filter, APD: avalanche photodiode, PB-
S: polarizing beamsplitter, HWP: half-wave plate.

A fraction of about 10% was used as a local oscillator
(LO) for homodyne detection, a weak seed beam was
directed to the parametric down-conversion process for
alignment and the remaining part was directed to a fre-
quency doubling process.

2.A. Frequency doubling
For frequency doubling a 3-mm long periodically poled
KTP crystal (PPKTP1) was used. The crystal poling-
period was chosen for 1st order quasi phase-matching
corresponding to a poling period of Λ ∼ 3.8 µm with
all fields polarized along the crystal z-axis. The length
of the crystal was chosen to be 3 mm for a compromise
between having a large interaction length and avoiding
phase mismatch due to group velocity dispersion (GVD).

Fig. 3. (a) Blue diamonds correspond to the second-harmonic
generation conversion efficiency for different input powers of
the fundamental beam, PF . These points are fitted with
η = η∞ tanh2(g

√
PF ) with η∞ = 0.53 and g = 0.18. Red tri-

angles are the total generated SHG power for different power
levels of the fundamental beam.

The beam waist was set to w0 ∼ 90 µm, thus achieving
a weak focusing condition with the depth-of-focus (2z0 ∼
60 mm) being 20 times longer than the crystal length
[58, 59]. The second harmonic conversion efficiency, η

was investigated as a function of input power of the the
fundamental beam and the result is displayed in Fig. 3.
A maximum frequency doubling efficiency of 32 % was
achieved for an incident average power of 33 mW. The
spectral properties of the resulting frequency doubled
light was investigated by a WS6 HighFinesse Wavelength
Meter and it was measured to have a center wavelength
of 414.8 nm and a bandwidth of ∼0.1 nm, corresponding
to a spectral width of about 174 GHz.

2.B. Parametric down-conversion
After the frequency doubling crystal, the residual light
at 830 nm was filtered out using a series of filters.
The filtered blue light was then focused into a second
PPKTP crystal (PPKTP2) used to generate squeezed
vacuum through the SPDC. It has been shown that
for single pass pulsed SPDC experiments the gain-
product gmingmax, where gmin(gmax) is the attenua-
tion(amplification) factor is enhanced by defocussing the
pump [59, 60]. This was confirmed in our setup, and the
waist of the pump was set to w0,p ∼ 150 µm and a depth-
of-focus of 2z0 ∼ 340 mm. The pump can thus be regard-
ed as a plane wave within the length of the crystal, lead-
ing to an improvement of the degree of squeezing [60].
After the SPDC, the remaining pump was filtered out
using a series of filters. The generated squeezed vacu-
um was directed to an asymmetric beamsplitter (ABS2)
with a reflectivity of R ≈ 7.7%. The reflected part was
directed to an avalanche photodiode, while the transmit-
ted part was subjected to full quantum state tomography
by means of time-domain balanced homodyne detection
(TD-BHD) [61, 62].

In pulsed experiments, squeezing is often generated in
a single pass configuration without the use of enhance-
ment cavities. Thus the squeezing is generated in many
different spatial and temporal modes [63–65]. The mod-
e (and thus the degree of squeezing) being measured by
the homodyne detector depends on the spatio-temporal
profile of the local oscillator: the mode of the squeezing
spectrum that spatially and temporally overlaps with
the LO will be measured by the homodyne detector.
The amount of measured squeezing can be optimized
by injecting a weak seed beam, corresponding to the
mode of the LO, into the SPDC crystal and studying
the classical parametric (de-)amplification of the seed
beam. Depending on the relative phase between the
seed and the pump, the seed can be either amplified or
de-amplified. As described above the beam waist of the
pump in the PPKTP was set to w0,p = 150 µm. Opti-
mal phase-matching between the two waves is obtained
for w0,p/w0,s =

√
2 [59], and thus we set the beam waist

of the seed (w0,s = 106 µm). We achieved an optimal
de-amplification of gmin = 0.38 and an amplification of
gmax = 4.6 for a pump power of 9 mW. A full character-
ization of the gains, g{min,max}, as a function of pump
power is shown in Fig. 4.

Using a simple model we find [67],
g{min,max} = ϵ exp({+2r, −2r}) + (1 − ϵ) (1)
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Fig. 4. Classical parametric gain versus average pump pow-
er, Pp. The blue squares correspond to the measured de-
amplification values whereas the blue diamonds are the mea-
sured amplification values. The red and green dotted lines
are fits using Eq. (1), with the intrinsic parametric gain
r = 0.28

√
Pp(mW ) and ϵ = 0.77 ± 0.01.

where exp(±2r) is the intrinsic gain and ϵ is a pa-
rameter describing the spatial overlap between the seed
and the pump. ϵ was experimentally estimated to be
0.77 ± 0.01 (see below). Through power-shape fitting,
the dependence of r on the the pump power is found
to be r = 0.28

√
Pp(mW ). This measurement of the

classical gain also shows that within the gain range of
our experiment, the effect of gain-induced diffraction is
negligible [57, 60].

2.C. Time-Domain balanced homodyne detection
The measurement setup for homodyne detection is
shown in Fig. 2. The transmitted squeezed vacuum s-
tate was superimposed with the LO at PBS1, the com-
bined optical pulses were split at PBS2 and the re-
sulting two beams were focused onto a pair of PIN
photodiodes (Hamamatsu, S3883, quantum efficiency of
ηph = 0.95 ± 0.02). Using a HWP, the splitting ratio of
PBS2 was tuned to balance the homodyne detector. The
detector used in the experiment is based on the design by
Hansen et al. [62]. Its output was recorded by a digital
oscilloscope (LeCroy, LT374L) using the cavity dumper
signal from the laser as a trigger. The final quadrature
value is then extracted by integrating the signal over the
individual pulses.

The integration requires a well defined pulse window,
Tw, which is determined by the repetition rate of the
laser fRep = 815 kHz yielding Tw ≈ 1.2 µs. The de-
tector has a bandwidth of 2 MHz which is confirmed by
the generation of 500 ns wide electronic pulses resulting
from the detection of the picosecond optical pulses. S-
ince electronic pulse is shorter than the pulse window,
only a fraction of the pulse window contains valuable
information. As a result, only a part of the measured

pulse contributes to the integration, used to extract the
quadrature values. We investigated the signal-to-noise
ratio (SNR) (shot-noise variance to electronic noise vari-
ance) of the detection scheme for various choices of a
weight function folded with the measured pulse. It was
found that a simple boxcar-average, encompassing about
40 % of the measurement window, was an optimal choice.
The shot noise reference is obtained by measuring a vac-
uum input state. The reference level is known to increase
linearly with the local oscillator (LO) power. To veri-
fy that the system was indeed shot-noise limited, we
measured the shot-noise as a function of the LO power,
see Fig. 5(a). The electronic noise was measured to be
3.7 mV2 which corresponds to 530 electrons/pulse. In
Fig. 5(a) it is clearly seen that the shot-noise depends
linearly on the LO power, and the gain of the detector
was found to be 13.6 mV2/106 photons per pulse. In
Fig. 5(b) the ratio between the shot noise and the elec-
tronic noise (electronic noise clearance) is plotted as a
function of the LO power. It can be seen that the noise
clearance surpasses 23 dB when the LO pulse contains
more than 70 × 106 photons (corresponding to a pow-
er of ∼ 12µW). This corresponds to an electronic noise
equivalent quantum efficiency of ηel ≥ 99.5 ± 0.5% [68].

The overall homodyne detection efficiency ηhd is given
by

ηhd = ηopη2
mmηphηel (2)

where ηop is the propagation efficiency of the state
through optical components and ηmm is the degree of
mode-matching between the LO and the squeezed pulse.
These values were measured to be ηop = 0.90 ± 0.02 and
ηmm = 0.95 ± 0.02, giving a total homodyne efficiency
of ηhd = 0.77 ± 0.02.

2.D. Photon subtraction
The reflected photons from ABS2 were detected by a
fiber coupled APD (Perkin-Elmer SPCM-AQR-14-FC).
Using this signal as a trigger we conditionally prepared a
photon subtracted squeezed state. To reduce the effect
of detector dark counts, the trigger signal for the ho-
modyne measurement is derived by correlating the APD
signal with the cavity dumper signal (see Fig. 2). By
setting the coincidence window to 120 ns - corresponding
to 1/10 of the total measurement window - we achieved
a 10-fold decrease of the detector dark counts, resulting
in a dark count rate of 2.0 ± 0.5 s−1. To ensure that
the APD detection events are spatially and spectrally
matched with the optical mode of the LO it is neces-
sary to employ filtering in the APD arm. The spectral
filtering was carried out using a Fiber-coupled Tunable
Fabry-Perot (FP) Filter Cavity (Micron Optics, FFP-
TF-830-005). It was coupled via two 1.5-meter-long s-
ingle mode fiber pigtails for spatial filtering. The band-
width of the filter was 22 GHz corresponding to 0.05
nm, and the central wavelength could be tuned using
a voltage supply. The total detection efficiency of the
heralding channel was estimated to be about 10 ± 5 %
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Fig. 5. (a) The quadrature variance measurement of the shot
noise as a function of the LO power. (b) the signal-to-noise
ratio (SNR) of the shot noise variance as a function of the
LO power. The unit "mio" is the abbreviation of the
quantity "millions".

including the coupling efficiency to the fiber, the peak
transmission of the FP filter and the detection efficiency
of the APD. The total gated signal trigger count rate
varied from 400 s−1 up to 4000 s−1 for pump powers of
1 mW up to 8 mW.

2.E. Gaussian model for estimation of photon-
subtracted squeezed state
In order to predict the performance of the photon-
subtraction experiment, we derived a simple model Refs.
[35, 50, 69]. The model takes into account various ex-
perimental imperfections, which could compromise the
quality of the prepared output states. The analysis is
broken into three parts. The first part is the generation
of the squeezed state. The second is the tap-off on the
asymmetric beamsplitter, and projection onto the on-off
click detector with a filter in front. Finally, the third
part is the imperfect homodyne detector used for char-
acterization. We choose to work with the Wigner quasi-

probability distributions since they provide a convenient
framework for such types of models. In the Wigner pic-
ture the vacuum state is given by a simple Gaussian
distribution in the quadrature variables, X̂ = [x, p]T .

W0(X̂) = e−x2−p2

π
(3)

A squeezed state can be written in the same way with the
variables rescaled according to the quadrature variances
Vx,p:

Ws(X̂) = e
− x2

Vx
− p2

Vp

π
√

VxVp

(4)

where the Heisenberg uncertainty principle constrains
the variances as VxVp ≥ 1. The squeezed state is split
on an asymmetric beamsplitter with a reflectivity R, and
one part is measured using the positive operator value
measure (POVM) element, Λ̂ = 1̂ − |0⟩⟨0| [66],

Wout(X̂1) = 1
2π

∫
W (X̂1, X̂2)WΛ(X̂2) dX̂2 (5)

where W (X̂1, X̂2) is the Wigner function of the state
after the asymmetric beamsplitter and WΛ(X̂2) is the
Wigner function for the POVM element.

In Sec. 2.D we described how a proper filtering in
the heralding arm was necessary in order to ensure that
identical modes were detected by the APD and the ho-
modyne detector simultaneously. However, in practice,
some false modes will be detected by the APD. This will
be modeled by the modal purity parameter Ξ, and it de-
scribes the probability that the photon detected from the
APD came from the targeted optical mode. The output
from the system can then be expressed as follows,

Wout,Ξ(X̂) = ΞWout(X̂) + (1 − Ξ)Ws(X̂) (6)

where Ws(X̂) is the state we see when the APD detec-
tions are uncorrelated with the optical mode used in the
experiment.
3. Experimental results
3.A. Squeezed vacuum
Using the data acquisition method as described in Sec.
2.C, the squeezed vacuum produced by the SPDC was
characterized. The relative phase between the LO and
the quantum state was scanned by a sawtooth modu-
lation applied to a piezocrystal attached to a highly re-
flecting mirror placed in the LO arm. The sampling rate
and acquisition time of the oscilloscope was set as 100
MS/s and 80 ms, then we acquired ∼ 65200 quadrature
values in one run. The minimum and maximum quadra-
ture variances of the squeezed pulses were measured as
a function of pump power and the measured values are
shown in Fig. 6.

Assuming a loss model, the squeezing and anti-
squeezing variances, V{min,max}, can be fitted to a sim-
ple relation.

V{min,max} = ηtot(gmin, gmax) + (1 − ηtot)Vvac (7)
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Fig. 6. The measured squeezing and anti-squeezing variances
as a function of the pump power. The blue diamonds are
the measured maximum variances (anti-squeezing), the blue
squares are the measured minimum variances (squeezing).
The green and red dotted lines are the fittings according to
Eq. (7), where ηtot = 0.62 ± 0.01 are given.

where g{min,max} is the parametric gain, ηtot is the total
detection efficiency, and Vvac is the quadrature variance
of the vacuum state. By setting the parametric gain to
the values found in Sec. 2.B, we find reasonable fits to
both series of data for ηtot = 0.62±0.01, which is appar-
ently lower than the experimentally accessed one of 0.77
(see Sec. 2.C). Part of the discrepancy is caused by the
tap-off beamsplitter, which adds 8% loss to the squeezed
states. The remaining discrepancy is about 12%, which
we speculate to result from a mismatch between the tem-
poral modes of the LO and the squeezed vacuum [58, 70].
However, as this loss effect has not been carefully stud-
ied and localized, we will use η = 0.77 as the estimated
detection efficiency to correct the experimental data for
losses.

Using the experimental parameters in Fig. 6 as well as
the formalism given in Sec. 2.E, the expected properties
of the photon-subtraction squeezed state can be theo-
retically predicted. The estimated values for the fidelity
to the odd cat state Fodd, its amplitude αodd, and the
negativity of its Wigner function at the origin W (0, 0),
corresponding to the photon-subtraction squeezed states
under four different pump power levels, are listed in Ta-
ble 1 and Table 2 (corrected for detection losses).

It is clear that any one of the photon sub-
tracted squeezed states are expected to exhibit
strong non-Gaussianity with relatively large neg-
ativities of the Wigner functions[37]. According
to Ref.[71], the state prepared by conditional-
ly subtracting a single photon from a squeezed
vacuum state was non-Gaussian even when its
Wigner function is positive at the origin.

Pp [mW] Fodd α W (0, 0)

2.0 0.64 0.87 -0.09

4.0 0.58 1.05 -0.06

6.0 0.55 1.20 -0.04

8.0 0.52 1.32 -0.03

Table 1. Estimation of the parameters characterizing the
photon subtracted squeezed state for different pump power
levels. The predictions are based on the measured values for
the squeezed vacuum states. In these estimates we have set
the mode match parameter Ξ to unity for all power levels.

Pp [mW] Fodd α W (0, 0)

2.0 0.84 0.99 -0.21

4.0 0.74 1.18 -0.16

6.0 0.69 1.34 -0.13

8.0 0.63 1.45 -0.11

Table 2. Estimation of the parameters characterizing the
photon subtracted squeezed state for different pump power
levels after correcting for the homodyne detection losses of
1 − η = 0.23.

3.B. Photon-subtracted squeezed vacuum
Next we prepared photon-subtracted squeezed states for
different pump powers ranging from 2 to 8 mW. In this
range, the photon detection rate of the APD varied from
400 s−1 to 4000 s−1. Each time a detection event from
the APD was correlated with the sync signal from the
laser, a trigger signal was derived and sent to the oscillo-
scope, as seen in Sec. 2.A. For every trigger signal, the
digital oscilloscope sampled the homodyne signal for 1
µs with a sampling rate of 250 MS/s, making up a single
measurement segment. Due to the limited memory of
the oscilloscope, only 4000 data segments can be con-
secutively stored. The quadratures were extracted in
the same way as for the squeezing measurement. Dur-
ing one measurement series the relative phase between
the LO and the quantum state was scanned over a range
of 0 − 3π .

We used maximum likelihood estimation to recon-
struct the prepared quantum state [72–74]. Before
the reconstruction, the acquired quadrature files were
concatenated, and the entire batch of quadratures
measurements was used for reconstruction. In order
to reconstruct the quantum state, an estimation of the
phase reference was required. Since the phase was s-
canned, we did not have a stable phase reference. In
order to extract the phase information the quadrature
data was stored in bins of 100 quadratures and the vari-
ance of each bin was evaluated. The phase of bin i
was initially assigned by comparing its variance to
the minimum and maximum variances using the relation
Vi(θi) = Vmin cos2 θi +Vmax sin2 θi, where θi is the phase
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associated with bin i. From this expression we obtained
an estimate for the phases in each bin. Without loss
of generality, the assigned phase was chosen between 0
and π/2. By using a saw tooth function to fit
θi, the phase information for each measurement
run was smoothly estimated. The phase assigned
quadrature files were then concatenated, and the
entire batch of quadrature measurements was
used for reconstruction. Having assigned a phase
to the quadratures, we performed maximum likelihood
reconstruction. Based on the above algorithm, we
reconstructed the density matrices and from those we
calculated the Wigner quasi-probability distributions,
see Fig. 7 (without loss-correction) and Fig. 8 (cor-
rected for losses).

From Fig.7 we see that the generated states are non-
Gaussian and non-classical. Moreover, it is evident
that the Wigner functions become more squeezed as the
pump power increases while the dip around the origin re-
tains its structure. The dip attains a negative value for
all realizations if the measurement results are corrected
for losses, as seen in Fig.8 . The maximum measured
negativity for the uncorrected data is W (0, 0) = −0.023
which corresponds to a negativity of W (0, 0) = −0.063
after loss correction. The fidelities between the experi-
mentally produced states and the ideal cat states (max-
imized over the excitations α) are summarized in Table
3.

Pp [mW] Fodd α W (0, 0) Ξ
2.0 0.46 0.77 0.016 0.72

4.0 0.47 0.88 −0.011 0.86

6.0 0.49 1.08 −0.018 0.91

8.0 0.49 1.19 −0.023 0.96

Table 3. Parameters characterizing the prepared photon sub-
tracted squeezed states.

By comparing the results in Table 3 with the pre-
dictions in Table 1 we see that the fidelities, as well
as the negativities, are generally smaller than predict-
ed. The discrepancy, however, gets smaller at higher
pump powers. This effect is caused by slow instabilities
of the experimental setup which become significant for
longer measurement runs as is the case for low pump
powers where the run time is about 10s (to acquire 4000
quadrature values). For high powers, however, the mea-
surement time (1-2s) is shorter and thus the influence of
instabilities is less pronounced. The main source of in-
stability is a mechanical drift of the filtering Fabry-Perot
cavity which was not actively stabilized during the mea-
surement. A drift of the cavity results in the detection
by the APD of the frequency modes, which are differ-
ent from the ones measured at the homodyne detector,
which results in degradation of the performance. This
corresponds to a lower value of the parameter Ξ in Eq.

(6). To estimate values for the mode match parameter Ξ
for the different power levels, we fit the theoretical pre-
dictions to the actual measurement results by using Ξ as
a fitting parameter. The obtained values of Ξ for which
the theoretical fidelities and Wigner function negativ-
ities match the experimental ones are shown in Table
3, which shows that the mode matching parameter is
increasing for increasing pump powers.

Incorporating the generalized Bernoulli transforma-
tion into the maximum likelihood algorithm, the homo-
dyne detection inefficiency can be corrected [74]. As
mentioned above, we used the conservative estimate of
the detection efficiency of 77% for the correction in order
to avoid overestimating the negativities of the corrected
Wigner functions. The Wigner functions after correction
are displayed in Fig. 8, and the results for the fidelities,
negativities and sizes are summarized in Table 4.

Pp [mW] Fodd α W (0, 0)
2.0 0.55 0.83 −0.033

4.0 0.53 1.01 −0.042

6.0 0.54 1.17 −0.050

8.0 0.56 1.32 −0.063

Table 4. Parameters characterizing the prepared photon sub-
tracted squeezed states after correction for imperfect detec-
tion.

4. Conclusion
We have presented the preparation of photon-subtracted
squeezed states in a system based on picosecond pulsed
laser pulses. It is based on generating squeezed vacuum
from SPDC in a PPKTP crystal followed by single pho-
ton subtraction, enabled by the reflection of a single pho-
ton on an asymmetric beamsplitter and its detection by
the APD. Various states were produced with varying de-
gree of squeezing. The resulting states were fully charac-
terized by homodyne tomography with which the Wign-
er functions and density matrices were reconstructed.
We found a maximum negativity of W (0, 0) = −0.023
without any loss-corrections and W (0, 0) = −0.063 after
loss-correction. The negativity appeared to be largest
for the largest degrees of squeezing. It is attributed
to the shorter measurement time associated with larger
squeezing and thus greater robustness to instabilities of
the setup. To improve the results, the setup should be
made more stable through miniaturization, faster mea-
surements and active control of some key parts of the
experiment. Such improvements are serving as an out-
look for future experiments.
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