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ABSTRACT

Detecting, localizing and counting small circular objects in
machine parts is an important task in many applications for
manufacturing. Existing methods of circle detection face dif-
ficulties due to the high-curvature and limited edge points of
circles. As aresult, in this paper we propose a novel two-stage
circle detection method, which integrates bottom-up coarse
detection and top-down circle fitting. First, a circle detector
combining low-level feature descriptors and a linear SVM is
developed. This is used to scan an input image in a sliding
window mode to detect small circles with coarse estimates
of locations and scales. Next, a hierarchical Bayesian model
performs a top-down adaptive circle fitting, with the ability
to achieve a maximum a posteriori probability to fit circles
to local image features. The evaluation of our approach with
manufacturing images has demonstrated to be efficient in de-
tecting small circles in machine parts.

Index Terms— Small circle detection, coarse detection,
circle fitting, SVM, hierarchical Bayesian model

1. INTRODUCTION

The problem of detecting circular features in images is an es-
tablished research topic in computer vision [1], and of im-
portance to industrial applications, such as the automated in-
spection of manufactured products [2, 3, 4, 5]. For example,
manufacturing companies may produce products containing
circular objects that need to be counted and checked (e.g. for
security, assembly, defect detection, etc.), by using related al-
gorithms to recognize their location and precise scale. Meth-
ods for object counting can vary from manual processes, to
the use of image processing to detect related objects [6, 7].
These may entail working at a high speed, or require a high
degree of accuracy.

Existing circle detection algorithms can be clustered into
three categories: (1) methods based on Circular Hough Trans-
form (CHT) [8] and shape matching [9, 10]; (2) stochastic
techniques such as Random Sample Consensus (RANSAC)
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[11], simulated annealing [12] and genetic algorithms [13],
and (3) more recently cited methods using Line Segment Ap-
proximation (LSA) [14, 15].

Circular Hough Transform (CHT) is a popular approach
for circle detection, extending from the well-known technique
of Hough Transform (HT) [8], and variants such as Proba-
bilistic Hough Transform [16], Randomized Hough Trans-
form [17] and Fuzzy Hough Transform [18]. CHT accumu-
lates votes from edge points in a parameter space, extracting
significant peaks to represent a circle. However, this approach
is known to face difficulties in detecting a large number of
small circles in noisy images due to the limited number of
edge points available.

To compensate for this, instead of depending on a time-
consuming accumulation operation, it has been proposed to
randomly pick four edge points (three to generate a hypothe-
sis circle, and one for testing) [11]. This approach has proved
to be more efficient than HT-based methods. However, it in-
troduces unnecessary processing when applied to an image of
small circles with a noisy background.

More recently, a new group of circle detection algorithms
have been proposed [14, 15]. These methods apply a linear
line segment approximation to circle detection with false de-
tection control, making the implementation efficient and more
accurate. However, while these approaches are able to obtain
good results, in the absence of performing low-curvature arc
segmentation along a circle perimeter, they often fail to detect
small circles (see Section 3).

On the other hand, dominate deep learning approaches
like Faster R-CNN have been identified to perform poorly for
small object detection [19, 20]. This is due to the difficulty of
region proposal networks to localize small objects accurately.

Inspired by the success of object detection based on lo-
cal feature descriptors (e.g. HOG) and a powerful classifiers
(e.g. SVM) [21], we propose a novel method by integrating
bottom-up detection and top-down circle fitting to obtain the
precise position and scale of small circles in an image. This
consists of a coarse detector to detect small circles in a sliding
window. The detector employs SIFT (Scale-Invariant Feature
Transform) as a sketch pattern descriptor and POAG (Pyra-
mid of Average Gray-levels) as a graph pattern descriptor. A
linear SVM classifier is used to train for accurate detection.



By scanning an image with a sliding window, we are able
to generate a rough estimate of the location and scale of em-
bedded circles. Based on the detection box, a hierarchical
Bayesian model (HBM) is then applied to perform top-down
circle fitting for the precise location and scale of detected cir-
cles. As a result, we believe this iterative solution is efficient
for detecting small circles in related images.

The remaining paper is organized as follows. In Section 2,
we describe the proposed method for small circle detection.
In Section 3, experimental results on real-world images from
the manufacturing industry are presented. Finally, the conclu-
sion is outlined in Section 4.

2. OUR APPROACH

The proposed approach consists of two stages. In the first
stage, an efficient detector is applied to perform multi-scale
scanning on an input image in a sliding window mode. In the
second stage, a hierarchical Bayesian model is applied to fit
a circle to local image features, to obtain the precise location
and scale of small circular objects. The technical details are
described in the following sections.

2.1. Bottom-up circle detection

Following the conventional scheme of vision-based object de-
tection with a sliding window, our detector first extracts the
local visual features and applies a machine learning classifier
to detect the objects-of-interest.

We employ two low-level feature descriptors - SIFT as a
sketch feature descriptor, and POAG as a graph pattern de-
scriptor. The SIFT descriptor exploits gradients, captures the
features of contours and edges around a circular object, while
the POAG descriptor provides a supplementary feature rep-
resentation to encode the global and local brightness patterns
for small circular objects.

A pyramid structure is configured to extract local graph
patterns, which is composed of five layers. In the n-th layer,
the window is divided into n x n blocks. At the top layer, the
feature is represented as the average brightness of the window
(i.e. g). Atthe n-th layer, the feature is represented as a vector
of n? elements, with each element value the difference of the
average brightness of the block, and that of the window (i.e.
9;; —9)- The features of each layer are concatenated to form a
feature vector of 55 dimensions. Concatenating the SIFT and
POAG descriptors forms a low-level feature representation of
both sketch and graph patterns from the detection window. To
be efficient for real-time detection, a linear SVM is trained on
the low-level features for small circular object detection.

For an input image, multi-scale detection is performed in
a sliding window mode, with the stride being 1/4 of the win-
dow scale at each scale level. To achieve real-time perfor-
mance, the SIFT descriptor is computed from integral images
of gradient orientations, and the POAG is computed from in-
tegral images of brightness. The detections are clustered with

non-maximum suppression.

2.2. Top-down circle fitting

The bottom-up detection produces a set of detected boxes
which provide rough estimates of locations and scales of po-
tential small circular objects. To obtain precise and reliable
detection, a hierarchical Bayesian model (HBM) is used to
find a circle under the priors of location and scale according
to the detected box.

A circle is expressed as the mathematical formulation:

Ty = X+ rcost )
Yt = Y + rsint
where x; = (x4,y:) represents the points along the circle

perimeter, X, = (., y.) is the center point of the circle, and
7 is the radius. Fitting a circle in an image requires finding a
sequence of edge points that satisfy the circle model (1).

From a detected box, we obtain the box center x; and size
s. We can use x;, and s = ps to represent the initial estimated
location and scale of a circle, which are employed as priors to
anchor the search of a circle in a neighborhood. Applying
this prior constraint on a circle fitting can be formulated as a
maximum a posteriori problem:

(xk,7*) = max P(C(x.,r)|I)

(Xe,7)
= (1;[{1&7}5 P(I|C(X¢, 7)) P(Xe|Xp, 0c) P(r|rs, 00),  (2)
where C'(x., r) represents a circle centered at x. with radius
7, and the first term P(I|C(x., 7)) is the likelihood of finding
a circle centered at x. with radius r in image I. The sec-
ond term P(X.|Xp,0.) is the prior of the circle centered at x..
given the initial estimated center location at x; with poten-
tial spatial variation o, and the last term P(r|rs,o,.) is the
prior of the radius 7 given the initial estimate r; with poten-
tial variation o,.. The problem formulation can be represented
as a HBM, where hyper-parameters are (xp, 0., 75, 0,), and
the prior parameters are (X, ).
For the task of searching for a circle within a local neigh-
borhood, the prior probabilities are defined as:

exp(—[[xe = x|/ (207)) (3
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Here, we use Gaussian functions to control variations of the
circle parameters (i.e., X. and r). The priors provide top-
down constraints on fitting a circle to the local image features.
The likelihood provides the bottom-up evidence of a circle
appearing in a local image. By presuming that {Xt}g;,:n are
densely sampled points along a circle contour, the likelihood
of a circle in an image given the center at x. with radius 7 is
defined as:
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where P(x;|C(x.,r)) represent the probability of x; being a
point on the circle centered at x, with radius r.

Three kinds of low-level local evidence are employed to
evaluate the matching of a circle point and an edge pixel in
an image: the significance of gradient magnitude, the con-
sistency of orientations, and the least spatial displacement.
Hence, the local evidence on a point x; of a circle is defined
as:

P(x¢|C(x¢,7)) = max Po.(x)P,(x,x:)Ps(x,%x¢), (6)

XEN (x¢)
where N (x;) represents a small local neighborhood of x;.
P.(x) with the probability of x being an edge point (which
depends on the strength of the gradient magnitude). Using a
sigmoid function, this is defined as:

Po(x) = [1 4 exp(—B(llgzl — 90))] 7", @)

where g, = (gg, gy) is the gradient vector at point X, go and 3
are the parameters of the sigmoid function, which are selected
empirically (8 = 0.2 and g9 = 15). To filter out image noise,
P,.(x) is set to 0 when g, < 8. If x is a point on the edge of
a circle in an image, the gradient orientation at a given point
should be perpendicular to the tangent vector at the closest
point x; on the circle. Let g = (g¢z,gsy) be the tangent
vector at point x;. The probability of point x being on the
edge orientation of a circle is given as:

Pyl x0) = (1 [cos0])* = (1 — [gogel /(g &)

®)
To weight the local evidence from the pixel closer to x;, the
distance to the radiation line from the circle center X, to Xy is
evaluated. A straight line connecting the circle center x. and
x; can be described as ax + by + ¢ = 0 according to the two
points x, and x;, so that the distance from x to the line can
be computed as d, = |ax + by + ¢|/+/(a® + b?). Now, the
probability of the spatial displacement of the local supporting
can be defined as:

Pi(x,x:) = (e_dfg/‘fg,)(e—Hx—Xt,Hz/(QUE))7 )

which is a combination of 1D Gaussian and 2D Gaussian
functions.

Let 0P(C(x¢,7)|T)/(0%.) = 0and OP(C(x,,r)|I)/0r =
0. Combining the priors and likelihood functions, we can ob-
tain an iterative solution for the circle model x. and r as:
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where Pj* = P(I|C(xZ,r™)) as (5), P* = P(x|C(xZ,r™))
as (6), x; = (x},y;) € N(x¢) is selected according to (6),
Ax; = (rcost,rsint) from (1), and the center of the detec-
tion box xy.

In most cases, the procedure is terminated in a few itera-
tive steps. We target at small circular objects, where the num-
ber of points along a circle perimeter are limited. Therefore,
the iterative computing for top-down circle fitting is very ef-
ficient.

Finally, the HBM-based top-down circle fitting produces
a precise description of the circle (i.e. x and r), as well as the
posterior probability for matching the circle model to the lo-
cal image features (i.e., P(C(x.,7)|I)). If the posterior prob-
ability is less than a preset threshold, the detection is rejected.
The remaining detections are then clustered into groups ac-
cording to their size 2r, from which we obtain the number of
circular objects and their categories in an image.

3. EVALUATION

We evaluated our method on real-world images (756 x 1008
pixels) of machine parts provided by a local manufacturing
company. Specifically, 96 images of steel breadboards for
buildings and industrial electronic circuits were used in the
experiment, containing over 5,000 circles. Most of the images
contained small circles with a diameter of 20 to 40 pixels, and
a few images contained relatively large diameters of 40 to 60
pixels. The images were captured with variations in view-
ing angle and lighting conditions, and some images contained
scratches on the metallic breadboard surface.

For performance comparisons, we compared our method
with a recent version of the Circular Hough Transform (CHT)
method from OpenCV 4.0.0, released in 2018 [22], and the
Line Segment Approximation (LSA) method [15], with the
source code available at [23]. All testing was completed on a
PC with an Intel 3.2 GHz dual processor, and 4GB of RAM.

For each circle, the ground truth was represented as a cen-
ter point and a radius. For each detection, we obtained the
center and radius of each circle. We then computed the ra-
tio between the intersection and the union of two circle ar-
eas. If the ratio was larger than 0.5, it was accepted as a
True Positive (TP). Otherwise, it was assigned as a False Pos-
itive (FP). Ground truth circles with no overlapping detection
were marked as False Negatives (FN). The precision (P), re-
call (R), and F1-score were computed as F; = 2%, P =
T PTJFP 5> B =7 PT+I; ~- The average performance time was
computed per image.

A few examples of the image results are shown in Fig-
ure 1. Overall, our method outperformed both the CHT and
LSA methods, especially for small circle detection (see Ta-
ble 1).

In particular, the CHT method performed poorly when the
parameters of the circle scale were not preset. This method
generated many large false circles, due to the votes from mul-
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Fig. 1. Comparison of CHT without setting parameters (first row), CHT with setting parameters (second row), LSA (third row)

and our method (fourth row) on sample images.

tiple objects being much larger than those from a single small
circle. CHT also performed poorly in detecting small circles.
Note, that we only show the evaluation results of CHT with
setting parameters, given the unconstrained results for without
setting parameters (see Figure 1).

Alternatively, the LSA method performed better than
CHT, especially for circles with diameters over 40 pixels.
Prior work has shown that LSA can get satisfactory results
from industrial PCB images [15, 23], which we identified
when circles are larger than around 70 pixels in diameter. In
comparison, our results indicate that LSA missed a lot of cir-
cles smaller than 30 pixels in diameter. This we believe was
due to the circles being too small for the line segmentation to
detect.

Based on these results, we estimate that for images con-
taining circular objects that are not too close to an image
boundary, our method holds promise in detection accuracy.
Moreover, we observe that our algorithm can obtain faster and
more accurate results than the tested CHT and LSA methods
for small circle detection.

Table 1. Method performance comparisons.

Method | Precision | Recall | F1 score | Average time (sec)
CHT 0.91 0.23 0.37 8.03
LSA 0.96 0.67 0.79 3.12
Our 0.97 0.94 0.95 0.84

4. CONCLUSION

In this paper, we propose a novel method for circular object
detection, which combines bottom-up coarse detection and
top-down circle fitting. We designed a SVM-based approach
for circle detection to obtain coarse estimates of the location
and scale of small circles. A model-driven method based on
a hierarchical Bayesian model is used to get precise positions
and scales of small circles. Evaluation on manufacturing im-
ages demonstrate the advantage of the proposed method on
circle detection, localization and counting. For future work,
we aim to test our algorithm on larger datasets, with the in-
tention of commercial deployment.
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