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Abstract 

 

Energy-based models (EBMs) can bridge physics, machine learning, and statistics. EBMs 

provide a unified and powerful platform to describe, learn, and optimize complex systems. In this 

paper, we propose a neuromorphic implementation of EBMs using a network of stochastic 

magnetic tunnel junctions (MTJs) that can perform energy minimization and solve optimization 

problems. Our implementation builds on the Object Oriented MicroMagnetic Framework 

(OOMMF). We derive the different energy terms and map them to the micromagnetic Landau-

Lifshitz-Gilbert (LLG) equation. We then develop a C++ module for EBMs which integrates 

seamlessly with OOMMF. We demonstrate our implementation on a full set of logic gates using 

stochastic MTJs networks. Our method offers numerous advantages, including fast modeling of 

EBMs with spintronic devices and design insights for stochastic MTJ-based neuromorphic circuits.  
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I. Introduction 

 

Modern digital computing that relies on accurate binary representations has raised several 

challenges in artificial intelligence (AI) applications such as speed limitation, data security, and 

power consumption [1,2]. Neuromorphic computing using stochastic MTJs [3–6] has recently 

emerged as a promising alternative computing scheme [7–12]. Stochastic MTJs utilize the 

stochastic nature of spin fluctuations in magnetic materials for computing and have shown great 

potential in areas such as cryptography [13], machine learning [10,14], and optimization [15]. One 

of the key advantages of stochastic MTJs is their ability to perform neuromorphic computation in 

a highly energy-efficient manner. Stochastic MTJs usually have low thermal energy barrier 

between their two distinct states and thus require low switching energy [16]. This allows 

significant reductions in power consumption and has the potential to enable the development of 

energy-efficient computing systems.  

Several research groups have demonstrated the potential of stochastic MTJs for various 

computing tasks. For example, works have been carried to explore the potential of stochastic MTJs 

for cryptography [17]. Similarly, it has been demonstrated that MTJs can be used for combinatorial 

optimization tasks with orders of magnitude improvement in energy consumption compared to 

traditional approaches [18,19]. Other researchers have shown that stochastic MTJs can be used to 

perform deep neural network training with high accuracy and energy efficiency [20]. A network 

of interconnected stochastic MTJs can function as a powerful network of "p-bits", capable of 

performing a range of advanced neuromorphic computational operations [21–24]. These 

operations may include but are not limited to Boolean logic [16,24–26], combinatorial 

optimization [18,27], integer factorization [9], Bayesian inference [14,28], and data classification 

[29]. This technology represents a significant advancement in computing, as it provides a highly 

efficient means of processing complex data and solving intricate problems. Due to their lower 

hardware complexity and higher power efficiency compared to conventional CMOS circuits, 

stochastic MTJs networks may provide an efficient solution for building stochastic neural 

networks to perform complex computing tasks.  

One can describe a system by its energy function. This allows us to study the system 

behaviours by minimizing the system energy or maximizing the system entropy. Therefore, 

energy-based models (EBMs) [30,31] provide a unified framework to bridge physics, machine 
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learning, and statistics. EBMs can describe object interaction in physics (e.g., Ising model), data 

distribution in machine learning (e.g., Boltzmann machine), and probability inference in statistics 

(e.g., Bayesian inference). Although EBMs offer a powerful design framework to exploit practical 

physical systems for probability programming, machine learning, and statistical applications, its 

implementation on analogy circuits is rare, partly due to the lack of suitable electronic devices and 

an efficient simulation platform.  This article introduces an approach for implementing EBMs with 

stochastic MTJs in the micromagnetic framework. We demonstrate the potential of EBMs by 

leveraging a network of inter-connected stochastic MTJs to design a full set of logic gates. To do 

so, we map the energy function of the problem to the energy of the stochastic MTJs in the network, 

which can be implemented in micromagnetic simulation software such as OOMMF [32]. By 

performing dynamics micromagnetic simulations over time, the solution is obtained by the 

statistical magnetic distribution of the stochastic MTJ network. 

 

II. Energy-based Models and micromagnetic formulation 

 

The energy function for the states of a network of stochastic MTJs, 𝑚 = (𝑚ଵ, 𝑚ଶ, … , 𝑚ே) 

can be written as  

𝐸(𝑚) = − ∑ 𝑏௜
ே
௜ . 𝑚௜ −

ଵ

ଶ
∑ ∑ 𝑚௜𝑤௜௝

ே
௝

ே
௜ 𝑚௝.     (1) 

This energy function is the classical Ising model [33–39]. In the equation (1), N is the number of 

MTJs, 𝑏௜ is a bias term acting on i-th stochastic MTJ (site i), 𝑤௜௝ is the coupling terms between 

site i and site j, and it is an anisotropy energy if 𝑖 = 𝑗, 𝑚௜ and 𝑚௝ are unit magnetizations vectors 

at site i and site j, respectively. Both 𝑏௜  and 𝑤௜௝ are learned parameters in the EBMs.  

To minimize the energy in the equation (1), we apply OOMMF to do the micromagnetic 

simulations, in which numerical solutions that solve the Landau-Lifshitz-Gilbert (LLG) equation 

can predict the magnetic behavior of a system. The dynamics of magnetization m satisfies the LLG 

equations  

ௗ௠

ௗ௧
= −𝛾𝜇଴൫𝑚 × 𝐻௘௙௙൯ + 𝛼 ቀ𝑚 ×

ௗ௠

ௗ௧
ቁ,     (2) 

where 
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𝐻௘௙௙ = −
ଵ

ఓబெೞ

డ௎(௠)

డ௠
.     (3) 

Here 𝑈(𝑚)  is the total free energy of the magnetic system [40]. It is usually composed of 

anisotropy energy 𝐾௨, exchange energy 𝐾௘௫, demagnetization energy 𝐾ௗ, Zeeman energy 𝐾௔, and 

thermal energy 𝐾௧௛. 𝐻௘௙௙ is the effective magnetic field associated with the total free energy, 𝛾 is 

the gyromagnetic ratio, 𝛼 is the damping constant, 𝜇଴ is the permeability constant, 𝑚 = 𝑀/𝑀௦ is 

the unit magnetization vector, with  𝑀 the magnetization vector, and 𝑀௦  is the saturation 

magnetization. All variables are in SI unit. For a magnetic system with uniaxial anisotropy field 

along z-axis, the effective fields from equation (3) can be written as 

𝐻௘௙௙ =
௄ೠ

ଶఓబெೞ
𝑚௭𝑧 + 𝐻௘௫ + 𝐻ௗ + 𝐻௔ + ℎ௧௛,     (4) 

where Hex is the exchange coupling field, Hd is the demagnetization field, Ha is the applied field, 

and ℎ௧௛  is thermal field. 

To implement the energy function expressed in equation (1) within micromagnetic 

framework, the energy function is rewritten as  

𝐸(𝑚) = 𝑐଴(− ∑ 𝑏௜
ே
௜ ∙ 𝑚௜ −

ଵ

ଶ
∑ ∑ 𝑚௜𝑤௜௝

ே
௝

ே
௜ 𝑚௝),     (5) 

where 𝑐଴ is a constant introduced to adjust the strength of the bias and the couplings. The effective 

fields associated with equation (5) are  

𝐻௘௙௙,௜
ா = −

ଵ

ఓబெೞ

డா(௠)

డ௠೔
=

௖బ

ఓబெೞ
(𝑏௜ + ∑ 𝑤௜௝

ே
௝ 𝑚௝),     (6) 

where 𝐻௘௙௙,௜
ா   denotes the effective field at site i associated with energy function expressed in 

equation (1). By combining the EBMs with micromagnetic simulations, we can make predictions 

about the magnetic behavior of systems according to the given energy functions.  

In equation (6), the first term on the right-hand side corresponds to the Zeeman field, which 

arises from the interaction between the magnetic moment and an external magnetic field. The 

second term can be thought of as a distance-independent exchange coupling field that results from 

the interaction between the spin at site j and the spin at site i. In most micromagnetic software 

[32,41], only the exchange coupling field from the nearest neighbors is considered, but equation 

(6) suggests that this field may also have contributions from non-nearest neighbors. Therefore, 
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when implementing equation (6) in a micromagnetic simulation, it is important to consider all 

these coupling terms in addition to the nearest neighbor contributions typically considered. 

 

III. Implementation of Energy-Based Models in OOMMF 

 

Incorporating EBMs into the micromagnetic framework involves linking the energy function 

described in equation (1) with the total free energy of a network of stochastic MTJs. The stochastic 

nature of the MTJs enables the realization of the probabilistic aspect of the EBMs. By establishing 

this connection, we can gain insights into the underlying physics and solve optimization problems 

through simulating the behavior of a magnetic system under the influence of various stimuli. To 

do this, we wrote a C++ module to compute the effective fields based on the given energy function 

according to equation (6).  Besides, we applied open source micromagnetic simulation software 

OOMMF [32] to get the statistical magnetization distribution of stochastic MTJ networks under a 

certain temperature. The bias term 𝑏௜ and the coupling term 𝑤௜௝ are deemed as external inputs. For 

a network of stochastic MTJs with N spins, 𝑤௜௝ (𝑖, 𝑗 = 1,2, … , 𝑁; one spin for each MTJ) can take 

any value from the given energy function corresponding to a specific problem. This indicates that 

the micromagnetic realization of EBMs is universal for any energy function with a stochastic MTJ 

network.  

The LLG equation for the dynamics of the magnetization 𝑚௜ at site i is written as 

ௗ௠೔

ௗ௧
= −𝛾𝜇଴൫𝑚௜ × 𝐻௘௙௙,௜൯ + 𝛼 ቀ𝑚௜ ×

ௗ௠೔

ௗ௧
ቁ,     (7) 

where 

𝐻௘௙௙,௜ = 𝐻௘௙௙,௜
ா + 𝐻௄ + ℎ௧௛ .     (8) 

Here 𝐻௄ is the anisotropy field of the MTJ associated with the anisotropy energy 𝐾௨, ℎ௧௛  is the 

thermal fluctuation field [42], and 𝐻௘௙௙,௜
ா  is the effective field associated with the given energy 

function, see equation (6). The three energy terms, i.e., anisotropy energy of an individual MTJ, 

total energy of the stochastic MTJ system and thermal energy, play crucial roles in this proposed 

modelling method.  

MTJs are a type of spintronic device, as depicted in Figure 1(a). In an in-plane MTJ (i-MTJ), 

the magnetizations of both the reference layer (RL) and free layer (FL) lie in the plane. On the 
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other hand, in a perpendicular MTJ (p-MTJ), the magnetization is oriented perpendicular to the 

plane, as shown. Figure 1(b) illustrates how the anisotropy energy of the FL in an individual MTJ 

varies with its magnetization direction. The easy axis of magnetization, which corresponds to the 

two opposite directions with minimum anisotropy energy, determines the alignment of the 

magnetic moment. The difference between the maximum and minimum anisotropy energy, known 

as thermal barrier 𝐸௕, plays a crucial role in magnetization switching. In stochastic computing, 𝐸௕ 

of stochastic MTJs is much lower than that in memory applications, resulting in low-energy 

computing [16,43]. Figure 1(c) depicts the total energy of a system as a function of various 

magnetization states of the MTJ network system, 𝑚 = (𝑚ଵ, 𝑚ଶ, … , 𝑚ே). The energy profile shows 

several local minimum states and a global minimum state. To avoid the system getting trapped in 

a local minimum, the random nature of the thermal field can be harnessed. 

 

 

 

Figure 1. (a) Schematic of in-plane MTJ (i-MTJ) and perpendicular MTJ (p-MTJ). (b) Anisotropy energy 

of an individual stochastic MTJ as a function of magnetization directions. There are two opposite directions 

where the anisotropy energy is at its minimum and it is called the easy axis of magnetization in which a 
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magnetic moment is most likely to align. (c) Total energy of a system of the stochastic MTJs changes 

discretely with the states of the magnetizations 𝑚 = (𝑚ଵ, 𝑚ଶ, … , 𝑚ே). The energy profile has several local 

minimum states and a global minimum state. The thermal fluctuation prevents the system being stuck into 

a local minimum. (d) Main steps for implementing EBMs with a network of stochastic MTJs in 

micromagnetic simulations.  

 

For a specific problem with given energy functions, the main steps for implementing it with 

a network of stochastic MTJs in micromagnetic simulation include: (i) Input initial bias 𝑏௜ (𝑖 =

1,2, … , 𝑁) and the coupling 𝑤௜௝ (𝑖, 𝑗 = 1,2, … , 𝑁), (ii) compute effective field 𝐻௘௙௙,௜, (iii) solve 

the LLG equation, (iv) output and perform statistics on the dynamic trajectory of magnetization 

for each stochastic MTJ, and (v) update the bias 𝑏௜ and 𝑤௜௝ coupling if needed, as shown in Figure 

1(d). 

 

IV. Stochastic MTJs for Logic Gates 

 

In this section, we demonstrate how to integrate EBMs into the micromagnetic framework to 

design a full set of logic gates using stochastic MTJs. We focus on finding the truth tables for three 

basic but important logic operations, AND (˄), OR (˅), and XOR (⊕).  

Using the Ising model, the Ising constraints for 𝑚ଷ = 𝑚ଵ ˄ 𝑚ଶ, 𝑚ଷ = 𝑚ଵ ˅ 𝑚ଶ, and 𝑚ଷ =

𝑚ଵ ⊕  𝑚ଶ can be written as [44–46] 

H୅୒ୈ = 3 − (𝑚ଵ + 𝑚ଶ − 2𝑚ଷ) − (−𝑚ଵ𝑚ଶ + 2𝑚ଵ𝑚ଷ + 2𝑚ଶ𝑚ଷ).  (9) 

H୓ୖ = 3 − (−𝑚ଵ − 𝑚ଶ + 2𝑚ଷ) − (−𝑚ଵ𝑚ଶ + 2𝑚ଵ𝑚ଷ + 2𝑚ଶ𝑚ଷ).  (10) 

Hଡ଼୓ୖ = 9 − (3𝑚ସ − 3𝑚ହ − 2𝑚ଷ) − (−2𝑚ଵ𝑚ଶ + 2𝑚ଵ𝑚ସ + 2𝑚ଵ𝑚ହ + 2𝑚ଶ𝑚ସ) −

(2𝑚ଶ𝑚ହ + 2𝑚ଷ𝑚ସ − 2𝑚ଷ𝑚ହ + 𝑚ସ𝑚ହ),  (11) 

or 

Hଡ଼୓ୖ = 4 − (−𝑚ଵ − 𝑚ଶ − 𝑚ଷ − 2𝑚ସ) − (−𝑚ଵ𝑚ଶ − 𝑚ଵ𝑚ଷ − 2𝑚ଵ𝑚ସ − 𝑚ଶ𝑚ଷ −

2𝑚ଶ𝑚ସ − 2𝑚ଷ𝑚ସ).  (12) 

In equations (9)-(12), 𝑚௜(𝑖 = 1,2, … ,5 ) ∊ {−1, +1}, is an Ising spin with index i. 𝑚ଵ and 𝑚ଶ are 

the input spins, 𝑚ଷ  is the output spin, while 𝑚ସ  and 𝑚ହ  are ancillary spins. Equations (9-12) 
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represent cost functions that are analogous to those used in the field of adiabatic quantum 

computing where networks of qubits are utilized to solve complex optimization problems [47,48]. 

Here we use the probabilistic bits from the stochastic MTJs. 𝑚௜ represents the magnetization of 

the network of stochastic MTJs at site i. For a network of N stochastic MTJs, 𝑚 =

(𝑚ଵ, 𝑚ଶ, … , 𝑚ே), total number of binary magnetization states is 2ே. For example, we need three 

stochastic MTJ (𝑁 = 3) for AND/OR problems [18,44,46], and four stochastic MTJs (𝑁 = 4 if 

use function in equation (12)) [45] or five stochastic MTJs (𝑁 = 5 if use function in equation (11)) 

[18] for XOR problem. To model the energy functions outlined in equations (9-12) in a 

micromagnetic framework, we utilize the approach that was introduced in the previous sections. 

 

Table 1: Simulation parameters 

Symbol Parameter Default value Reference 

𝑀௦ Saturation magnetization 1.115 × 10଺ A m⁄  Kanai et al.[49] 

𝐾௜௡ Intrinsic in-plane anisotropy 5.575 × 10ଷ J mଷ⁄  Kanai et al.[49] 

𝐾௣ Effective perpendicular anisotropy −5.575 × 10ହ J mଷ⁄  Kanai et al.[49] 

α Damping constant 0.02 Kanai et al.[49] 

𝐴 Area of MTJ 9 × 10ିଵ଺mଶ  

𝑡ி MTJ Free layer thickness 1 nm  

 

 

Table 1 lists the material parameters used in the simulations for stochastic MTJs. Such 

stochastic MTJ has the relaxation time [49] less than 10 ns. Figure 2(a) shows the response of such 

a stochastic MTJ to an external spin current passing through it along the x-axis. The curve depicting 

the x-axis magnetization component showcases a sigmoidal shape in response to the spin current, 

where the average value increases rapidly at first, reaches a maximum, and then levels off as the 

spin current continues to increase. Figure 2(b) – Figure 2(f) visualizes the telegraph switching [50] 

nature of the such stochastic MTJ under the spin current excitations. Different spin currents induce 

different magnetization dynamics. Figure 2 indicates that the possibility of spin-up and spin-down 

states in a stochastic MTJ can be controlled by the spin current passing through it.   
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Figure 2. A stochastic MTJ responding to an external spin current. (a) The average magnetization 

component as a function of the spin current showing a sigmodal curve. (b)-(f) The x-axis magnetization 

component as function of simulation time for various spin currents showing different magnetization 

dynamics at different spin currents.  

 

The preceding discussion lays the groundwork for the design of logic gates utilizing a 

stochastic MTJ network. In a network of stochastic MTJs, the bias and coupling terms for each 

individual MTJ dictate the possibility of its spin state according to the energy function. For 

AND/OR operation, we use a network of three stochastic MTJs and utilize the energy functions of 

equations (9) and (10). For XOR operation, we use a network of four stochastic MTJs, and utilize 

the energy function of equation (12). The input b and W used for micromagnetic simulations are 

shown in Figure 3 for (a) AND, and (b) XOR operations (for OR operation, b is replaced with its 

negative value, while W is the same as the AND operation).  
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Figure 3. Energy functions and the inputs into micromagnetic simulations. (a) AND operation with three 

stochastic MTJs. (b) XOR operation with four stochastic MTJs. The MTJs are interconnected with W and 

biased with b according to the Ising constraints (energy functions).  

The simulation results for the AND/OR operations using three stochastic MTJs are presented 

in Figure 4. In Figure 4(a), the x-component magnetizations for all three MTJs are plotted versus 

time for a period of 10 µs. These values are digitized into binary (1, 0) and aggregated to determine 

their probability in +𝑥 and −𝑥 states respectively. Figure 4(b) visualizes the statistical results 

based on magnetization states in Figure 4(a) for the AND operation. The upper sub-figure shows 

the energy function at each time step according to the formula ℎ௜௡ௗ௘௫ = 𝑚ଵ+ 2𝑚ଶ+ 4𝑚ଷ, where 

𝑚௜(𝑖 = 1,2,3) are digitized into 0s if they are negative, and 1s if positive, as shown in Figure 4(d). 

Correspondingly, the lower sub-figure shows the histogram of energy function in 10000 time-

steps. The truth table of AND operation can be identified from the histogram by choosing the top 

four states with the highest occurrences, i.e., the lowest energy, as shown in Figure 4 (e).  
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Figure 4. Micromagnetic simulation results for AND/OR operations with three stochastic MTJs. (a) The x-

component magnetizations versus time for a period of 10 µs. (b) Visualization of the statistic results based 

on magnetization states in (a) for AND operation. The index number (0-7) for the vertical axis of the upper 

sub-figure (and the horizontal axis of the lower sub-figure) is computed according to ℎ௜௡ௗ௘௫ = 𝑚ଵ+ 2𝑚ଶ+ 

4𝑚ଷ, where 𝑚௜(𝑖 = 1,2,3) are digitized into 0s if they are negative, and 1s if positive. (c) Visualization of 

the statistic results for OR operation. (d) Eight magnetization states and their index values computed 

according to ℎ௜௡ௗ௘௫ = 𝑚ଵ+ 2𝑚ଶ+ 4𝑚ଷ. (e) The AND total energy for the stochastic MTJ system as a 

function of ℎ௜௡ௗ௘௫ = 𝑚ଵ+ 2𝑚ଶ+ 4𝑚ଷ, showing states 0, 1, 2, and 7 are in the lowest energy states, as 

indicated by red arrows.  

 

A similar approach to the one used for the AND/OR operations is employed for the XOR 

operation using four stochastic MTJs. The magnetization states for all four MTJs are plotted in 

Figure 5(a) versus time for a period of 10 µs. These values are digitized and used to calculate the 

probability of occurrence for each possible state. Figure 5(b) presents the statistical results based 

on the digitized magnetization states from Figure 5(a). Like the AND operation, we can identify 
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the truth table of XOR by choosing the top four states with the highest occurrences, highlighted in 

red in Figure 5(c). 

 

 

 

Figure 5. Micromagnetic simulation results for XOR operations with four stochastic MTJs. (a) The x-

component magnetizations versus time for a period of 10 µs. (b) Visualization of the statistic results based 

on magnetization states in (a). The index number (0-15) for the vertical axis of the upper sub-figure (and 

the horizontal axis of the lower sub-figure) is computed according to ℎ௜௡ௗ௘௫ = 𝑚ଵ+ 2𝑚ଶ+ 4𝑚ଷ + 8𝑚ସ, 

where 𝑚௜(𝑖 = 1,2,3,4) are digitized into 0s if they are negative, and 1s if positive. (c) Sixteen magnetization 

states and their index values computed according to ℎ௜௡ௗ௘௫ = 𝑚ଵ+ 2𝑚ଶ+ 4𝑚ଷ + 8𝑚ସ. 
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Based on the observations in Figure 5(b), it can be inferred that while the four states with the 

highest occurrences (with ℎ௜௡ௗ௘௫ values of 3, 5, 6, and 8, respectively) correspond to the solution 

of the problem, there is another state (with an ℎ௜௡ௗ௘௫ value of 7) that also exhibits a relatively high 

occurrence. The observed behaviour can be attributed to an intrinsic property of the energy 

function presented in equation (12). Figure 6(a) illustrates the dependence the XOR total energy 

on ℎ௜௡ௗ௘௫ = 𝑚ଵ+ 2𝑚ଶ+ 4𝑚ଷ + 8𝑚ସ for the stochastic MTJ system. The plot includes the thermal 

barrier height 𝐾௜௡𝑉 and a scale of the thermal energy 𝑘஻𝑇 for reference. The lowest zero energy 

states are identified with ℎ௜௡ௗ௘௫ values of 3, 5, 6, and 8, while the states with an ℎ௜௡ௗ௘௫ value of 7 

belongs to the group of second lowest energy states. However, due to thermal fluctuation, the 

stochastic MTJ system may randomly transition from its lowest energy state to other states. In 

Figure 6(b), we illustrate the process of the stochastic MTJ system transitioning from the lowest 

energy states (3,5,6,8) to the second lowest energy states (e.g., 4,7) by flipping just one bit. This 

figure reveals that the stochastic MTJ system has a higher likelihood of transitioning from the 

lowest energy states to state 7 than to state 4 (or other second lowest states not shown). This 

observation explains why state 7 is relatively more frequently observed. 

 

 

 

Figure 6. (a) Visualization of the XOR total energy for the stochastic MTJ system as a function of ℎ௜௡ௗ௘௫ =

𝑚ଵ+ 2𝑚ଶ+ 4𝑚ଷ + 8𝑚ସ, showing states 3, 5, 6, and 8 are in the lowest energy states, while states 1, 2, 4, 

7, 9, 10, and 12 are in the second lowest energy states. (b) A schematic representation of how the stochastic 
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MTJ system transitions from the lowest energy states to the second lowest energy states by flipping a single 

bit. 

 

V. Conclusions 

 

We have proposed an approach to implement energy-based models using the stochastic 

switching behaviors of magnetic tunnel junctions within the framework of OOMMF 

micromagnetic simulations. By interconnecting a network of stochastic MTJs with intrinsic 

stochastic switching behaviors, the probability of each possible system states, as defined by an 

energy function, can be correctly reflected by the statistical results of magnetization states, as 

demonstrated by the AND, OR, and XOR logic functions. This paves the way to solve the 

optimization problem, where the coefficient terms in the energy function can be optimized to find 

the lowest energy states of the stochastic MTJs network. The same strategy can be applied to 

energy-model based machine learning, where the network parameters, weights, and bias, can be 

trained for specific applications. We have demonstrated the efficient simulation of energy-based 

models using OOMMF. This helps to accelerate the development of neuromorphic computing with 

spintronic devices for future low-energy and fast deep learning applications.  
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