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 Abstract—Transformer has shown impressive performance 
on global feature modeling in many applications. However, two 
drawbacks induced by its intrinsic architecture limit its 
application, especially in fault diagnosis. Firstly, the quadratic 
complexity of its self-attention scheme extremely increases the 
computation cost, which poses a challenge to apply Transformer 
to a computationally limited platform like an industry system. 
Additionally, the sequence-based modeling in the Transformer 
increases the training difficulty and requires a large-scale 
training dataset. This drawback becomes serious when 
Transformer is applied in fault diagnosis where only limited data 
is available. To mitigate these issues, we rethink this common 
approach and propose a new transformer, which is more suitable 
for fault diagnosis. In this paper, we first show that the attention 
module can be actually replaced with or even surpassed by a 
convolution layer under some conditions in mathematics and 
experiments. Then, we adopt the convolutions into the 
transformer, where the computation burden issue is alleviated 
and the fault classification accuracy is significantly improved. 
Furthermore, to increase the computation efficiency, a 
lightweight transformer called LiteFormer, is developed by 
utilizing the depth-wise convolutional layer. Extensive 
experiments are carried out on four datasets: CWRU, PU, and 
two Gearbox datasets of DDS. Through our experiments, our 
LiteFormer not only reduces the computation cost in model 
training, but also sets new state-of-the-art results, surpassing 
other counterparts in both fault classification accuracy and 
model robustness. 
 
Index Terms—Convolution, Efficient, Fault diagnosis, 
Lightweight, Transformer 

 

I. INTRODUCTION 
N industrial systems, the failure of rotating machinery 
may result in financial losses or even fatalities. To address 
this issue, rotating machinery health monitoring and fault 
diagnosis are widely studied [1-5], which is able to 
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facilitate the detection of machine faults and make prompt 
repairs to avoid losses. Traditional machine fault diagnosis 
methods mostly use signal processing methods to extract 
hand-crafted features from fault signals [1-3]. Recently, deep 
learning (DL) algorithms [6-8] have achieved impressive 
performances in the field of machine fault diagnosis [9-10] 
benefitted from the superior automatic feature learning 
capabilities of deep models. The deep models learn data 
features with multiple layers, where the low layers learn the 
edge features of data and the deep layers model the semantic 
features of data [6]. Benefitted from the deep models, the 
representation of features is significantly improved and the 
deep models are widely explored in machine fault diagnosis 
for transfer learning [11-12], where the deep model is trained 
on the source dataset and then fine-tuned on the target dataset. 
To apply the DL methods for machine fault diagnosis with 
physical interpretability, some methods for interpreting deep 
models have been proposed [13-14]. Abid et al. [15] 
implemented a deep-SincNet for fault diagnosis to provide 
more physical interpretability. Li et al. [16] proposed a novel 
wavelet-driven deep neural network, which uses a continuous 
wavelet convolutional layer to replace the first convolutional 
layer of the standard CNN to obtain a customized kernel bank. 
Li et al. [17] introduced the attention mechanism to the deep 
network to locate the informative data segments and visualize 
the learned diagnosis knowledge. With the research on the 
interpretability of deep models, the potential of deep learning 
for intelligent machine fault diagnosis becomes more 
attractive and valuable. 

Among the DL methods, the latest proposed Transformer 
[8], which is realized completely by the self-attention 
mechanism, has set off a new round of high tide in the field of 
natural language processing (NLP) [18] and computer vision 
(CV) [19-20]. Such success of Transformers has inspired 
some methods [21-22] proposed for machine fault diagnosis to 
learn the global features. Although Transformer has shown 
large model capacity in many tasks, the quadratic complexity 
of its self-attention scheme extremely increases the 
computation cost, which limits its applications in some 
computationally limited industry systems. Moreover, since the 
sequence-based modeling in Transformer lacks the inductive 
bias [19, 23-24], it is difficult to train a Transformer with 
limited training samples. These two drawbacks induced by the 
intrinsic architecture of Transformer limit its application in 
fault diagnosis.   

Although lots of methods try to improve the attention 
module [20, 26] or introduce convolutions into Transformer 
[23-25] to improve the performance of Transformer in the 
field of NLP or CV, the complex network architecture makes 
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it difficult to optimize on the small datasets in the field of fault 
diagnosis. Recently, some methods [21-22] propose to 
improve the original Transformer and devise some 
Transformer variants which are adapted to fault diagnosis. The 
existing methods [21-22, 27-28] mostly focus on the attention 
mechanism of Transformer, ignoring those drawbacks existing 
in Transformer. Compared with Transformer, convolutional 
neural networks (CNNs) have been widely investigated in 
fault diagnosis [29-31] and shown satisfactory performance 
benefiting from its intrinsic inductive bias and computation 
efficiency. CNNs are naturally equipped with the intrinsic 
inductive bias of locality and translation equivariance [32] 
even for small datasets [29]. Motivated by these 
characteristics of CNNs, we propose to integrate the 
advantages of convolution with the superiority of Transformer 
and devise a new Transformer called LiteFormer for fault 
diagnosis. 

Firstly, we rethink the relationship between the self-
attention module and the convolutional layer. We argue that 
this self-attention module in Transformer actually can be 
regarded as an enhanced convolution operation in 
mathematics. Since the self-attention module is more complex, 
it generally requires more training data than the convolutional 
layer. In the limited-data regime, the self-attention may 
perform equally or even inferior to a convolutional layer. To 
verify our hypothesis, some primary experiments are 
conducted, where we propose several convolution based 
Transformers called ConvFormer. In our primary experiments, 
our proposed ConvFormer performs better than the 
conventional Transformer. Moreover, in our proposed 
Convformer, the convolution operations alleviate the 
computation memory burden of Transformer and improve the 
fault classification accuracy under limited-sized datasets. 
Additionally, to further improve the computation efficiency, 
we propose a lightweight and efficient Transformer called 
LiteFormer for rotating machine fault diagnosis. 

Our proposed LiteFormer adopts the fast and lightweight 
depth-wise convolutional layer to model the local spatial 
correlations of fault signals. The patch embedding in vision 
Transformers [19-20] is utilized to encode the time series into 
the token embedding. Then the token embeddings are 
forwarded to our LiteFormer blocks to capture the sequential 
information. Our LiteFormer block is stacked in multiple 
layers to effectively learn local and global information. Finally, 
the outputs of the last LiteFormer block are forwarded to a 
sequence pooling layer [24] to generate the weighted output 
representations, and then it is delivered to the multi-layer 
perceptron (MLP) head for fault classification. 

The main contributions of the work can be summarized as 
follows: 

1. Instead of focusing on improving the attention module, 
we analyze the relationship between the self-attention module 
and the convolutional layer in mathematics and experiments. 
Based on this analysis, we find the essence of Transformer 
and propose a ConvFormer, which inherits the inherent 
structural superiority of Transformer while alleviating the 
computation burden in conventional Transformers. 

2. Original Transformer based approaches require much 
computation resources. Compared with them, a lightweight 

Transformer called LiteFormer is proposed for efficient 
rotating machine fault diagnosis. Our LiteFormer replaces the 
multi-head self-attention module with depth-wise convolution, 
which significantly reduces the computation cost and 
improves the classification accuracy. With our proposed 
LiteFormer, the applicability of Transformer is enhanced.  

3. Comprehensive experiments are carried out on four fault 
datasets of three simulation test rigs. According to 
experimental results, our proposed LiteFormer is more 
efficient and effective than Transformers. The results also 
demonstrate the superior classification performance and 
strong robustness of our proposed LiteFormer, which sets 
state-of-the-art results.   

This paper is organized as follows. In Section II, the 
previous and related fault diagnosis works are introduced. 
Then, in Section III, the relationship between self-attention 
and convolution is analyzed. In Section IV, the framework of 
the proposed LiteFormer for rotating machine fault diagnosis 
is provided. In Section V, experimental results and analysis 
are provided. At last, conclusions are presented in Section VI. 

II. RELATED WORKS 
In fault diagnosis, the DL based methods especially CNN 

methods [29-31], have been proven to be more effective than 
the traditional approaches that rely on signal processing 
methods.   

Jiang et al. [10] proposed stacked multilevel-denoising 
auto-encoders (SMLDAEs) to learn robust and discriminative 
features from the complex frequency spectra for wind turbine 
gearbox fault diagnosis. Zhao et al. [33] used handcrafted 
features as local features for gated recurrent unit (GRU) 
networks for machine health monitoring. These are methods 
using deep neural networks (DNNs) or recurrent neural 
networks (RNNs) for machine fault diagnosis. However, they 
are not as widely used as those based on CNNs. 

Zhang et al. [30] used wide first-layer kernels in a deep 
convolutional neural network (WDCNN) to extract robust 
features. Ding et al. [34] adopted a deep ConvNet based on 
wavelet packet energy (WPE) image for spindle bearing fault 
diagnosis. Jiang et al. [35] proposed a multi-scale 
convolutional neural network (MSCNN), which conducts 
multiple pairs of convolutional layers to extract multiscale 
features for fault diagnosis. Zhang et al. [31] proposed a 
method with the deep residual learning algorithm [32] for 
rotating machinery fault diagnosis.  

Since the achievements of Transformers [18-20] have been 
remarked in NLP and CV field, several approaches [21-22, 36] 
are proposed to introduce Transformer into the field of 
machine fault diagnosis. Ding et al. [21] proposed a time-
frequency Transformer (TFT) based on the original ViT [19] 
for fault diagnosis of rolling bearings. Pei et al. [22] proposed 
a Transformer convolution network (TCN) based on transfer 
learning for machine fault diagnosis. Fang et al. [36] proposed 
a CLFormer adopting convolutional embedding and linear 
self-attention for bearing fault diagnosis. However, most of 
these methods simply adopt off-the-shelf Transformers like 
ViT, which are not suitable for the rotating machine fault 
diagnosis. To solve this issue, we investigate the essence of 
Transformer and propose a suitable architectural alternative, 
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LiteFormer for the rotating machine fault diagnosis. 

III. ANALYSIS ON SELF-ATTENTION AND CONVOLUTION 
To effectively investigate the essential architecture of 

Transformer and integrate the convolutional layer with 
Transformer, we first analyze the relationship between self-
attention and convolution. Then, we propose ConvFormer and 
conduct some primary experiments to verify the conclusions 
of our mathematical analysis. 

A. Revisiting Self-attention and Convolution 
The convolution operation has been widely used in many 

tasks [32, 37] and various types of convolutional layers [37-39] 
are proposed. In general, a convolutional operation can be 
defined as: 

( )= ( ) ( , ) ( )cO i b i i i
σ

σ σ
∈Ω

+ ⋅ +∑ W X ,                 (1) 

where b  is the bias, Ω  denotes the kernel size, and i  
indicates the index of an input. For an image, i  indicates the 
location in a two-dimensional space. For time series data, i  
represents the temporal index. When the function W  is 
independent of the index i , the convolutional operation is 
equal to a conventionally convolutional layer. When W  is a 
function of both i  and σ , this convolution operation 
represents some complex types of layers, such as deformable 
convolution [38] and dynamic convolution [39]. When the 
bias b  is set as zero, this operation can be formulated as: 

( )= ( , ) ( )cO i i i
σ

σ σ
∈Ω

⋅ +∑ W X  .                     (2) 

According to Ref. [8], a self-attention module can be 
formulated as: 

( , , ) max( )
T

k

Atten F soft
d

= =
QKQ K V V ,          (3) 

where R in qd d×∈Q , R in kd d×∈K  and R in vd d×∈V  represents 
three matrices, which are computed following ( )q=Q W X , 

( )k=K W X , and ( )v=V W X , respectively. 
Since the definition of convolution in (2) is expressed in a 

dot-production manner, to clearly compare the self-attention 
with the convolution, we convert the self-attention defined in 
(3) into a dot-production manner. Since kd  is a constant, the 
self-attention in a dot production manner can be formulated as: 

( )= ( ) ( ) ( )q k vAtten i i i i
σ ψ

σ σ
∈

⋅ + ⋅ +∑ W W W ,         (4) 

where qW  and kW  represent the normalized function by 
softmax and kd , ψ  indicates the size of the input. Eq. 4 
can be further simplified as: 

( )= ( , ) ( )a vAtten i i i
σ ψ

σ σ
∈

⋅ +∑ W W ,               (5)               

where ( , ) ( ) ( )q ka i i iσ σ= ⋅ +W W W . 
According to (2) and (5), we can find that the definition of 

convolution is actually in the same format as the definition of 
self-attention. 

Comparing (2) with (5), we find that there are two different 
points between the convolution and self-attention: a. The Ω  
in (2) indicates the kernel size, which includes part of an input. 

The ψ  in (5) represents the whole size of an input. b. In the 
self-attention defined in (5), aW  and vW  are more complex 
than the corresponding parts in (2). 

Based on our analysis, we can find that when the receptive 
field of a self-attention, ψ  is equal to Ω  in (2), and the aW  
and vW  are simplified, the self-attention can be replaced with 
a convolution layer. Furthermore, through the comparison 
between (2) with (5), we can explain why the Transformer 
performs better than a CNN. Firstly, the self-attention in 
Transformer has a large receptive field than a convolutional 
layer, which enables the Transformer to fully capture the 
global information. Additionally, the complex function aW  
and vW  in (5) help the Transformer to learn the high-order 
features, which further improves the performance of the 
Transformer. Hence, the self-attention module actually can be 
regarded as an enhanced convolutional layer. 

However, this complex structure of self-attention requires a 
large scale of training data and may easily overfit to a limited-
data regime. Since the training data in fault diagnosis is much 
limited, it is challenging to fully train a Transformer and not 
degenerate its performance. 

 
Fig. 1. (a)The architecture of the original Transformer block; (b)The 
architecture of the proposed ConvFormer block. 

B. Primary Experiments 
In Sec. 3.1, through our analysis of the relationship between 

the convolutional layer and the self-attention module, we find 
that the self-attention actually can be regarded as an enhanced 
convolution layer with an infinite receptive field. However, 
this complex self-attention module requires large-scale 
training data and cannot be fully trained in the limited-data 
regime like the fault diagnosis task. 

In this subsection, to verify our conclusion above, several 
primary experiments are conducted, where we propose two 
types of convolution based Transformer (ConvFormer). To 
solve the issues in Transformer, our ConvFormer replaces the 
self-attention module with convolutional layers. Our 
ConvFormer and original Tranformer are illustrated in Fig. 1. 

The primary experiments are conducted to verify that the 
MHAS module in Transformer can be equal to or even 
surpassed by the convolutional layer for machine fault 
diagnosis. To avoid the increasing difficulty of optimization 
caused by introducing more parameters, we further use the 
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TABLE I  
THE RESULTS OF PRIMARY EXPERIMENTS 

Model Accuracy(%)±Std Params (M) FLOPs (M) Training GPU 
Memory (MB) 

Test GPU 
Memory (MB) 

Global Transformer 99.64±0.14 0.267  106.513  735 77 

Local Transformer 99.82±0.11 0.261  67.994  236 29 

ConvFormer(k=3) 99.92±0.08 0.230  58.819  150 25 
ConvFormer(k=3) 

(dilated convolution) 99.97±0.05 0.230  58.819  150 25 

dilated convolution [40] instead of standard convolution in 
ConvFormer block to demonstrate the performance of 
ConvFormer can be improved by increasing the receptive field. 
We perform the experiments on the rolling bearing dataset 
provided by the Bearing Data Center of Case Western Reserve 
University (CWRU) [41], which is a classic dataset for 
rotating machine fault diagnosis [22, 30-31, 34]. Detailed 
dataset division is introduced in the section of the 
experimental setup. For a more convenient display of the 
effects, the primary experiments are all performed on the 
Transformer architecture of 5 depth and the kernel size of the 
convolutional layer is 3. The training and the test GPU 
memory are measured by the maximal GPU memory 
consumption of the model with a batch size of 32 in the model 
training and test procedure respectively. 

Table I shows the comparison results between the self-
attention based Transformer and the proposed ConvFormer (k 
indicates the kernel size). As seen in Table I, both MHSA 
module based Transformer (Global Transformer) and the 
window MHSA [20] based Transformer (Local Transformer) 
are surpassed by the convolution based Transformer 
(ConvFormer) on CWRU dataset for fault diagnosis. The 
ConvFormer with standard convolution operations obtains 
99.92% accuracy, which is much higher than the Global 
Transformer of 99.64% and the Local Transformer of 99.82%.  
Since the convolution has the inductive bias, the performance 
of ConvFormer is significantly improved. The ConvFormer 
with the dilated convolution, which increases the receptive 
field without introducing external parameters, has improved 
the classification accuracy to 99.97%, showing that the bigger 
receptive field can improve the performance of ConvFormer 
under equal conditions. Moreover, it can be seen that the 
convolution operations in the proposed ConvFormer alleviate 
nearly 80% GPU memory burden of Global Transformer in 
the training. 

The results verify that the self-attention module in 
Transformer can be viewed as an enhanced convolutional 
layer with an infinite receptive field. And the convolution 
operations alleviate the computation memory burden of 
Transformer and improve the classification accuracy under 
limited-sized fault datasets. The strong modeling capacity of 
Transformer may not mainly rely on the self-attention module, 
but more relies on the inherent architecture design of 
Transformer, so that the proposed ConvFormer using 
convolution instead of the self-attention can be more effective 
than the original Transformer for fault classification.   

Although the ConvFormer has an excellent performance in 
the fault classification task, the computation complexity of 

convolutions is increasing largely with large kernels. To 
further improve the computation efficiency, we further 
propose the LiteFormer in the next section. 

IV. THE PROPOSED LITEFORMER FRAMEWORK 
Two drawbacks in computation cost and inductive bias of 

Transformer limit its application in fault diagnosis. Previously, 
we have analyzed that the convolutional layer can replace the 
self-attention module in Transformer and alleviate the above 
drawbacks. To further improve the computation efficiency 
even under a large receptive field, the LiteFormer approach is 
proposed in this section. 

A. The Architecture of LiteFormer  
LiteFormer consists of a patch embedding layer, L  

LiteFormer blocks, a sequence pooling layer, and a MLP head 
for classification. The architecture of the proposed LiteFormer 
can be seen in Fig. 2.  

For the given input sequence 1N × , the patch embedding 
layer first divides it into N

P
 patches and then linearly projects 

the patches into an embedded dimension of size C . After that, 
the embedded patch tokens are delivered to the LiteFormer 
block with stacked L  blocks, and the output feature is the 
same size as the input embedded patch tokens of size N C

P
× . 

Then the output is weighted by the sequence pooling layer [24] 
to generate the weighted output representations. Finally, a 
general MLP head is connected for classification. 

B. LiteFormer Block 
As illustrated in Fig. 2, the LiteFormer block, which 

represents the encoder layers in Transformer, contains the 
depth-wise convolution (DConv) module and the feed-forward 
network (FFN) module. 

In Sec.III, we have verified that the self-attention module in 
Transformer can be viewed as an enhanced convolutional 
layer with a global receptive field and can be replaced by a 
convolutional layer. In our proposed LiteFormer, we utilize 
the depth-wise convolution with a large kernel size to replace 
the MHSA module, further improving the computation 
efficiency compared to the standard convolution. The 
LiteFormer block not only has the inductive bias of 
convolution, but also inherits the structural superiority of 
Transformer. 

As in the original Transformer block, the residual 
connection is also employed around each DConv module and 
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Fig. 2. The flowchart of LiteFormer based fault diagnosis system

FFN module. It means that for input ix  in LiteFormer block 
of block i, the output iy  of the block can be given as: 

 

*

* *

* *

DepthwiseConv(BN( ))
Reshape( )

FFN(LN( ))
Reshape( )

i i i

i i

i i i

i i

x x x
x x
y x x
y y

= +

=

= +
=

                (6)         

Here, DepthwiseConv( )⋅  denotes the depth-wise 
convolution, BN( )⋅  is the batch normalization (BN), LN( )⋅  
represents the layer normalization (LN), and Reshape( )⋅  is the 
operation to change the shape of input. 
1) DConv Module 

In our DConv module, a single 1-D depth-wise convolution 
layer is designed to model the spatial features after batch 
normalization. Depth-wise convolution [42] is a fast and 
efficient variant of the standard convolution. Given an input 
embedding x ,  n cx R ×∈ , it performs a convolution 
independently over each channel. The computation 
complexity can be reduced from 2( )O k n c⋅ ⋅  to ( )O k n c⋅ ⋅  
where k  is the kernel size. The depth-wise convolution is 
defined as: 

, ,: , 1( ),1 2

=DepthwiseConv( , , , )=
k

i d d d j ki j dj
U x W i d W x + + − =  

⋅∑    (7) 

where c kW R ×∈  are the learnable parameters. The output 
n cU R ×∈ , and ,i dU is the output for the element i  and 

channel d . The DConv module significantly decreases the 
complexity of Transformer, resulting in a lightweight 
LiteFormer. 
2) Feed-Forward Module 

After the DConv module with residual connection, a FFN 
module with residual connection is integrated. FFN module 
contains two fully connected layers, with the middle layer 
activated by a rectified linear unit (ReLU). There is an 
expansion ratio if  set in FFN to control the dimension of the 

inner layer. The FFN performs point-wise operations to mix 
features in the channel dimension.  

C. Framework for Fault Diagnosis 
Our LiteFormer is proposed for efficient rotating machine 

fault diagnosis. The LiteFormer learns features from raw 
sensor data and finishes classification tasks in an end-to-end 
manner.  

TABLE II  
THE DETAILED CONFIGURATION OF LITEFORMER MODEL  

Input Size Output Size Layer Name LiteFormer 

1N ×  64
8
N

×  Patch  
Embedding 

P=8; C=64                                         
(proj): Conv1d(1, C, P, P, 

bias=False) 

64
8
N

×  64
8
N

×  
LiteFormer  

Blocks          
(depth L=7) 

DConv: k=16                                     
(norm): BatchNorm1d(64)             

(dconv): Conv1d(64, 64, k, 1, 
groups=64, bias=False) 

FFN: f=4                                               
(norm): LayerNorm(64)                     
(fc1): Linear(64, f *64) 

(act): ReLU() 
(fc2): Linear(f *64, 64)                      
(drop): Dropout(p=0.2) 

64
8
N

×  64 Sequence  
Pooling (pool): Linear(64, 1) 

64 s MLP Head (head): Linear(64, s) 

 
Firstly, the vibration data sample is collected and then 

divided into patches. The patches are transformed to the token 
embeddings of C dimension through the patch embedding 
layer. Then, the token embeddings are forwarded to 
LiteFormer blocks for feature encoding. The outputs of the 
final block are forwarded to a sequence pooling layer to weigh 
the output tokens. Finally, the weighted representation is 
delivered to a MLP head for fault classification of s classes. 
The cross-entropy loss is used for optimizing the LiteFormer 
model. Dropout with a 0.2 rate is applied. The detailed 
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configuration of LiteFormer is provided in Table II.  

The LiteFormer based machine fault diagnosis system is 
presented in Fig. 2. The raw vibration data are utilized as input 
and its condition labels are served as output in the training. 
The LiteFormer model is optimized through the optimizer 
Adam. 

V. EXPERIMENT ANALYSIS 

A. Experimental Setup 
To evaluate the efficiency of our proposed LiteFormer for 

rotating machine fault diagnosis, four experimental datasets 
are investigated. One is the CWRU dataset [41]. The second 
one is the bearing dataset from the Paderborn University 
Bearing Data Center [43-44], which is called PU dataset. The 
third one is the planetary gearbox dataset acquired from the 
drivetrain dynamic simulator (DDS) and it is called Gearbox 
A dataset. The last one is the parallel gearbox vibration dataset 
also acquired from the DDS and it is called Gearbox B dataset. 
The test rig of DDS is shown in Fig. 3. The two-stage 
planetary gearbox is connected to the driving motor, and its 
rotating speed is reduced by the parallel gearbox. The data 
length of each sample in these four datasets is all 2048. 

The bearing data of CWRU dataset is measured by 
acceleration transducers from the drive-end bearings at a 
sampling frequency of 12 kHz under four operational 
conditions (load 0, 1, 2, and 3 hp). The rotating speed changes 
between 1730 and 1797 rpm based on the applied load. Single 
point faults with fault diameters of 0.007, 0.014, and 0.021 are 
set on the rolling element, the inner raceway, and the outer 
raceway, respectively. The CWRU dataset chooses 100 
samples (50 for training and 50 for testing) for each condition 
under four loads. Thus, there are 10 different working 
conditions under the four loads. There are 2000 training 
samples and 2000 testing samples in total.  

The bearing data of PU dataset is measured by a 
piezoelectric accelerometer at the top end of the rolling 
bearing module with a sampling frequency of 64 kHz. PU 
datasets consist of 32 sets of current signals and vibration 
signals, caused by bearings that include six undamaged 
bearings, twelve artificially damaged bearings, and fourteen 
bearings with real damages caused by accelerated lifetime 
tests. Each set of signals is collected under four working 
conditions. In this paper, the vibration signals of 13 bearings 
(KA04, KA15, KA16, KA22, KA30, KB23, KB24, KB27, 
KI14, KI16, KI17, KI18, and KI21) with real damages caused 
by accelerated lifetime tests and 1 healthy bearing (K001) 
under the working condition N15_M07_F10 are used to verify 
the performances. The PU dataset chooses 1000 samples (500 
for training and 500 for testing) for each fault condition, so 
there are 7000 training samples and 7000 testing samples in 
total for 14 different classes.  

The planetary gearbox data of Gearbox A dataset and the 
parallel gearbox data of Gearbox B dataset are all acquired by 
the 608A11 vibrating sensors placed on the planetary gearbox 
and the parallel gearbox, respectively under various speed-
load conditions. The sampling frequency is 5120 Hz. The 
Gearbox A dataset collected the mixed planetary gearbox data 

samples of bearing-gear faults from the working conditions of 
20Hz_0 (20Hz denotes the working speed of a motor, 0 
indicates the corresponding load size), 30Hz_2, 40Hz_0, and 
30Hz_4 for experiments. The Gearbox B dataset collected the 
mixed parallel gearbox data samples from the working 
conditions of 20Hz_0, 30Hz_1, 40Hz_0, and 50Hz_0 for 
experiments. The various bearing-gearbox fault descriptions 
are listed in Table III. Gearbox datasets A and B can be 
regarded as the 9-class condition data which includes 8 fault 
conditions listed in Table III and 1 health condition. The two 
datasets both consist of 400 samples (half of the samples for 
training and half for testing) for each fault condition of each 
working condition. Both Gearbox A and B have 7200 samples 
for training and 7200 samples for testing, respectively. 

  

 
Fig. 3. The test rig of DDS 

TABLE III   
GEARBOX CONDITION DESCRIPTIONS 

Component Type Description 

Gear 

Chipped Crack occurs in the feet 

Miss One of the feet is missing 

Root Crack occurs in the root of the feet 

Surface Wear occurs in the surface 

Bearing 

Ball Crack occurs in the ball 

Combo Crack occurs in the both inner and outer ring 

Inner Crack occurs in the inner ring 

Outer Crack occurs in the outer ring 

 

B. Comparison Approaches 
In our experiments, the original Transformer [8, 19] is used 

as our baseline, and here is called Global Transformer. The 
proposed ConvFormer is also constructed for comparison to 
verify that our proposed LiteFormer further improves the 
computation efficiency and performance for machine fault 
diagnosis. For a fair comparison, the architecture of Global 
Transformer and ConvFormer are the same as our LiteFormer. 
Global Transformer utilizes the MHSA module and adds the 
learnable positional embedding [19]. The head number of 
MHSA module is 4. ConvFormer utilizes the standard 
convolution in Conv module.  

We also re-implement several state-of-the-art approaches 
including CNN based and Transformer based methods for 
rotating machine fault diagnosis. The ViT [19], CCT [24], 
Conformer [25] models are conducted for 1D sequence fault 
diagnosis as comparisons. The WDCNN [30], MSCNN [35], 
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TABLE IV  
CLASSIFICATION ACCURACY OF ABLATION EXPERIMENTS 

Model 
CWRU 
dataset 

PU   
dataset 

Gearbox A 
dataset 

Gearbox B 
dataset AVG (%) Params (M) FLOPs (M) Training GPU 

Memory (MB) 
Accuracy(%)±Std 

Global 
Transformer 99.73±0.14 93.30±0.26 73.81±1.11 90.29±0.46 89.28 0.366 149.046 1015 

ConvFormer(3) 99.98±0.03 99.84±0.02 98.98±0.28 99.87±0.09 99.67 0.321 82.216 205 

ConvFormer(16) 99.87±0.08 99.53±0.20 99.86±0.12 99.70±0.14 99.74 0.694 177.636 211 

LiteFormer 100±0.00 99.94±0.03 99.90±0.05 99.82±0.06 99.92 0.242 62.03 204 

 
and ResNet18 [32] are adopted as the general and state-of-the-
art CNN methods of fault diagnosis for comparison. The 
details of these methods are illustrated as follows. 

The ViT model divides the input data sample into patches 
of size 64. The head number of MHSA is 4, the expansion 
ratio in FFN is set at 4 and the depth is set at 7, which is the 
same set as our baseline. The CCT model utilizes convolution 
operations with the kernel size of 64 and a stride of 8 to obtain 
convolutional token embeddings. The other hyperparameters 
are set the same as ViT above. The Conformer model 
consisting of the MHSA and convolution modules alternately 
uses the same patch embedding layers as in our LiteFormer to 
obtain input tokens. Its convolution kernel size is also set at 16, 
which is the same as our LiteFormer. The other 
hyperparameters are also set the same as our baseline. For a 
fair comparison, all Transformer models adopt sequence 
pooling to weight the outputs of the final Transformer block. 

The WDCNN adopts the same structure in Ref. [30]. The 
convolution kernel size of MSCNN is 128 and the other 
hyperparameters are set the same as in Ref. [35]. The 
ResNet18 [32] for 1D sequence firstly utilizes the convolution 
operations to increase the channel number to 64 and then the 
rest structure remains in the original configuration for fault 
diagnosis.  

Our LiteFormer runs 30 epochs and the learning rate is set 
at 0.001. The learning rate reducing per epoch based on cosine 
annealing is adopted. As set up in Ref. [35], MSCNN runs 50 
epochs and its learning rate is 0.001. The other models all run 
30 epochs as our LiteFormer. The learning rate for WDCNN 
and ResNet18 is 0.01. The learning rate of all Transformer 
models is 0.001, the same as our LiteFormer. All models use 
the Adam optimizer for training from scratch. For CWRU 
dataset and PU dataset, the training batch size is both 32, and 
for Gearbox datasets, the training batch size is 128. The 
experimental results are the average of 10 random 
experiments for our work. Our works are realized in Python 
3.8.0 with torch 1.8.0, Cuda version 11.1 and executed on 
Computer operating system Windows 10, Intel(R) Core(TM) 
i9-10940X CPU @ 3.30 GHz, 96.0GB RAM, and GPU 
NVIDIA GeForce RTX 3080, 10GB. 

C. Results and Analysis 
1) Ablation Study 

In the previous primary experiments in section III(B), we 
have proved that the convolution operations can alleviate the 
GPU memory burden compared with the self-attention module 
and improve the performance of the model. Here, we will 

verify that the proposed LiteFormer further improves the 
computation efficiency and the performance for rotating 
machine fault diagnosis. The performance evaluation and the 
results are presented in Table IV. Table IV lists the 
classification accuracies with standard deviation (Std) on all 
four datasets, the average accuracy (AVG) of four datasets, 
the trainable parameters (Params), the floating-point of 
operations (FLOPs) and the maximal training GPU memory 
consumption (batch size of 32) of each method.  

According to Table IV, it can be seen that the ConvFormer 
with a kernel size of 16 (ConvFormer(16)) brings a 0.88% 
performance gain over ConvFormer with a kernel size of 3 
(ConvFormer(3)) on Gearbox A dataset, but it suffers 
performance losses of 0.11%, 0.31% and 0.17% on the 
CWRU dataset, PU dataset and Gearbox B dataset, 
respectively. Additionally, ConvFormer(16) has a 
computation complexity that is more than twice as high as 
ConvFormer (3). It can be explained that the increased 
computation complexity affects the performance of 
ConvFormer and ConvFormer with a large kernel size may 
easily overfit. Our proposed LiteFormer decreases the 
computation complexity by nearly 65% compared to 
ConvFormer(16) and obtains the highest average accuracy 
(AVG) on the four datasets, outperforming ConvFormer. We 
can also see that the GPU memory consumption of our 
LiteFormer is similar to ConvFormer, which alleviates the 
computation memory burden of Transformer greatly. The 
results indicate that our proposed LiteFormer outperforms 
ConvFormer under a large receptive field for rotating machine 
fault diagnosis. 
2) Visualization Study  

The input data of our LiteFormer model is the samples of 
the 1-D complex vibration signals. The LiteFormer aims to 
learn the intrinsic vibration characteristics of signals for fault 
diagnosis. In order to show the learning process of our 
proposed LiteFormer, we have drawn the learning weights of 
the depth-wise convolution kernel in DConv module under 
Gearbox A dataset. The learning weight maps are shown in 
Fig. 4. Since there are 64 kernels of the same size in 
convolutional layers, the size of one learning weight map of 
the depth-wise convolution kernels is 16 64× , where 16 
means the kernel size and 64 means the number of channels. 
Fig. 4 presents the convolutional learning weight maps of 
LiteFormer block 1, block 5, and block 7. It can be seen that 
the total values of learning weights are increasing as the 
model learns layer by layer, and the weight maps become 
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Fig. 5. The feature maps of different blocks of our proposed LiteFormer 

 

 
Fig. 4. The learning weight maps in the depth-wise convolution of our 
LiteFormer 

brighter and brighter as the depth of the model increases. 
To better present the learning process, the corresponding 

learned features of our proposed LiteFormer blocks and the 
raw signal samples are illustrated in Fig. 5. The LiteFormer is 
a sequence-based model and the feature learning actually 
works along the time axis, so that the feature matrixes are 
averaged along the channel dimension to plot the feature maps. 
Fig. 5 presents the raw signals and the feature maps of the 
gear fault “Miss” and the bearing fault “Inner”. It can be seen 
from Fig. 5 that the feature maps in the lower block (block 1) 
learn the basic waveform of the vibration signals, where the 
amplitudes of features are bigger when the impulses are 
obvious in raw signals. With the model depth increasing, the 
learned feature maps become more and more abstract and 
discriminative, so that the LiteFormer model can finally attach 
different features to different fault types.  

To illustrate the features more intuitively, we present the 
feature maps using the t-SNE method in Fig. 6. Fig. 6 clearly 
shows the learned feature distributions of all fault types of 

LiteFormer blocks. The features learned by the first block 
cannot be separated, so as the raw samples do. The features of 
the higher blocks (block 5 and block 7) are gradually 
separated, which is consistent with the trend of the feature 
maps shown in Fig. 5. The fault features of the last block of 
our proposed LiteFormer are clustered well. The visualization 
study on Gearbox A dataset demonstrates the effectiveness of 
the feature learning of our proposed LiteFormer model. 

 
Fig. 6. The t-SNE feature maps of different blocks of our proposed 
LiteFormer 

3) Comparison Experiments 
To investigate the effectiveness of our proposed LiteFormer 
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TABLE V  
COMPARISON EXPERIMENTS FOR FAULT DIAGNOSIS 

Model 
CWRU 
dataset 

PU   
dataset 

Gearbox A 
dataset 

Gearbox B 
dataset AVG (%) Params (M) FLOPs (M) Training GPU 

Memory (MB) 
Accuracy(%)±Std 

ViT 98.80±0.41 95.08±0.59 74.83±3.65 93.21±0.65 90.48 0.356 12.217 49 

CCT 99.92±0.06 99.47±0.11 96.06±1.00 97.83±0.34 98.32 0.354 143.551 978 

Conformer 100.00±0.00 99.91±0.05 99.43±0.20 99.09±0.23 99.61 0.79 286.938 1322 

WDCNN 99.69±0.12 98.72±0.20 95.33±1.89 96.02±0.63 97.44 0.055 0.755 4 

MSCNN 99.79±0.07 98.97±0.17 98.27±0.51 98.37±0.46 98.85 21.546 113.709 496 

ResNet18 99.58±0.17 99.13±0.11 99.18±0.32 98.35±0.34 99.06 3.857 89.132 119 

LiteFormer 100.00±0.00 99.94±0.03 99.90±0.05 99.82±0.06 99.92 0.242 62.03 204 

 

 
Fig. 7. Accuracies under different SNRs of white Gaussian noise 

method for rotating machine fault diagnosis, comparisons 
between the Transformer-based models and the state-of-the-art 
CNN-based fault diagnosis methods are presented in Table V. 
ViT model, the pure Transformer of self-attention, is far less 
accurate than the proposed LiteFormer. CCT model, which 
uses convolutional tokenization, improves the performance a 
lot on all four datasets compared to ViT. However, the FLOPs 
number of CCT is increasing largely since its token number is 

also growing. Although Conformer obtains a high average 
accuracy (AVG) of 99.61%, which is only -0.31% lower than 
that of our LiteFormer, its Params and FLOPs are about 4 
times that of our LiteFormer, and its training GPU memory is 
more than 6 times that of our LiteFormer. The relatively high 
computation complexity and high memory consumption limit 
its application in engineering for fault diagnosis. The results 
also show that the convolutions introduced into Transformers 
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largely enhance the performance for small datasets, especially 
on Gearbox A dataset. And our proposed LiteFormer method, 
achieving the test accuracy of 100%, 99.94%, 99.90%, and 
99.82% respectively on the four datasets, outperforms the 
other Transformer models for rotating machine fault diagnosis.  

Compared to CNN-based methods, our proposed 
LiteFormer also achieves the best classification performance 
on all four datasets. ResNet18 obtains 99.06% AVG, which is 
-0.86% lower than that of our LiteFormer, and its number of 
Params is much higher. Although WDCNN has the lowest 
computation complexity, its fault classification accuracies are 
all much lower than that of our LiteFormer. The MSCNN 
improves its accuracy by increasing the scales of CNNs. 
However, its performance is still inferior to our LiteFormer 
and its Params number is the largest. For CWRU dataset, PU 
dataset and Gearbox datasets, the proposed LiteFormer 
method surpasses the other counterparts and sets new state-of-
the-art results, which indicates the strong feature learning 
ability and generalization of LiteFormer for rotating machine 
fault diagnosis. 
4) Analysis of Noise Effect 

To investigate the robustness of our proposed LiteFormer to 
resist background noise, we add the white Gaussian noise with 
different signal-to-noise ratios (SNRs) to the original data 
samples of all four datasets, respectively. White Gaussian 
noise of SNRs ranging from -6 dB to 6 dB is added to data 
samples with a stride of 3 dB. CCT, Conformer, WDCNN, 
MSCNN, and Resnet18 models are chosen for comparison. 
Fig. 7 presents the results of models with different SNRs on 
the four datasets.  

From the noise experimental results on the four datasets in 
Fig. 7, it can be observed that the proposed LiteFormer obtains 
excellent anti-noise performance in each dataset. The 
classification accuracy of LiteFormer on the four datasets with 
SNR of 6dB is 99.96%, 99.64%, 98.50%, and 98.76%, 
respectively. When the SNR is set to -6dB, the classification 
accuracy of LiteFormer is down to 93.42%, 89.77%, 43.71%, 
and 68.24%, respectively, which is still higher than the other 
methods on the CWRU and Gearbox datasets, and is 
comparable to the Conformer on PU dataset. The results 
indicate that the proposed LiteFormer is of strong robustness 
under noise. The LiteFormer shows obvious advantages for 
rotating machine fault diagnosis even under noise compared 
with the CNN-based fault diagnosis methods. The ResNet18 
obtains lower performance than our LiteFormer and MSCNN 
is the most unstable model under noise for its large number of 
Params. The overall performance of Conformer is a little 
inferior to that of LiteFormer, indicating that the proposed 
DConv module, which is lightweight for fault diagnosis, can 
perform even better than the combination of MHSA module 
and convolution module. The results prove that our proposed 
LiteFormer has strong robustness and outperforms the state-
of-the-art methods under noise for rotating machine fault 
diagnosis. 
5) Analysis of Class Imbalance 

The fault data in real applications exists the class imbalance 
issue, which affects the performances of intelligent fault 
diagnosis models. To investigate the robustness of our 
proposed LiteFormer on the unbalanced dataset, we simulate 

the moderate class imbalance experiments on the PU dataset 
and Gearbox A dataset. We set three groups of datasets with 
different imbalance ratios on both datasets, which are shown 
in Table VI and Table VII, respectively. Group 1 is the 
balanced dataset used in our paper. Group 2 and Group 3 are 
imbalanced datasets constructed by reducing the training 
samples of some fault types. Group 3 is more imbalanced than 
Group 2. The three groups of datasets are used to simulate the 
imbalanced experiments and the experimental results are 
shown in Fig. 8. 

TABLE VI  
THREE GROUPS OF UNBALANCED DATASETS ON PU DATASET 

Fault mode 
Training samples Testing samples 

Group 1 Group 2 Group3 Group 1/2/3 

K001 500 500 500 500 

KA04 500 500 500 500 

KA15 500 300 250 500 

KA16 500 300 250 500 

KA22 500 300 250 500 

KA30 500 180 125 500 

KB23 500 180 125 500 

KB24 500 180 125 500 

KB27 500 100 62 500 

KI14 500 100 62 500 

KI16 500 100 62 500 

KI17 500 50 31 500 

KI18 500 50 31 500 

KI21 500 50 31 500 

TABLE VII  
THREE GROUPS OF UNBALANCED DATASETS ON GEARBOX A DATASET 

Fault mode 
Training samples Testing samples 

Group 1 Group 2 Group3 Group 1/2/3 

Health 800 800 800 800 

Chipped 800 600 500 800 

Miss 800 600 500 800 

Root 800 400 300 800 

Surface 800 400 300 800 

Ball 800 200 120 800 

Combo 800 200 120 800 

Inner 800 80 60 800 

Outer 800 80 60 800 

 
It can be observed from Fig. 8 that the imbalanced datasets 

cause the performance degradation of models and the overall 
accuracy of Group 3 is much lower than that of Group 2, 
which indicates that the class imbalance of the dataset will 
degrade the model performance and the dataset with higher 
imbalance ratio degrades the performance more. Nevertheless, 
our proposed LiteFormer still performs the best under certain 
imbalance ratios of the datasets compared with other methods. 
The results prove that our proposed LiteFormer has strong 
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robustness under moderate class imbalance and outperforms 
the state-of-the-art methods on imbalanced datasets for 
rotating machine fault diagnosis. 

 
Fig. 8. Results of three groups of datasets for class imbalance experiments. 

VI. CONCLUSION 
Our proposed LiteFormer approach has been developed for 

rotating machine fault diagnosis in this paper. Firstly, the 
paper has provided the mathematical analysis between self-
attention and convolution, demonstrating that the self-attention 
module can be regarded as an enhanced convolutional layer. 
Then the ConvFormer has been proposed to show that the 
convolutional layer replacing the self-attention scheme in 
Transformer mitigates the issues of computation burden and 
the training difficulty with small datasets, while keeping the 
high fault classification accuracy. The exploration of 
ConvFormer shows the inherent structural superiority of 
Transformer and investigates the essence of Transformer. 
Finally, the paper has further proposed the LiteFormer, which 
utilizes depth-wise convolution to reduce the computation 
complexity and improve the efficiency and generalization of 
ConvFormer for fault diagnosis. The proposed LiteFormer not 
only inherits the inherent structural superiority of Transformer, 
but also has the inductive bias of convolution and reduces the 
computation cost. Experimental studies have verified the 
effectiveness and robustness of the proposed LiteFormer for 
rotating machine fault diagnosis. As compared to other state-
of-the-art methods, the proposed LiteFormer has been more 

accurate and robust for rotating machine fault diagnosis, even 
under noise and class imbalance scenarios. In the future, we 
will further investigate the structural superiority of 
Transformer and design a more lightweight and robust deep 
model based on Transformer for machine fault diagnosis. 
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