> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

LiteFormer: a lightweight and efficient Transformer
for rotating machine fault diagnosis
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Abstract—Transformer has shown impressive performance
on global feature modeling in many applications. However, two
drawbacks induced by its intrinsic architecture limit its
application, especially in fault diagnosis. Firstly, the quadratic
complexity of its self-attention scheme extremely increases the
computation cost, which poses a challenge to apply Transformer
to a computationally limited platform like an industry system.
Additionally, the sequence-based modeling in the Transformer
increases the training difficulty and requires a large-scale
training dataset. This drawback becomes serious when
Transformer is applied in fault diagnosis where only limited data
is available. To mitigate these issues, we rethink this common
approach and propose a new transformer, which is more suitable
for fault diagnosis. In this paper, we first show that the attention
module can be actually replaced with or even surpassed by a
convolution layer under some conditions in mathematics and
experiments. Then, we adopt the convolutions into the
transformer, where the computation burden issue is alleviated
and the fault classification accuracy is significantly improved.
Furthermore, to increase the computation efficiency, a
lightweight transformer called LiteFormer, is developed by
utilizing the depth-wise convolutional layer. Extensive
experiments are carried out on four datasets: CWRU, PU, and
two Gearbox datasets of DDS. Through our experiments, our
LiteFormer not only reduces the computation cost in model
training, but also sets new state-of-the-art results, surpassing
other counterparts in both fault classification accuracy and
model robustness.

Index  Terms—Convolution, Fault
Lightweight, Transformer

Efficient, diagnosis,

I. INTRODUCTION

N industrial systems, the failure of rotating machinery
may result in financial losses or even fatalities. To address
this issue, rotating machinery health monitoring and fault
diagnosis are widely studied [1-5], which is able to
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facilitate the detection of machine faults and make prompt
repairs to avoid losses. Traditional machine fault diagnosis
methods mostly use signal processing methods to extract
hand-crafted features from fault signals [1-3]. Recently, deep
learning (DL) algorithms [6-8] have achieved impressive
performances in the field of machine fault diagnosis [9-10]
benefitted from the superior automatic feature learning
capabilities of deep models. The deep models learn data
features with multiple layers, where the low layers learn the
edge features of data and the deep layers model the semantic
features of data [6]. Benefitted from the deep models, the
representation of features is significantly improved and the
deep models are widely explored in machine fault diagnosis
for transfer learning [11-12], where the deep model is trained
on the source dataset and then fine-tuned on the target dataset.
To apply the DL methods for machine fault diagnosis with
physical interpretability, some methods for interpreting deep
models have been proposed [13-14]. Abid et al. [15]
implemented a deep-SincNet for fault diagnosis to provide
more physical interpretability. Li et al. [16] proposed a novel
wavelet-driven deep neural network, which uses a continuous
wavelet convolutional layer to replace the first convolutional
layer of the standard CNN to obtain a customized kernel bank.
Li et al. [17] introduced the attention mechanism to the deep
network to locate the informative data segments and visualize
the learned diagnosis knowledge. With the research on the
interpretability of deep models, the potential of deep learning
for intelligent machine fault diagnosis becomes more
attractive and valuable.

Among the DL methods, the latest proposed Transformer
[8], which is realized completely by the self-attention
mechanism, has set off a new round of high tide in the field of
natural language processing (NLP) [18] and computer vision
(CV) [19-20]. Such success of Transformers has inspired
some methods [21-22] proposed for machine fault diagnosis to
learn the global features. Although Transformer has shown
large model capacity in many tasks, the quadratic complexity
of its self-attention scheme extremely increases the
computation cost, which limits its applications in some
computationally limited industry systems. Moreover, since the
sequence-based modeling in Transformer lacks the inductive
bias [19, 23-24], it is difficult to train a Transformer with
limited training samples. These two drawbacks induced by the
intrinsic architecture of Transformer limit its application in
fault diagnosis.

Although lots of methods try to improve the attention
module [20, 26] or introduce convolutions into Transformer
[23-25] to improve the performance of Transformer in the
field of NLP or CV, the complex network architecture makes
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it difficult to optimize on the small datasets in the field of fault
diagnosis. Recently, some methods [21-22] propose to
improve the original Transformer and devise some
Transformer variants which are adapted to fault diagnosis. The
existing methods [21-22, 27-28] mostly focus on the attention
mechanism of Transformer, ignoring those drawbacks existing
in Transformer. Compared with Transformer, convolutional
neural networks (CNNs) have been widely investigated in
fault diagnosis [29-31] and shown satisfactory performance
benefiting from its intrinsic inductive bias and computation
efficiency. CNNs are naturally equipped with the intrinsic
inductive bias of locality and translation equivariance [32]
even for small datasets [29]. Motivated by these
characteristics of CNNs, we propose to integrate the
advantages of convolution with the superiority of Transformer
and devise a new Transformer called LiteFormer for fault
diagnosis.

Firstly, we rethink the relationship between the self-
attention module and the convolutional layer. We argue that
this self-attention module in Transformer actually can be
regarded as an enhanced convolution operation in
mathematics. Since the self-attention module is more complex,
it generally requires more training data than the convolutional
layer. In the limited-data regime, the self-attention may
perform equally or even inferior to a convolutional layer. To
verify our hypothesis, some primary experiments are
conducted, where we propose several convolution based
Transformers called ConvFormer. In our primary experiments,
our proposed ConvFormer performs better than the
conventional Transformer. Moreover, in our proposed
Convformer, the convolution operations alleviate the
computation memory burden of Transformer and improve the
fault classification accuracy under limited-sized datasets.
Additionally, to further improve the computation efficiency,
we propose a lightweight and efficient Transformer called
LiteFormer for rotating machine fault diagnosis.

Our proposed LiteFormer adopts the fast and lightweight
depth-wise convolutional layer to model the local spatial
correlations of fault signals. The patch embedding in vision
Transformers [19-20] is utilized to encode the time series into
the token embedding. Then the token embeddings are
forwarded to our LiteFormer blocks to capture the sequential
information. Our LiteFormer block is stacked in multiple
layers to effectively learn local and global information. Finally,
the outputs of the last LiteFormer block are forwarded to a
sequence pooling layer [24] to generate the weighted output
representations, and then it is delivered to the multi-layer
perceptron (MLP) head for fault classification.

The main contributions of the work can be summarized as
follows:

1. Instead of focusing on improving the attention module,
we analyze the relationship between the self-attention module
and the convolutional layer in mathematics and experiments.
Based on this analysis, we find the essence of Transformer
and propose a ConvFormer, which inherits the inherent
structural superiority of Transformer while alleviating the
computation burden in conventional Transformers.

2. Original Transformer based approaches require much
computation resources. Compared with them, a lightweight

Transformer called LiteFormer is proposed for efficient
rotating machine fault diagnosis. Our LiteFormer replaces the
multi-head self-attention module with depth-wise convolution,
which significantly reduces the computation cost and
improves the classification accuracy. With our proposed
LiteFormer, the applicability of Transformer is enhanced.

3. Comprehensive experiments are carried out on four fault
datasets of three simulation test rigs. According to
experimental results, our proposed LiteFormer is more
efficient and effective than Transformers. The results also
demonstrate the superior classification performance and
strong robustness of our proposed LiteFormer, which sets
state-of-the-art results.

This paper is organized as follows. In Section II, the
previous and related fault diagnosis works are introduced.
Then, in Section III, the relationship between self-attention
and convolution is analyzed. In Section IV, the framework of
the proposed LiteFormer for rotating machine fault diagnosis
is provided. In Section V, experimental results and analysis
are provided. At last, conclusions are presented in Section VI.

II. RELATED WORKS

In fault diagnosis, the DL based methods especially CNN
methods [29-31], have been proven to be more effective than
the traditional approaches that rely on signal processing
methods.

Jiang et al. [10] proposed stacked multilevel-denoising
auto-encoders (SMLDAE:s) to learn robust and discriminative
features from the complex frequency spectra for wind turbine
gearbox fault diagnosis. Zhao et al. [33] used handcrafted
features as local features for gated recurrent unit (GRU)
networks for machine health monitoring. These are methods
using deep neural networks (DNNs) or recurrent neural
networks (RNNs) for machine fault diagnosis. However, they
are not as widely used as those based on CNNs.

Zhang et al. [30] used wide first-layer kernels in a deep
convolutional neural network (WDCNN) to extract robust
features. Ding et al. [34] adopted a deep ConvNet based on
wavelet packet energy (WPE) image for spindle bearing fault
diagnosis. Jiang et al. [35] proposed a multi-scale
convolutional neural network (MSCNN), which conducts
multiple pairs of convolutional layers to extract multiscale
features for fault diagnosis. Zhang et al. [31] proposed a
method with the deep residual learning algorithm [32] for
rotating machinery fault diagnosis.

Since the achievements of Transformers [18-20] have been
remarked in NLP and CV field, several approaches [21-22, 36]
are proposed to introduce Transformer into the field of
machine fault diagnosis. Ding et al. [21] proposed a time-
frequency Transformer (TFT) based on the original ViT [19]
for fault diagnosis of rolling bearings. Pei et al. [22] proposed
a Transformer convolution network (TCN) based on transfer
learning for machine fault diagnosis. Fang et al. [36] proposed
a CLFormer adopting convolutional embedding and linear
self-attention for bearing fault diagnosis. However, most of
these methods simply adopt off-the-shelf Transformers like
ViT, which are not suitable for the rotating machine fault
diagnosis. To solve this issue, we investigate the essence of
Transformer and propose a suitable architectural alternative,
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LiteFormer for the rotating machine fault diagnosis.

III. ANALYSIS ON SELF-ATTENTION AND CONVOLUTION

To effectively investigate the essential architecture of
Transformer and integrate the convolutional layer with
Transformer, we first analyze the relationship between self-
attention and convolution. Then, we propose ConvFormer and
conduct some primary experiments to verify the conclusions
of our mathematical analysis.

A. Revisiting Self-attention and Convolution

The convolution operation has been widely used in many
tasks [32, 37] and various types of convolutional layers [37-39]
are proposed. In general, a convolutional operation can be
defined as:

0, (iy=b(i)+ Y W(i,0)-X(i+0), (1)
oeQ)

where b is the bias, Q denotes the kernel size, and i
indicates the index of an input. For an image, i indicates the
location in a two-dimensional space. For time series data, i
represents the temporal index. When the function W is
independent of the index i, the convolutional operation is
equal to a conventionally convolutional layer. When W is a
function of both i and o , this convolution operation
represents some complex types of layers, such as deformable
convolution [38] and dynamic convolution [39]. When the

bias b is set as zero, this operation can be formulated as:
0.()=) W(i,0)-X(i+0) . ()

oeQ)
According to Ref. [8], a self-attention module can be

formulated as:
T

Atten = F(Q,K, V) = soft max((\)/ldi
k
where Q e R | K e R and V e R“** represents
three matrices, which are computed following Q =W, _(X),
K=W, (X),and V =W, (X), respectively.
Since the definition of convolution in (2) is expressed in a
dot-production manner, to clearly compare the self-attention

with the convolution, we convert the self-attention defined in
(3) into a dot-production manner. Since d, is a constant, the

v, 3)

self-attention in a dot production manner can be formulated as:
Atten(i)= W, (i)-Wi(i+0)-W,(i+0), 4)

oey
where Wq and W, represent the normalized function by
softmax and ./d, , v indicates the size of the input. Eq. 4

can be further simplified as:
Atten(i)=) W, (i,0)-W,(i+0), ®)
oey
where W, (i,0) = W, (i)- Wi (i+0).

According to (2) and (5), we can find that the definition of
convolution is actually in the same format as the definition of
self-attention.

Comparing (2) with (5), we find that there are two different
points between the convolution and self-attention: a. The
in (2) indicates the kernel size, which includes part of an input.

The w in (5) represents the whole size of an input. b. In the
self-attention defined in (5), W, and W, are more complex

than the corresponding parts in (2).
Based on our analysis, we can find that when the receptive
field of a self-attention, y is equal to Q in (2), and the W,

and W, are simplified, the self-attention can be replaced with

a convolution layer. Furthermore, through the comparison
between (2) with (5), we can explain why the Transformer
performs better than a CNN. Firstly, the self-attention in
Transformer has a large receptive field than a convolutional
layer, which enables the Transformer to fully capture the
global information. Additionally, the complex function W,

and W, in (5) help the Transformer to learn the high-order

features, which further improves the performance of the
Transformer. Hence, the self-attention module actually can be
regarded as an enhanced convolutional layer.

However, this complex structure of self-attention requires a
large scale of training data and may easily overfit to a limited-
data regime. Since the training data in fault diagnosis is much
limited, it is challenging to fully train a Transformer and not
degenerate its performance.
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(a) The Original Transformer Block (b) The ConvFormer Block

Fig. 1. (a)The architecture of the original Transformer block; (b)The
architecture of the proposed ConvFormer block.

B. Primary Experiments

In Sec. 3.1, through our analysis of the relationship between
the convolutional layer and the self-attention module, we find
that the self-attention actually can be regarded as an enhanced
convolution layer with an infinite receptive field. However,
this complex self-attention module requires large-scale
training data and cannot be fully trained in the limited-data
regime like the fault diagnosis task.

In this subsection, to verify our conclusion above, several
primary experiments are conducted, where we propose two
types of convolution based Transformer (ConvFormer). To
solve the issues in Transformer, our ConvFormer replaces the
self-attention module with convolutional layers. Our
ConvFormer and original Tranformer are illustrated in Fig. 1.

The primary experiments are conducted to verify that the
MHAS module in Transformer can be equal to or even
surpassed by the convolutional layer for machine fault
diagnosis. To avoid the increasing difficulty of optimization
caused by introducing more parameters, we further use the
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TABLEI
THE RESULTS OF PRIMARY EXPERIMENTS
Training GPU Test GPU
0,

Model Accuracy(%)+Std Params (M) FLOPs (M) Memory (MB) Memory (MB)
Global Transformer 99.64+0.14 0.267 106.513 735 77
Local Transformer 99.82+0.11 0.261 67.994 236 29
ConvFormer(k=3) 99.92+0.08 0.230 58.819 150 25
ConvFormer(k=3) 99.97+0.05 0.230 58.819 150 25

(dilated convolution)

dilated convolution [40] instead of standard convolution in
ConvFormer block to demonstrate the performance of
ConvFormer can be improved by increasing the receptive field.
We perform the experiments on the rolling bearing dataset
provided by the Bearing Data Center of Case Western Reserve
University (CWRU) [41], which is a classic dataset for
rotating machine fault diagnosis [22, 30-31, 34]. Detailed
dataset division is introduced in the section of the
experimental setup. For a more convenient display of the
effects, the primary experiments are all performed on the
Transformer architecture of 5 depth and the kernel size of the
convolutional layer is 3. The training and the test GPU
memory are measured by the maximal GPU memory
consumption of the model with a batch size of 32 in the model
training and test procedure respectively.

Table 1 shows the comparison results between the self-
attention based Transformer and the proposed ConvFormer (k
indicates the kernel size). As seen in Table I, both MHSA
module based Transformer (Global Transformer) and the
window MHSA [20] based Transformer (Local Transformer)
are surpassed by the convolution based Transformer
(ConvFormer) on CWRU dataset for fault diagnosis. The
ConvFormer with standard convolution operations obtains
99.92% accuracy, which is much higher than the Global
Transformer of 99.64% and the Local Transformer of 99.82%.
Since the convolution has the inductive bias, the performance
of ConvFormer is significantly improved. The ConvFormer
with the dilated convolution, which increases the receptive
field without introducing external parameters, has improved
the classification accuracy to 99.97%, showing that the bigger
receptive field can improve the performance of ConvFormer
under equal conditions. Moreover, it can be seen that the
convolution operations in the proposed ConvFormer alleviate
nearly 80% GPU memory burden of Global Transformer in
the training.

The results verify that the self-attention module in
Transformer can be viewed as an enhanced convolutional
layer with an infinite receptive field. And the convolution
operations alleviate the computation memory burden of
Transformer and improve the classification accuracy under
limited-sized fault datasets. The strong modeling capacity of
Transformer may not mainly rely on the self-attention module,
but more relies on the inherent architecture design of
Transformer, so that the proposed ConvFormer using
convolution instead of the self-attention can be more effective
than the original Transformer for fault classification.

Although the ConvFormer has an excellent performance in
the fault classification task, the computation complexity of

convolutions is increasing largely with large kernels. To
further improve the computation efficiency, we further
propose the LiteFormer in the next section.

IV. THE PROPOSED LITEFORMER FRAMEWORK

Two drawbacks in computation cost and inductive bias of
Transformer limit its application in fault diagnosis. Previously,
we have analyzed that the convolutional layer can replace the
self-attention module in Transformer and alleviate the above
drawbacks. To further improve the computation efficiency
even under a large receptive field, the LiteFormer approach is
proposed in this section.

A. The Architecture of LiteFormer

LiteFormer consists of a patch embedding layer, L
LiteFormer blocks, a sequence pooling layer, and a MLP head
for classification. The architecture of the proposed LiteFormer
can be seen in Fig. 2.

For the given input sequence N x1, the patch embedding

layer first divides it into % patches and then linearly projects

the patches into an embedded dimension of size C . After that,
the embedded patch tokens are delivered to the LiteFormer
block with stacked L blocks, and the output feature is the

same size as the input embedded patch tokens of size %xc.

Then the output is weighted by the sequence pooling layer [24]
to generate the weighted output representations. Finally, a
general MLP head is connected for classification.

B. LiteFormer Block

As illustrated in Fig. 2, the LiteFormer block, which
represents the encoder layers in Transformer, contains the
depth-wise convolution (DConv) module and the feed-forward
network (FFN) module.

In Sec.III, we have verified that the self-attention module in
Transformer can be viewed as an enhanced convolutional
layer with a global receptive field and can be replaced by a
convolutional layer. In our proposed LiteFormer, we utilize
the depth-wise convolution with a large kernel size to replace
the MHSA module, further improving the computation
efficiency compared to the standard convolution. The
LiteFormer block not only has the inductive bias of
convolution, but also inherits the structural superiority of
Transformer.

As in the original Transformer block, the residual
connection is also employed around each DConv module and
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Fig. 2. The flowchart of LiteFormer based fault diagnosis system

FFN module. It means that for input x, in LiteFormer block
of block 7, the output y, of the block can be given as:
x: = x, + DepthwiseConv(BN(x;))

x, = Reshape(x; ) (6)
¥, =x, + FFN(LN(x] ))
v, =Reshape(y,)

Here, DepthwiseConv(-) denotes the depth-wise

convolution, BN(:) is the batch normalization (BN), LN(-)
represents the layer normalization (LN), and Reshape(-) is the

operation to change the shape of input.
1) DConv Module

In our DConv module, a single 1-D depth-wise convolution
layer is designed to model the spatial features after batch
normalization. Depth-wise convolution [42] is a fast and
efficient variant of the standard convolution. Given an input

nxc

xeR
over each

embedding x ,
independently

, it performs a convolution
channel. The computation
complexity can be reduced from O(k-n-c*) to O(k-n-c)

where k is the kernel size. The depth-wise convolution is
defined as:

k
U, ,=DepthwiseConv(x, W, ,i,d)=Y_ W, x @)
=1

(i+j—[?}),d
where W € R®* are the learnable parameters. The output
UeR™ , and U,, is the output for the element ; and

channel d . The DConv module significantly decreases the
complexity of Transformer, resulting in a lightweight
LiteFormer.
2) Feed-Forward Module

After the DConv module with residual connection, a FFN
module with residual connection is integrated. FFN module
contains two fully connected layers, with the middle layer
activated by a rectified linear unit (ReLU). There is an
expansion ratio f; set in FFN to control the dimension of the

inner layer. The FFN performs point-wise operations to mix
features in the channel dimension.

C. Framework for Fault Diagnosis

Our LiteFormer is proposed for efficient rotating machine
fault diagnosis. The LiteFormer learns features from raw
sensor data and finishes classification tasks in an end-to-end
manner.

TABLE II
THE DETAILED CONFIGURATION OF LITEFORMER MODEL
Input Size  Output Size ~ Layer Name LiteFormer
P=8; C=64
Nxl N 64 Emiaetggin (proj): Convld(1, C, P, P,
8 g bias=False)
DConv: /=16
(norm): BatchNorm1d(64)
(dconv): Conv1d(64, 64, k, 1,
groups=64, bias=False)
N N LiteFormer
—x 64 —x 64 Blocks FFN: /=4
8 8 (depth L=7) (norm): LayerNorm(64)
(fcl): Linear(64, f *64)
(act): ReLU()
(fc2): Linear(f *64, 64)
(drop): Dropout(p=0.2)
N Sequence s
2 x 64 64 Pooling (pool): Linear(64, 1)
64 K MLP Head (head): Linear(64, s)

Firstly, the vibration data sample is collected and then
divided into patches. The patches are transformed to the token
embeddings of C dimension through the patch embedding
layer. Then, the token embeddings are forwarded to
LiteFormer blocks for feature encoding. The outputs of the
final block are forwarded to a sequence pooling layer to weigh
the output tokens. Finally, the weighted representation is
delivered to a MLP head for fault classification of s classes.
The cross-entropy loss is used for optimizing the LiteFormer
model. Dropout with a 0.2 rate is applied. The detailed
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configuration of LiteFormer is provided in Table II.

The LiteFormer based machine fault diagnosis system is
presented in Fig. 2. The raw vibration data are utilized as input
and its condition labels are served as output in the training.
The LiteFormer model is optimized through the optimizer
Adam.

V. EXPERIMENT ANALYSIS

A. Experimental Setup

To evaluate the efficiency of our proposed LiteFormer for
rotating machine fault diagnosis, four experimental datasets
are investigated. One is the CWRU dataset [41]. The second
one is the bearing dataset from the Paderborn University
Bearing Data Center [43-44], which is called PU dataset. The
third one is the planetary gearbox dataset acquired from the
drivetrain dynamic simulator (DDS) and it is called Gearbox
A dataset. The last one is the parallel gearbox vibration dataset

also acquired from the DDS and it is called Gearbox B dataset.

The test rig of DDS is shown in Fig. 3. The two-stage
planetary gearbox is connected to the driving motor, and its
rotating speed is reduced by the parallel gearbox. The data
length of each sample in these four datasets is all 2048.

The bearing data of CWRU dataset is measured by
acceleration transducers from the drive-end bearings at a
sampling frequency of 12 kHz under four operational
conditions (load 0, 1, 2, and 3 hp). The rotating speed changes
between 1730 and 1797 rpm based on the applied load. Single
point faults with fault diameters of 0.007, 0.014, and 0.021 are
set on the rolling element, the inner raceway, and the outer
raceway, respectively. The CWRU dataset chooses 100
samples (50 for training and 50 for testing) for each condition
under four loads. Thus, there are 10 different working
conditions under the four loads. There are 2000 training
samples and 2000 testing samples in total.

The bearing data of PU dataset is measured by a
piezoelectric accelerometer at the top end of the rolling
bearing module with a sampling frequency of 64 kHz. PU
datasets consist of 32 sets of current signals and vibration
signals, caused by bearings that include six undamaged
bearings, twelve artificially damaged bearings, and fourteen
bearings with real damages caused by accelerated lifetime
tests. Each set of signals is collected under four working
conditions. In this paper, the vibration signals of 13 bearings
(KAO4, KA15, KA16, KA22, KA30, KB23, KB24, KB27,
KI14, KI16, K117, KI18, and KI21) with real damages caused
by accelerated lifetime tests and 1 healthy bearing (K001)
under the working condition N15_MO07_F10 are used to verify
the performances. The PU dataset chooses 1000 samples (500
for training and 500 for testing) for each fault condition, so
there are 7000 training samples and 7000 testing samples in
total for 14 different classes.

The planetary gearbox data of Gearbox A dataset and the
parallel gearbox data of Gearbox B dataset are all acquired by
the 608A11 vibrating sensors placed on the planetary gearbox
and the parallel gearbox, respectively under various speed-
load conditions. The sampling frequency is 5120 Hz. The
Gearbox A dataset collected the mixed planetary gearbox data

samples of bearing-gear faults from the working conditions of
20Hz 0 (20Hz denotes the working speed of a motor, 0
indicates the corresponding load size), 30Hz 2, 40Hz 0, and
30Hz 4 for experiments. The Gearbox B dataset collected the
mixed parallel gearbox data samples from the working
conditions of 20Hz 0, 30Hz 1, 40Hz 0, and 50Hz 0 for
experiments. The various bearing-gearbox fault descriptions
are listed in Table III. Gearbox datasets A and B can be
regarded as the 9-class condition data which includes 8 fault
conditions listed in Table III and 1 health condition. The two
datasets both consist of 400 samples (half of the samples for
training and half for testing) for each fault condition of each
working condition. Both Gearbox A and B have 7200 samples
for training and 7200 samples for testing, respectively.

Motor
controller |

Planetary
Gearbox

Brake s

controller

Parallel
Gearbox
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Fig. 3. The test rig of DDS

TABLE III
GEARBOX CONDITION DESCRIPTIONS
Component Type Description
Chipped Crack occurs in the feet
Miss One of the feet is missing
Gear .
Root Crack occurs in the root of the feet
Surface Wear occurs in the surface
Ball Crack occurs in the ball
) Combo  Crack occurs in the both inner and outer ring
Bearing . . .
Inner Crack occurs in the inner ring
Outer Crack occurs in the outer ring

B. Comparison Approaches

In our experiments, the original Transformer [8, 19] is used
as our baseline, and here is called Global Transformer. The
proposed ConvFormer is also constructed for comparison to
verify that our proposed LiteFormer further improves the
computation efficiency and performance for machine fault
diagnosis. For a fair comparison, the architecture of Global
Transformer and ConvFormer are the same as our LiteFormer.
Global Transformer utilizes the MHSA module and adds the
learnable positional embedding [19]. The head number of
MHSA module is 4. ConvFormer utilizes the standard
convolution in Conv module.

We also re-implement several state-of-the-art approaches
including CNN based and Transformer based methods for
rotating machine fault diagnosis. The ViT [19], CCT [24],
Conformer [25] models are conducted for 1D sequence fault
diagnosis as comparisons. The WDCNN [30], MSCNN [35],
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TABLE IV
CLASSIFICATION ACCURACY OF ABLATION EXPERIMENTS
CWRU PU Gearbox A Gearbox B
dataset dataset dataset dataset o Training GPU
Model AVG (%) Params (M) FLOPs (M) Memory (MB)
Accuracy(%)+Std
Global 99.73+0.14 93.30+0.26 73.81+1.11 90.29+0.46 89.28 0.366 149.046 1015
Transformer
ConvFormer(3) 99.98+0.03 99.84+0.02 98.98+0.28 99.87+0.09 99.67 0.321 82.216 205
ConvFormer(16) 99.87+0.08 99.53+0.20 99.86+0.12 99.70+0.14 99.74 0.694 177.636 211
LiteFormer 100+0.00 99.94+0.03 99.90+0.05 99.82+0.06 99.92 0.242 62.03 204

and ResNet18 [32] are adopted as the general and state-of-the-
art CNN methods of fault diagnosis for comparison. The
details of these methods are illustrated as follows.

The ViT model divides the input data sample into patches
of size 64. The head number of MHSA is 4, the expansion
ratio in FFN is set at 4 and the depth is set at 7, which is the
same set as our baseline. The CCT model utilizes convolution
operations with the kernel size of 64 and a stride of 8 to obtain
convolutional token embeddings. The other hyperparameters
are set the same as ViT above. The Conformer model
consisting of the MHSA and convolution modules alternately
uses the same patch embedding layers as in our LiteFormer to
obtain input tokens. Its convolution kernel size is also set at 16,
which is the same as our LiteFormer. The other
hyperparameters are also set the same as our baseline. For a
fair comparison, all Transformer models adopt sequence
pooling to weight the outputs of the final Transformer block.

The WDCNN adopts the same structure in Ref. [30]. The
convolution kernel size of MSCNN is 128 and the other
hyperparameters are set the same as in Ref. [35]. The
ResNet18 [32] for 1D sequence firstly utilizes the convolution
operations to increase the channel number to 64 and then the
rest structure remains in the original configuration for fault
diagnosis.

Our LiteFormer runs 30 epochs and the learning rate is set
at 0.001. The learning rate reducing per epoch based on cosine
annealing is adopted. As set up in Ref. [35], MSCNN runs 50
epochs and its learning rate is 0.001. The other models all run
30 epochs as our LiteFormer. The learning rate for WDCNN
and ResNetl8 is 0.01. The learning rate of all Transformer
models is 0.001, the same as our LiteFormer. All models use
the Adam optimizer for training from scratch. For CWRU
dataset and PU dataset, the training batch size is both 32, and
for Gearbox datasets, the training batch size is 128. The
experimental results are the average of 10 random
experiments for our work. Our works are realized in Python
3.8.0 with torch 1.8.0, Cuda version 11.1 and executed on
Computer operating system Windows 10, Intel(R) Core(TM)
19-10940X CPU @ 3.30 GHz, 96.0GB RAM, and GPU
NVIDIA GeForce RTX 3080, 10GB.

C. Results and Analysis

1) Ablation Study

In the previous primary experiments in section III(B), we
have proved that the convolution operations can alleviate the
GPU memory burden compared with the self-attention module
and improve the performance of the model. Here, we will

verify that the proposed LiteFormer further improves the
computation efficiency and the performance for rotating
machine fault diagnosis. The performance evaluation and the
results are presented in Table IV. Table IV lists the
classification accuracies with standard deviation (Std) on all
four datasets, the average accuracy (AVG) of four datasets,
the trainable parameters (Params), the floating-point of
operations (FLOPs) and the maximal training GPU memory
consumption (batch size of 32) of each method.

According to Table IV, it can be seen that the ConvFormer
with a kernel size of 16 (ConvFormer(16)) brings a 0.88%
performance gain over ConvFormer with a kernel size of 3
(ConvFormer(3)) on Gearbox A dataset, but it suffers
performance losses of 0.11%, 0.31% and 0.17% on the
CWRU dataset, PU dataset and Gearbox B dataset,
respectively.  Additionally, = ConvFormer(16) has a
computation complexity that is more than twice as high as
ConvFormer (3). It can be explained that the increased
computation complexity affects the performance of
ConvFormer and ConvFormer with a large kernel size may
easily overfit. Our proposed LiteFormer decreases the
computation complexity by nearly 65% compared to
ConvFormer(16) and obtains the highest average accuracy
(AVG) on the four datasets, outperforming ConvFormer. We
can also see that the GPU memory consumption of our
LiteFormer is similar to ConvFormer, which alleviates the
computation memory burden of Transformer greatly. The
results indicate that our proposed LiteFormer outperforms
ConvFormer under a large receptive field for rotating machine
fault diagnosis.

2) Visualization Study

The input data of our LiteFormer model is the samples of
the 1-D complex vibration signals. The LiteFormer aims to
learn the intrinsic vibration characteristics of signals for fault
diagnosis. In order to show the learning process of our
proposed LiteFormer, we have drawn the learning weights of
the depth-wise convolution kernel in DConv module under
Gearbox A dataset. The learning weight maps are shown in
Fig. 4. Since there are 64 kernels of the same size in
convolutional layers, the size of one learning weight map of
the depth-wise convolution kernels is 16x64 , where 16
means the kernel size and 64 means the number of channels.
Fig. 4 presents the convolutional learning weight maps of
LiteFormer block 1, block 5, and block 7. It can be seen that
the total values of learning weights are increasing as the
model learns layer by layer, and the weight maps become
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Fig. 4. The learning weight maps in the depth-wise convolution of our
LiteFormer

brighter and brighter as the depth of the model increases.

To better present the learning process, the corresponding
learned features of our proposed LiteFormer blocks and the
raw signal samples are illustrated in Fig. 5. The LiteFormer is
a sequence-based model and the feature learning actually
works along the time axis, so that the feature matrixes are
averaged along the channel dimension to plot the feature maps.
Fig. 5 presents the raw signals and the feature maps of the
gear fault “Miss” and the bearing fault “Inner”. It can be seen
from Fig. 5 that the feature maps in the lower block (block 1)
learn the basic waveform of the vibration signals, where the
amplitudes of features are bigger when the impulses are
obvious in raw signals. With the model depth increasing, the
learned feature maps become more and more abstract and
discriminative, so that the LiteFormer model can finally attach
different features to different fault types.

To illustrate the features more intuitively, we present the
feature maps using the t-SNE method in Fig. 6. Fig. 6 clearly
shows the learned feature distributions of all fault types of

LiteFormer blocks. The features learned by the first block
cannot be separated, so as the raw samples do. The features of
the higher blocks (block 5 and block 7) are gradually
separated, which is consistent with the trend of the feature
maps shown in Fig. 5. The fault features of the last block of
our proposed LiteFormer are clustered well. The visualization
study on Gearbox A dataset demonstrates the effectiveness of
the feature learning of our proposed LiteFormer model.
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Fig. 6. The t-SNE feature maps of different blocks of our proposed
LiteFormer

3) Comparison Experiments
To investigate the effectiveness of our proposed LiteFormer
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TABLE V
COMPARISON EXPERIMENTS FOR FAULT DIAGNOSIS
CWRU PU Gearbox A Gearbox B
dataset dataset dataset dataset o Training GPU
Model AVG (%) Params (M) FLOPs (M) Memory (MB)
Accuracy(%)+Std
ViT 98.80+0.41 95.08+0.59 74.83+3.65 93.21+0.65 90.48 0.356 12.217 49
CCT 99.92+0.06 99.47+0.11 96.06+1.00 97.83+0.34 98.32 0.354 143.551 978
Conformer 100.00+0.00 99.91+0.05 99.43+0.20 99.09+0.23 99.61 0.79 286.938 1322
WDCNN 99.69+0.12 98.72+0.20 95.33+1.89 96.02+0.63 97.44 0.055 0.755 4
MSCNN 99.79+0.07 98.97+0.17 98.27+0.51 98.37+0.46 98.85 21.546 113.709 496
ResNet18 99.58+0.17 99.13+0.11 99.18+0.32 98.35+0.34 99.06 3.857 89.132 119
LiteFormer 100.00+0.00 99.94+0.03 99.90+0.05 99.82+0.06 99.92 0.242 62.03 204
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Fig. 7. Accuracies under different SNRs of white Gaussian noise

method for rotating machine fault diagnosis, comparisons
between the Transformer-based models and the state-of-the-art
CNN-based fault diagnosis methods are presented in Table V.
ViT model, the pure Transformer of self-attention, is far less
accurate than the proposed LiteFormer. CCT model, which
uses convolutional tokenization, improves the performance a
lot on all four datasets compared to ViT. However, the FLOPs
number of CCT is increasing largely since its token number is

also growing. Although Conformer obtains a high average
accuracy (AVG) of 99.61%, which is only -0.31% lower than
that of our LiteFormer, its Params and FLOPs are about 4
times that of our LiteFormer, and its training GPU memory is
more than 6 times that of our LiteFormer. The relatively high
computation complexity and high memory consumption limit
its application in engineering for fault diagnosis. The results
also show that the convolutions introduced into Transformers
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largely enhance the performance for small datasets, especially
on Gearbox A dataset. And our proposed LiteFormer method,
achieving the test accuracy of 100%, 99.94%, 99.90%, and
99.82% respectively on the four datasets, outperforms the

other Transformer models for rotating machine fault diagnosis.

Compared to CNN-based methods, our proposed
LiteFormer also achieves the best classification performance
on all four datasets. ResNet18 obtains 99.06% AVG, which is
-0.86% lower than that of our LiteFormer, and its number of
Params is much higher. Although WDCNN has the lowest
computation complexity, its fault classification accuracies are
all much lower than that of our LiteFormer. The MSCNN
improves its accuracy by increasing the scales of CNNs.
However, its performance is still inferior to our LiteFormer
and its Params number is the largest. For CWRU dataset, PU
dataset and Gearbox datasets, the proposed LiteFormer
method surpasses the other counterparts and sets new state-of-
the-art results, which indicates the strong feature learning
ability and generalization of LiteFormer for rotating machine
fault diagnosis.

4) Analysis of Noise Effect

To investigate the robustness of our proposed LiteFormer to
resist background noise, we add the white Gaussian noise with
different signal-to-noise ratios (SNRs) to the original data
samples of all four datasets, respectively. White Gaussian
noise of SNRs ranging from -6 dB to 6 dB is added to data
samples with a stride of 3 dB. CCT, Conformer, WDCNN,
MSCNN, and Resnetl8 models are chosen for comparison.
Fig. 7 presents the results of models with different SNRs on
the four datasets.

From the noise experimental results on the four datasets in
Fig. 7, it can be observed that the proposed LiteFormer obtains
excellent anti-noise performance in each dataset. The
classification accuracy of LiteFormer on the four datasets with
SNR of 6dB is 99.96%, 99.64%, 98.50%, and 98.76%,
respectively. When the SNR is set to -6dB, the classification
accuracy of LiteFormer is down to 93.42%, 89.77%, 43.71%,
and 68.24%, respectively, which is still higher than the other
methods on the CWRU and Gearbox datasets, and is
comparable to the Conformer on PU dataset. The results
indicate that the proposed LiteFormer is of strong robustness
under noise. The LiteFormer shows obvious advantages for
rotating machine fault diagnosis even under noise compared
with the CNN-based fault diagnosis methods. The ResNet18
obtains lower performance than our LiteFormer and MSCNN
is the most unstable model under noise for its large number of
Params. The overall performance of Conformer is a little
inferior to that of LiteFormer, indicating that the proposed
DConv module, which is lightweight for fault diagnosis, can
perform even better than the combination of MHSA module
and convolution module. The results prove that our proposed
LiteFormer has strong robustness and outperforms the state-
of-the-art methods under noise for rotating machine fault
diagnosis.

5) Analysis of Class Imbalance

The fault data in real applications exists the class imbalance
issue, which affects the performances of intelligent fault
diagnosis models. To investigate the robustness of our
proposed LiteFormer on the unbalanced dataset, we simulate

the moderate class imbalance experiments on the PU dataset
and Gearbox A dataset. We set three groups of datasets with
different imbalance ratios on both datasets, which are shown
in Table VI and Table VII, respectively. Group 1 is the
balanced dataset used in our paper. Group 2 and Group 3 are
imbalanced datasets constructed by reducing the training
samples of some fault types. Group 3 is more imbalanced than
Group 2. The three groups of datasets are used to simulate the
imbalanced experiments and the experimental results are
shown in Fig. 8.

TABLE VI
THREE GROUPS OF UNBALANCED DATASETS ON PU DATASET

Training samples Testing samples

Fault mode
Group 1 Group 2 Group3 Group 1/2/3
K001 500 500 500 500
KA04 500 500 500 500
KA15 500 300 250 500
KAl6 500 300 250 500
KA22 500 300 250 500
KA30 500 180 125 500
KB23 500 180 125 500
KB24 500 180 125 500
KB27 500 100 62 500
KI14 500 100 62 500
KI16 500 100 62 500
KI17 500 50 31 500
KI18 500 50 31 500
K121 500 50 31 500
TABLE VII

THREE GROUPS OF UNBALANCED DATASETS ON GEARBOX A DATASET

Training samples Testing samples

Fault mode

Group 1 Group 2 Group3 Group 1/2/3
Health 800 800 800 800
Chipped 800 600 500 800
Miss 800 600 500 800
Root 800 400 300 800
Surface 800 400 300 800
Ball 800 200 120 800
Combo 800 200 120 800
Inner 800 80 60 800
Outer 800 80 60 800

It can be observed from Fig. 8 that the imbalanced datasets
cause the performance degradation of models and the overall
accuracy of Group 3 is much lower than that of Group 2,
which indicates that the class imbalance of the dataset will
degrade the model performance and the dataset with higher
imbalance ratio degrades the performance more. Nevertheless,
our proposed LiteFormer still performs the best under certain
imbalance ratios of the datasets compared with other methods.
The results prove that our proposed LiteFormer has strong
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robustness under moderate class imbalance and outperforms
the state-of-the-art methods on imbalanced datasets for
rotating machine fault diagnosis.
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Fig. 8. Results of three groups of datasets for class imbalance experiments.

VI. CONCLUSION

Our proposed LiteFormer approach has been developed for
rotating machine fault diagnosis in this paper. Firstly, the
paper has provided the mathematical analysis between self-
attention and convolution, demonstrating that the self-attention
module can be regarded as an enhanced convolutional layer.
Then the ConvFormer has been proposed to show that the
convolutional layer replacing the self-attention scheme in
Transformer mitigates the issues of computation burden and
the training difficulty with small datasets, while keeping the
high fault classification accuracy. The exploration of
ConvFormer shows the inherent structural superiority of
Transformer and investigates the essence of Transformer.
Finally, the paper has further proposed the LiteFormer, which
utilizes depth-wise convolution to reduce the computation
complexity and improve the efficiency and generalization of
ConvFormer for fault diagnosis. The proposed LiteFormer not
only inherits the inherent structural superiority of Transformer,
but also has the inductive bias of convolution and reduces the
computation cost. Experimental studies have verified the
effectiveness and robustness of the proposed LiteFormer for
rotating machine fault diagnosis. As compared to other state-
of-the-art methods, the proposed LiteFormer has been more

accurate and robust for rotating machine fault diagnosis, even
under noise and class imbalance scenarios. In the future, we
will further investigate the structural superiority of
Transformer and design a more lightweight and robust deep
model based on Transformer for machine fault diagnosis.
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