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Abstract

Energy-based models (EBMs) can bridge physics, machine learning, and statistics. EBMs
provide a unified and powerful platform to describe, learn, and optimize complex systems. In this
paper, we propose a neuromorphic implementation of EBMs using a network of stochastic
magnetic tunnel junctions (MTJs) that can perform energy minimization and solve optimization
problems. Our implementation builds on the Object Oriented MicroMagnetic Framework
(OOMMF). We derive the different energy terms and map them to the micromagnetic Landau-
Lifshitz-Gilbert (LLG) equation. We then develop a C++ module for EBMs which integrates
seamlessly with OOMMF. We demonstrate our implementation on a full set of logic gates using
stochastic MTJs networks. Our method offers numerous advantages, including fast modeling of

EBMs with spintronic devices and design insights for stochastic MTJ-based neuromorphic circuits.



1. Introduction

Modern digital computing that relies on accurate binary representations has raised several
challenges in artificial intelligence (Al) applications such as speed limitation, data security, and
power consumption [1,2]. Neuromorphic computing using stochastic MTJs [3—6] has recently
emerged as a promising alternative computing scheme [7-12]. Stochastic MTJs utilize the
stochastic nature of spin fluctuations in magnetic materials for computing and have shown great
potential in areas such as cryptography [13], machine learning [10,14], and optimization [15]. One
of the key advantages of stochastic MTJs is their ability to perform neuromorphic computation in
a highly energy-efficient manner. Stochastic MTJs usually have low thermal energy barrier
between their two distinct states and thus require low switching energy [16]. This allows
significant reductions in power consumption and has the potential to enable the development of
energy-efficient computing systems.

Several research groups have demonstrated the potential of stochastic MTJs for various
computing tasks. For example, works have been carried to explore the potential of stochastic MTJs
for cryptography [17]. Similarly, it has been demonstrated that MTJs can be used for combinatorial
optimization tasks with orders of magnitude improvement in energy consumption compared to
traditional approaches [18,19]. Other researchers have shown that stochastic MTJs can be used to
perform deep neural network training with high accuracy and energy efficiency [20]. A network
of interconnected stochastic MTJs can function as a powerful network of "p-bits", capable of
performing a range of advanced neuromorphic computational operations [21-24]. These
operations may include but are not limited to Boolean logic [16,24-26], combinatorial
optimization [18,27], integer factorization [9], Bayesian inference [14,28], and data classification
[29]. This technology represents a significant advancement in computing, as it provides a highly
efficient means of processing complex data and solving intricate problems. Due to their lower
hardware complexity and higher power efficiency compared to conventional CMOS circuits,
stochastic MTJs networks may provide an efficient solution for building stochastic neural
networks to perform complex computing tasks.

One can describe a system by its energy function. This allows us to study the system
behaviours by minimizing the system energy or maximizing the system entropy. Therefore,
energy-based models (EBMs) [30,31] provide a unified framework to bridge physics, machine
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learning, and statistics. EBMs can describe object interaction in physics (e.g., Ising model), data
distribution in machine learning (e.g., Boltzmann machine), and probability inference in statistics
(e.g., Bayesian inference). Although EBMs offer a powerful design framework to exploit practical
physical systems for probability programming, machine learning, and statistical applications, its
implementation on analogy circuits is rare, partly due to the lack of suitable electronic devices and
an efficient simulation platform. This article introduces an approach for implementing EBMs with
stochastic MTJs in the micromagnetic framework. We demonstrate the potential of EBMs by
leveraging a network of inter-connected stochastic MTJs to design a full set of logic gates. To do
so, we map the energy function of the problem to the energy of the stochastic MTJs in the network,
which can be implemented in micromagnetic simulation software such as OOMMEF [32]. By
performing dynamics micromagnetic simulations over time, the solution is obtained by the

statistical magnetic distribution of the stochastic MTJ network.
I1. Energy-based Models and micromagnetic formulation

The energy function for the states of a network of stochastic MTJs, m = (m;, m,, ..., my)

can be written as
1

This energy function is the classical Ising model [33—39]. In the equation (1), N is the number of
MTIs, b; is a bias term acting on i-th stochastic MTJ (site i), w;; is the coupling terms between
site 7 and site j, and it is an anisotropy energy if i = j, m; and m; are unit magnetizations vectors
at site i and site j, respectively. Both b; and w;; are learned parameters in the EBMs.

To minimize the energy in the equation (1), we apply OOMMEF to do the micromagnetic
simulations, in which numerical solutions that solve the Landau-Lifshitz-Gilbert (LLG) equation
can predict the magnetic behavior of a system. The dynamics of magnetization m satisfies the LLG

equations

dm

= —yio(m X Hepr) + a (m X Z—T) 2)

where
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Here U(m) is the total free energy of the magnetic system [40]. It is usually composed of
anisotropy energy K,,, exchange energy K,,, demagnetization energy K;, Zeeman energy K,, and
thermal energy Kip,. Horf 1s the effective magnetic field associated with the total free energy, y is
the gyromagnetic ratio, « is the damping constant, i, is the permeability constant, m = M /M is
the unit magnetization vector, with M the magnetization vector, and M; is the saturation
magnetization. All variables are in SI unit. For a magnetic system with uniaxial anisotropy field
along z-axis, the effective fields from equation (3) can be written as

_ _Ku
eff = 2o Ms

myZ+ H,, + Hy + Hy + hep, 4

where Hex 1s the exchange coupling field, Hq is the demagnetization field, H. is the applied field,
and h;, is thermal field.
To implement the energy function expressed in equation (1) within micromagnetic

framework, the energy function is rewritten as
1
E(m) = co(— X by - my —;Z?Zj-”miwij m;), (5)

where ¢ is a constant introduced to adjust the strength of the bias and the couplings. The effective

fields associated with equation (5) are

1 9E(m) _ ¢
UoMs Om; UM

Hiefi = (bi + XY wi;m)), (6)

where Hfff'l- denotes the effective field at site i associated with energy function expressed in
equation (1). By combining the EBMs with micromagnetic simulations, we can make predictions
about the magnetic behavior of systems according to the given energy functions.

In equation (6), the first term on the right-hand side corresponds to the Zeeman field, which
arises from the interaction between the magnetic moment and an external magnetic field. The
second term can be thought of as a distance-independent exchange coupling field that results from
the interaction between the spin at site j and the spin at site i. In most micromagnetic software
[32,41], only the exchange coupling field from the nearest neighbors is considered, but equation

(6) suggests that this field may also have contributions from non-nearest neighbors. Therefore,



when implementing equation (6) in a micromagnetic simulation, it is important to consider all

these coupling terms in addition to the nearest neighbor contributions typically considered.

II1. Implementation of Energy-Based Models in OOMMF

Incorporating EBMs into the micromagnetic framework involves linking the energy function
described in equation (1) with the total free energy of a network of stochastic MTJs. The stochastic
nature of the MTJs enables the realization of the probabilistic aspect of the EBMs. By establishing
this connection, we can gain insights into the underlying physics and solve optimization problems
through simulating the behavior of a magnetic system under the influence of various stimuli. To
do this, we wrote a C++ module to compute the effective fields based on the given energy function
according to equation (6). Besides, we applied open source micromagnetic simulation software
OOMMF [32] to get the statistical magnetization distribution of stochastic MTJ networks under a
certain temperature. The bias term b; and the coupling term w;; are deemed as external inputs. For
a network of stochastic MTJs with N spins, w;; (i,j = 1,2, ..., N; one spin for each MT]) can take
any value from the given energy function corresponding to a specific problem. This indicates that
the micromagnetic realization of EBMs is universal for any energy function with a stochastic MTJ
network.

The LLG equation for the dynamics of the magnetization m; at site i is written as

dmi _ dmi

— = —yuo(my X Hoppi) + @ (mi X ?), (7
where

Heppi = Hippi 4+ Hy + hey. (3)

Here Hy is the anisotropy field of the MTJ associated with the anisotropy energy K,,, hsy, is the
thermal fluctuation field [42], and Hfff'l- is the effective field associated with the given energy

function, see equation (6). The three energy terms, i.e., anisotropy energy of an individual MTJ,
total energy of the stochastic MTJ system and thermal energy, play crucial roles in this proposed
modelling method.

MT]Js are a type of spintronic device, as depicted in Figure 1(a). In an in-plane MTJ (i-MT)J),

the magnetizations of both the reference layer (RL) and free layer (FL) lie in the plane. On the
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other hand, in a perpendicular MTJ (p-MTJ), the magnetization is oriented perpendicular to the
plane, as shown. Figure 1(b) illustrates how the anisotropy energy of the FL in an individual MTJ
varies with its magnetization direction. The easy axis of magnetization, which corresponds to the
two opposite directions with minimum anisotropy energy, determines the alignment of the
magnetic moment. The difference between the maximum and minimum anisotropy energy, known
as thermal barrier E;, plays a crucial role in magnetization switching. In stochastic computing, E},
of stochastic MTJs is much lower than that in memory applications, resulting in low-energy
computing [16,43]. Figure 1(c) depicts the total energy of a system as a function of various
magnetization states of the MTJ network system, m = (m,, m,, ..., my). The energy profile shows
several local minimum states and a global minimum state. To avoid the system getting trapped in

a local minimum, the random nature of the thermal field can be harnessed.
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Figure 1. (a) Schematic of in-plane MTJ (i-MTJ) and perpendicular MTJ (p-MTJ). (b) Anisotropy energy
of an individual stochastic MTJ as a function of magnetization directions. There are two opposite directions

where the anisotropy energy is at its minimum and it is called the easy axis of magnetization in which a
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magnetic moment is most likely to align. (c) Total energy of a system of the stochastic MTJs changes
discretely with the states of the magnetizations m = (my, m,, ..., my). The energy profile has several local
minimum states and a global minimum state. The thermal fluctuation prevents the system being stuck into
a local minimum. (d) Main steps for implementing EBMs with a network of stochastic MTJs in

micromagnetic simulations.

For a specific problem with given energy functions, the main steps for implementing it with
a network of stochastic MTJs in micromagnetic simulation include: (i) Input initial bias b; (i =
1,2,...,N) and the coupling w;; (i,j = 1,2,...,N), (ii) compute effective field Hs;, (iii) solve
the LLG equation, (iv) output and perform statistics on the dynamic trajectory of magnetization
for each stochastic MTJ, and (v) update the bias b; and w;; coupling if needed, as shown in Figure

1(d).

Iv. Stochastic MTJs for Logic Gates

In this section, we demonstrate how to integrate EBMs into the micromagnetic framework to
design a full set of logic gates using stochastic MTJs. We focus on finding the truth tables for three
basic but important logic operations, AND (a), OR (v), and XOR ().

Using the Ising model, the Ising constraints for m; = my A m,, m3 = my vm,, and ms =

my € m, can be written as [44—46]
HAND =3 - (ml + mz - 2m3) - (—m1m2 + 2m1m3 + 2m2m3). (9)
HOR = 3 - (_ml - m2 + 2m3) - (_mlmz + 2m1m3 + Zmzmg). (10)

Hyor = 9 — 3my — 3mg — 2m3) — (—2mym, + 2mym, + 2mymg + 2m,m,) —

(2mymg + 2mymy — 2myms + myms), (11)
or

Hyor = 4 — (-my — my — m3 — 2my) — (—mym; — mymsz — 2mym, — mymz —

2m2m4 - 2m3m4). (12)

In equations (9)-(12), m;(i = 1,2, ...,5) € {—1, +1}, is an Ising spin with index i. m, and m, are

the input spins, ms is the output spin, while m, and mg are ancillary spins. Equations (9-12)
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represent cost functions that are analogous to those used in the field of adiabatic quantum
computing where networks of qubits are utilized to solve complex optimization problems [47,48].
Here we use the probabilistic bits from the stochastic MTJs. m; represents the magnetization of
the network of stochastic MTJs at site i. For a network of N stochastic MTJs, m =
(mq,m,, ..., my), total number of binary magnetization states is 2N For example, we need three
stochastic MTJ (N = 3) for AND/OR problems [18,44,46], and four stochastic MTJs (N = 4 if
use function in equation (12)) [45] or five stochastic MTJs (N = 5 if use function in equation (11))
[18] for XOR problem. To model the energy functions outlined in equations (9-12) in a

micromagnetic framework, we utilize the approach that was introduced in the previous sections.

Table 1: Simulation parameters

Symbol Parameter Default value Reference

M Saturation magnetization 1.115 x 10° A/m Kanai et al.[49]
K, Intrinsic in-plane anisotropy 5.575 x 103]/m3 Kanai et al.[49]
K, Effective perpendicular anisotropy —5.575 x 10%]/m®  Kanai et al.[49]
a Damping constant 0.02 Kanai et al.[49]
A Area of MTJ 9 x 10716m?

tr MT] Free layer thickness I nm

Table 1 lists the material parameters used in the simulations for stochastic MTJs. Such
stochastic MTJ has the relaxation time [49] less than 10 ns. Figure 2(a) shows the response of such
a stochastic MTJ to an external spin current passing through it along the x-axis. The curve depicting
the x-axis magnetization component showcases a sigmoidal shape in response to the spin current,
where the average value increases rapidly at first, reaches a maximum, and then levels off as the
spin current continues to increase. Figure 2(b) — Figure 2(f) visualizes the telegraph switching [50]
nature of the such stochastic MTJ under the spin current excitations. Different spin currents induce
different magnetization dynamics. Figure 2 indicates that the possibility of spin-up and spin-down

states in a stochastic MTJ can be controlled by the spin current passing through it.
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Figure 2. A stochastic MTJ responding to an external spin current. (a) The average magnetization
component as a function of the spin current showing a sigmodal curve. (b)-(f) The x-axis magnetization

component as function of simulation time for various spin currents showing different magnetization

dynamics at different spin currents.

The preceding discussion lays the groundwork for the design of logic gates utilizing a
stochastic MTJ network. In a network of stochastic MTJs, the bias and coupling terms for each
individual MT]J dictate the possibility of its spin state according to the energy function. For
AND/OR operation, we use a network of three stochastic MTJs and utilize the energy functions of
equations (9) and (10). For XOR operation, we use a network of four stochastic MTJs, and utilize
the energy function of equation (12). The input b and W used for micromagnetic simulations are
shown in Figure 3 for (a) AND, and (b) XOR operations (for OR operation, b is replaced with its

negative value, while W is the same as the AND operation).
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Figure 3. Energy functions and the inputs into micromagnetic simulations. (a) AND operation with three
stochastic MTJs. (b) XOR operation with four stochastic MTJs. The MTIJs are interconnected with W and

biased with b according to the Ising constraints (energy functions).

The simulation results for the AND/OR operations using three stochastic MTJs are presented
in Figure 4. In Figure 4(a), the x-component magnetizations for all three MTJs are plotted versus
time for a period of 10 ps. These values are digitized into binary (1, 0) and aggregated to determine
their probability in +x and —x states respectively. Figure 4(b) visualizes the statistical results
based on magnetization states in Figure 4(a) for the AND operation. The upper sub-figure shows
the energy function at each time step according to the formula h;,g., = my+ 2m,+ 4ms, where
m;(i = 1,2,3) are digitized into Os if they are negative, and 1s if positive, as shown in Figure 4(d).
Correspondingly, the lower sub-figure shows the histogram of energy function in 10000 time-
steps. The truth table of AND operation can be identified from the histogram by choosing the top

four states with the highest occurrences, i.e., the lowest energy, as shown in Figure 4 (e).
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Figure 4. Micromagnetic simulation results for AND/OR operations with three stochastic MTJs. (a) The x-
component magnetizations versus time for a period of 10 ps. (b) Visualization of the statistic results based
on magnetization states in (a) for AND operation. The index number (0-7) for the vertical axis of the upper
sub-figure (and the horizontal axis of the lower sub-figure) is computed according to hjpge,r = M+ 2my+
4mg, where m; (i = 1,2,3) are digitized into Os if they are negative, and 1s if positive. (c) Visualization of
the statistic results for OR operation. (d) Eight magnetization states and their index values computed
according to e,y = Myt 2my+ 4mg. (¢) The AND total energy for the stochastic MTJ system as a
function of hjpge, = Myt 2m,+ 4mg, showing states 0, 1, 2, and 7 are in the lowest energy states, as

indicated by red arrows.

A similar approach to the one used for the AND/OR operations is employed for the XOR
operation using four stochastic MTJs. The magnetization states for all four MTJs are plotted in
Figure 5(a) versus time for a period of 10 ps. These values are digitized and used to calculate the
probability of occurrence for each possible state. Figure 5(b) presents the statistical results based

on the digitized magnetization states from Figure 5(a). Like the AND operation, we can identify
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the truth table of XOR by choosing the top four states with the highest occurrences, highlighted in

red in Figure 5(c).
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Figure 5. Micromagnetic simulation results for XOR operations with four stochastic MTJs. (a) The x-

component magnetizations versus time for a period of 10 ps. (b) Visualization of the statistic results based

on magnetization states in (a). The index number (0-15) for the vertical axis of the upper sub-figure (and

the horizontal axis of the lower sub-figure) is computed according to hj, ey = M+ 2my+ 4ms + 8my,

where m; (i = 1,2,3,4) are digitized into Os if they are negative, and 1s if positive. (c¢) Sixteen magnetization

states and their index values computed according to Ry gex = Myt 2my+ 4m; + 8my.
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Based on the observations in Figure 5(b), it can be inferred that while the four states with the
highest occurrences (with h;, 4., values of 3, 5, 6, and 8, respectively) correspond to the solution
of the problem, there is another state (with an h;;,, 4., value of 7) that also exhibits a relatively high
occurrence. The observed behaviour can be attributed to an intrinsic property of the energy
function presented in equation (12). Figure 6(a) illustrates the dependence the XOR total energy
on Ripgex = Myt 2my,+ 4my + 8my, for the stochastic MTJ system. The plot includes the thermal
barrier height K;,,V and a scale of the thermal energy kT for reference. The lowest zero energy
states are identified with h;, 4., values of 3, 5, 6, and 8, while the states with an h;;,4., value of 7
belongs to the group of second lowest energy states. However, due to thermal fluctuation, the
stochastic MTJ system may randomly transition from its lowest energy state to other states. In
Figure 6(b), we illustrate the process of the stochastic MTJ system transitioning from the lowest
energy states (3,5,6,8) to the second lowest energy states (e.g., 4,7) by flipping just one bit. This
figure reveals that the stochastic MTJ system has a higher likelihood of transitioning from the
lowest energy states to state 7 than to state 4 (or other second lowest states not shown). This

observation explains why state 7 is relatively more frequently observed.
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Figure 6. (a) Visualization of the XOR total energy for the stochastic MTJ system as a function of A, g, =
my+ 2my+ 4ms + 8my, showing states 3, 5, 6, and 8 are in the lowest energy states, while states 1, 2, 4,

7,9, 10, and 12 are in the second lowest energy states. (b) A schematic representation of how the stochastic
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MT]J system transitions from the lowest energy states to the second lowest energy states by flipping a single

bit.

V. Conclusions

We have proposed an approach to implement energy-based models using the stochastic
switching behaviors of magnetic tunnel junctions within the framework of OOMMF
micromagnetic simulations. By interconnecting a network of stochastic MTJs with intrinsic
stochastic switching behaviors, the probability of each possible system states, as defined by an
energy function, can be correctly reflected by the statistical results of magnetization states, as
demonstrated by the AND, OR, and XOR logic functions. This paves the way to solve the
optimization problem, where the coefficient terms in the energy function can be optimized to find
the lowest energy states of the stochastic MTJs network. The same strategy can be applied to
energy-model based machine learning, where the network parameters, weights, and bias, can be
trained for specific applications. We have demonstrated the efficient simulation of energy-based
models using OOMMEF. This helps to accelerate the development of neuromorphic computing with

spintronic devices for future low-energy and fast deep learning applications.
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