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ToC blurb

Machinelearning is poised to accelerate the development of technologies for a renewable energy
future.Here we review recent advances and in particular, propas¢X)elerationPerformance
Indicators (XPIs) to measure the effectiveness of platforms developextdelerated energy

materials discovery.
Abstract

Transitioningfrom fossil fuels to renewable energy sourtsea critical global challenge;
it demands advancesat the materials, devices and systdevels— for the efficient harvesting,
storage, corersion and management of renewable endRggearchers have begun incorporating
machine learning (ML) techniques to accelerate these advateeswe review recent advances
in ML-driven energy researcbutlinecurrent and futurehallenges, and descrilaat is required
moving forward to best lever ML techniqué® start, we introduce a set of key performance
indicators to help compare the benefits of differentdiicelerated workflows for energy research.
We discuss and evaluate the latest advancepplying ML to the development of energy
harvesting (photovoltaics), storage (batteries), conversion (electrocatalysis) and management
(smart grids). Finally, we offer an outlook of potential research areas in the energy field that stand

to further benefifrom the application of ML.
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[H1] Introduction

Combustiorof fossil fuels, used to fulfill8 0 % of t he woristde'lasgesener gy

single source afising greenhouse gas emissions and global temperamceeaseditilization of
renewablesources of errgy, notablysolar and wind power, is an economically viable path to meet
theclimategoals of the Paris Agreemettiowever, the rate at which renewable energy has grown
has been outpaced by exggowing energy demand, and as a resultftaetion of total energy
produced by renewable sources has remained constant sincel®i8@Busessentiato accelerate

the transition towards sustainable sources of erfeAghieving thistransitionrequires energy
technologiesinfrastructure and policigbat enable and promote tharvest, stage convesion

and manageent ofrenewable energy.

In sustainable energy researchyitable material candidates (such pisotovoltaic
materials) must first be chosen from the combinatospace of possible materials, then
synthesizedat a high enough yield and qualitgr use indevices (such as solar panelghe
timeframe of a representative materials discovery processa6 ¥6ar8®—leaving considerable
room for improvementFurthermore,the devices have to be optimized foobustness and
reproducibility to be incorporated into energy systerfsmich as insolar farm$,’ where
managementf energy usage and generation patterns is needed to further guamanteercial
success.

Here we explore the extent to whigkhachine learningG] (ML) techniquescan help to

address many of these challen§i@3ML models can be used to predict specific properties of new

materials without the need for costly characterization; they can generate new material structures

with desired properties; they can understand patterns in renewable energy usage and generation;

and they can help inform energy policy by optimizing energy management at both device and grid
levels.

In this Review, we introduce Acc(X)eleration Performance Indicators (XPIs), which can
be used to measure the effectivenesplatforms developed foacelerated energy materials
discovery. Next, we discussosedloop [G] ML frameworks and evaluate the latest advances in

applying ML to the development of energy harvesting, storage and conversion technologies, as

well as the integration of ML into a smavower grid. Finally,we offer an outlook otritical

researchdirectionsin thefield that stand to further benefit from ML.
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[H1] Performance Indicators

Because many reports discugd -accelerated approagsfor materialsdiscovey and
energy systems magament, we posit that there should lasistent baseline from which gee
reports can be compardebr energy systems management, performance indicators at the device,
plant and grid levels have been reportetf, yet there are no equivalent counterparts for
accelerated materials discovery

Theprimarygoalin materials discoverig to develop efficient materials that are ready for
commercializationThe commercialization of a new material takes intensive reseéuris that
can span up to two decaddke goal of every accelerated approach should be to accomplish
commercializationn an order of magnitude less time. The materials science field can benefit from
studying the case of vaccine developmentHistoricaly, new vaccines take 10 years from
conception to mark& However after the start of the COVH29 pandemicseveral companies
were able to develop and begin releasing vacdmésss than a yeaf his achievement was in
part due to an unprecedentddbl research intensity, but alsna shift in the technologyfter a
technological breakthrough in 2008he cost of sequencing DNA began decreasing
exponentially***® enabing researchers to screen ordefsmagnitude more vaccines than
previouslypossible

ML for energy technologies has many commonalities viith for other fields like
biomedicine sharing the same methodology and principles. Howerepyactice,modek are
exposedto additionalunique requirements. For example, ML models for weddapplications
usually have complex structusdo take into accountegulatory oversighaind ensure the safe
development, use and monitoring of systems, which usdaéignot happerin the energy field®
Moreover, @ta availability variesgstantiallyfrom field to field biomedical researchers can
work with a relatively large amount of ddtetenergy researchers usually latkis limited data
accessibility anconstrain the usage of sophisticated ML models (sudleas learningDL) [G]
models) in the energy field. Howevadaptatiorhas been rather quick amongeaikergy subelds,
with a rapidly increased number of groups recognizing the importance of statistical methods and
starting to use them for various probleméle posit that tB use of high-throughput
experimentation TE) and ML in materials discovemworkflows canresult in breakthroughs in

accelerating development, but the field first needs a set of metrics by which ML models can be
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evaluated and compared.

Accelerated materia discovery methods should be juddpgededon the time it takes for a
new material to be commercializéle recognize that this is not a useful metric for new platforms,
nor is it one that can be used to quickly decide which platform is best suited for a particular
scenarioTo this point, we propose hefec(X)elerationPerformancdndicators(XPIs) that nev

materialsdiscoveryplatforms should report.

[H3] Acceleration factor of new materials, XPI

This XPl is evaluated by dividing the number of new materials that are synthesized and
characterized per unit time with the accelerated platform by the nuohbeaterials that are
synthesized and characterized with traditional methods. For examplecelaration factoof 10
means that for a given time period, the accelerated platform can evalusted®ore materials
than a traditional platform. For maitas with multiple target properties, researchers should report

the ratelimiting acceleration factor

[H3] Number of new materials with threshold performance -XPI

This XPI tracks the number of new materials discovered with an accelerated platform that
have a performance greater titaebaseline value. The selection of this baseline value is critical
it should be something that capturedrly the standard to which new materials need to be
compared. As an example, an accelerated platform that seeksdwalt new perovskite solar cell
materials should track the number of devices made with new materials that have a better

performance than theest existingolar cell*’

[H3] Performance of best material over time, XPI

This XPI tracks the absolute performaneewhether it is Faradaic efficiency, power
conversion efficiency or other of the best material as a function of tinf@r the accelerated
framework, tle evolution of the performanséouldincrease fastehan theperfamance obtained
by traditional method&®
[H3] Repeatability and reproducibility of new materials, Pl

This XPI1 seeks to ensure that the new materials discovered are consistent and repeatable
this is a key consideration to screen out materials tbatdafail at the commercialization stage.
The performance of a new material should not vary by morexaof its mean valuéwherex
is the standard errorif it does, this material should not be included in eitkBi-2 (number of

new materials with tteshold performanceyr XPI-3 (performance of best material over time)
5
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[H3] Human cost of the accelerated platform, Y5PI

This XPI reports the total costs of the accelerated platform. This should include the total
number of researcher hours neededesign and order the components for the accelerated system
develop the programming and robotic infrastructdeyelop and maintain databases used in the
system and maintain and run the accelerated platform. This metrld provide researchers with
a ralistic estimate of the resources required to adapt an accelerated platform for their own

research.

[H3] Use of the XPlIs

Each of theseXPls can be measured for computational, experimental or integrated
accelerated systems. Consistently reporting eachesE¥PIs as new accelerated platforms are
developed will allow researchers to evaluate the growth of these platformsilammfovide a
consistent metric by which dérent platforms can be compared. As a demonstration, we applied
the XPls to evaluate tteeceleration performance of several typical platfoiassonianlike trial-
test, robotic photocatalysis developmé&haind design of aDNA-encodedibrary-based kinase
inhibitor®® (Table 1). To have a comprehensive performance estimation, we define one overall
acceleration score &lhering to thdollowing rules Thedependent acceleration factdgPl-1
and XR-2), which function in a synergetic wagreadded together to reflect their cobtrtion as
a whole Theindependent acceleration factors (X3 XP-4 and XPI-5), which may function in
a reduplicated wayaremultiplied together to value their contribution respectivlly a result, the
overall acceleration score can be calculateda$»3I-1 + XPF2) A XPI-3 A XPI-4 / XP}5. As
the reference, the Edisonttike approach has a calculated overall X§dsreof around 1, whreas
the most advanced methdde DNA encoded librarpased drug desigexhibits an overall XPls
scoreof 10. For the sustainability field, th@botic photocatalysis platform shows an overall XPls
score of 18,

For energy systemshe most commonly reported XPI is the acceleration factor, in part
because it is deterministic, but also because it is easy to calatitae end of the development of
a workflow. In most cases, we expect that authors report the acceleration factor only after
completing the development of the platform. Reporting the other suggested XPIs will provide
researchers with a better sense athhbite time and human resources required to develop the
platform until it is ready for publication. Moving forward, we hope that other researchers adopt
the XPIs— or other similar metrics- to allow for fair and consistent comparison between the

6



168 differentmethods and algorithms that are used to accelerate materials discovery.
169 [H1] Closed-loop ML for materials discovery

170 The traditional approach to materials discovery is often Edisdiki@relying on trial and

171 error to develop materials with specific properties. Firstly, a target application is identified, and a
172 starting pool of possible candidates is sele¢kéd. 1a) The materials are then synthesized and

173 incorporated into a device or system to measure their properties. These results are then used to
174 establish empirical structuq@operty relationships, which guide the next round of synthesis and
175 testing. This slow mcess goes through as many iterations as required and eachasytd&ec

176 several years to complete.

177 A computationdriven, highthroughputscreening approad®] (Fig. 1b) offers a faster

178 turnaroundTo explore the overhiast chemical spade10°° possbilities), human intuition and

179 expertisecan beused tocreate a library with a substantial number of materials of interést)(

180 Theoretical calculations are carried out on these candidates and the top perferb@érs

181 candidatesarethenexperimentdy verified. With luck, the material with the desired functionality

182 i s “discovered’ . Ot herwise, this procédhss is r
183 approactran still bevery timeconsuming and computationally expensivel can only sanip a

184 small region othe chemical space.

185 ML cansubstantiallyncreag the chemical space sampled, without costing extra time and

186 effort. ML is datadriven, screening datasdtsdetect patterns, which are the physical laws that

187 govern the system. In thigse, these laws correspond to materials struptagerty relationships.

188 This workflow involves higkthroughput virtual screeninffFig. 1c) and begins by selecting a

189 larger region(~1) of the chemical space of possibilitiesinghuman intuition and expertise.

190 Theoretical calculations are carried out on a representative subsatgrd@iatesand the results

191 are used for training a discriminatil. model. The model can then be used to make predictions

192 on the other candidates the overall selectecchemical spac&.The top ~16 candidates are

193 experimentally verified, and the results are used to improve the predictive capabilities of the model
194 in an iterative | oop. | f t he desieateeldnanothéerer i al
195 region ofthechemical space.

196 An improvement on the previous approaches is a framework that rejmited human

197 intuition or expertise to direct the chemical space search: the automated virtual screening approach

7



198 (Fig. 1d). To begin wih, aregion ofthechemical spacis picked at random to initiate the process.

199 Thereatfter, this process is similar to the previous appraadept that the computational and

200 experimental data is also used to traipeaerativeML model[G]. This generative model solves

200 the ‘“inverse’ probl em: given a required prop:
202 composition in the chemical space. This enables a directed, automated search of the chemical

2038 space, towards ndgie tgloeali %dal dmastceorvieali.
204 [H1] ML for energy

205 ML has so far been used to accelerate the development of materials and devices for energy
206 harvesting (photovoltaics), storage (batteries) and conversion (electrocatalysis), as well as to
207 optimize power grids. Besides all the examples discussed heremmeasued irthreeboxesthe

208 essential concepts in MIBOX 1), the gand challenges iaustainablenaterials researofBOX

209 2) and the details of key studieB@X 3).

210 [H2] Photovoltaics

211 ML is accelerating the discovery of new optoelectronic materials and devices for photovoltaics,
212  but major challenges are still associated with each step.

213 [H3] Photovoltaics materials discovery

214 One materials class for which ML has proved particularlycéffe is perovskites, because

215 these materials have a vast chemical space from which the constituents may be chosen. Early
216 representationfG] of perovskite materials for ML were atorfieature representations, in which

217 each structure is encoded as a fikeugth vector comprised of an average of certain atomic
218 properties of the atoms in the crystal structif@ A similar technique was used to predict new

219 leadfree perovskite materials with the proper bandgap for solar Eits 2a).?® These

220 represatations allowed for high accuracy but did not account for any spatial relation between
221 atoms?*?° Materials systems can also be represented as iRlageas graphd’ enabling the

222 treatment of systems with diverseimber of atomsThe latter repregentation is particularly

223 compelling, aperovskites, particularly orgarinorganic perovskites, have crystal structures that
224  incorporate a varying number of atorasdthe organic molecules can vary in size.

225 Although bandgap prediction is an importargtfstep, this parameter alone is not sufficient
226 to indicate a useful optoelectronic material; other parameters, including electronic defect density
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and stability, are equally important. Defect energies are addressable with computational methods,
but thecalculation of defects in structures is extremely computationally expensive, which inhibits
the generation of a dataset of defect energies from which an ML model can be trained. To expedite
the highthroughput calculation of defect energies, a python toaliis developed that will be

pivotal in building a database of defect energies in semiconductors. Researchers can then use ML
to predict both the formation energy of defeatsd the energy levels of these defects. This
knowledge will ensure that the materials selected from-thgbughput screening will not only

have the correct bandgap but will also either be defect tolerant or defect resistant, finding use in
commercial optoelgronic devices.

Even without access to a large dataset of experimental results, ML can accelerate the
discovery of optoelectronic materials. Using a-seiving laboratory approach, the number of
experiments required to optimize an organic solar cellbeareduced from 500 to just 60T his
robotic synthesis method accelerates the learning rate of the ML models and drastically reduces

the cost of the chemicals needed to run the optimization.

[H3] Solar device structure and fabrication

Photovoltaic @vices require optimization of layers other than the active tayeraximize
performance. One component is the top transparent conductive layer, which needs to have both high
optical transparencgnd high electronic conductivit}?3! A genetic algoritm that optimisel the
topology of a lighttrapping structure enabled a broadbabsbgption efficiency of 48.1%, which
representsnore than a-3old increase over the Yablonovitch limihe 47 factor (wheren is the
refractive index of the materiaheoretical limit for light trapping in photovoltaiés

A universal standard irradiance spectrum is usually used by resedoctietesrmine optimal
band gaps for solar cell operattérHowever, atual solar irradiance fluctuates based on factanis su
as the position of the sun, atmospheric phenomena and the $éas@mreduce yearly spectral sets
into a few characteristic spegffaallowing for the calculation of optimal bandgaps for seatld
conditions

To optimize device fabricatioa,CNN was used tpredict thecurrentvoltagecharacteristics
of ascut Si wafers based on their photoluminescence (PL) irffagesslitionally, an artificial neural
network was used to predict the contact resistance of metallic front contagitsdtar cdls, which
is critical for the manufacturing procéss

Although successful, these studies appear limited to optimising structures and processes

9
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that are already well established. We suggest ithdtiture work, ML could be used to augment
simulations, such ahe multiphysics model§G] for solar cells. Design of device architecture
could begin from such simulation models, coupled with ML in an iterative process to quickly
optimise design and rade computational timandcost. In addition, optimal conditions ftre
scaling up of device arendfabrication processes are likely to be very different ftbose for
lab-scale demonstrations. However, determining these optimal conditions coulddmesiggpn
terms of materials cost and tintje to the need to construct much larger devicethis regard,

ML, together with the strategic design of experimarasld greatly accelerate the optimisation of

process conditionsch agheannealing temgratures and solvent choice).

[H2] Electrochemical energy storage

Electrochemical energy storage is an essential component in applications such as electric
vehicles, consumer electronics and stationary power stations-ofthteart electrochemical
enegy storage solutions have varying efficacy in different applications: for example, ktbium
batteries exhibit excellent energy density and are widely used in electronics and electric vehicles,
whereas redox flow batteries (RFBs) have drawn substattgakian for use in stationary power
storage. ML approaches have been widely employed in the field of batteries, including for the
discovery of new materials such as saldte ion conductor@Fig. 2b).2538 and redox active
electrolyte for RFB¥ ML has also aided battery management, for example, through state of charge
determinatiorf? state of health evaluatit¥f?and remaining life predictidd** In addition, ML

can enable further breakthroughs.

[H3] Electrode and electrolyte matesalesign

Layered oxide materialsuch as.iCoO- or LiNixMnyCoxyO2, have been usesktensively
as cathode materials for alkali meitah (Li/Na/K) batteriesHoweverdeveloping new Lion battery
materialswith higher operating voltagegnhancedenery densities and longer lifetimes is of

paramouninterest.So far, universal design principles for new battery materials remain undefined,

andhencedifferent approaches have been exploB=tafrom theMaterials Projechave been used
to modelthe electrode voltaggrofile diagrans for different materials in alkali metan batteries
(Na and K}°, leading to the proposition & 000 different electrode materials with appropriate

moderatevoltages.ML was also employetb screenl2,000 candidates for solid-lon batteries,

10
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288 resulting in the discovery a0 rew Li-ion conducting materiaf§:*

289 Flow batteries consist of active materials dissolved in electrolytes that flow into a cell with
290 electrodesttat facilitate redox reaction®rganic flow batteries are of particular interdstflow

291 Dbatteries, the solubility of the active material in the electrolyte and the charge/discharge stability
292 dictate performanc#lL methods havexploredthe chemical space to find suitable electrolytes for
293 organic redox flow batteri&s*® Furthermore, amulti-kernetRidge regression{G] method

294 acceleratedhe discovery ofactive organic molecules usingultiple feature trainindG].*® This

295 method ao helpedn predictingthe solubility dependenad anthraquinone molecul@sth different

296 numbers and combinations of sulfonic and hydroxyl grampgH Future opportunities lie in the
297 exploration of large combinatorial spaces foritherse desigfG] of high-entropy electrodé€$and

298 highvoltage electrolyted! To this end, deep generative modeds assist the discovery of new
299 materials based otne simplified molecular input line entry systd®MILES) representation of

300 molecule&

301 [H3] Battey device and stack management
302 A combination of mechanistic and seempirical modelds currently used testimate
303 capacity and power loss in lithiuimn batteriesHowever, thenodels are only applicable to specific
304 failure mechanisms or situatioasd @nnotpredict the lifetimes of batterieg the early stages of
305 usage. By contrasmechanisragnostic modslbased orML canaccuratelypredict battery cycle
306 life, even at the earl y *aAtcampiwed earhprediction andtBayesjah s
307 optimisation model was used to rapidly identify the optioharging protocalvith the longest cycle
308 life.** ML canbe used to accelerate the op#ation oflithium-ion battefes for longer lifetimes®,
309 butitremains to be seen if these models can be generalized to different battery chéfnistries.
310 ML methodscan alsopredict important properties of battery storage facilitiesneural
311 networkwas usedo predict the charge/discharge prdfile two types of stationary battery systems,
312 lithium iron phosphatandvanadium redox flow batterigs Battery power management techniques
313 mustalso considerthe uncertainty and variability thadrise from both the environment and the
314 application An iterative Qlearning (einforcement learningG]) methodwas also designefbr
315 battery management and control in smart residential environthedigen the residential load and
316 the realtime electricity rate, the method is effectatoptimizing batterycharging/discharging/idle
317 cycles Discriminative neural networkased modslcan alsooptimize battery usage in electric
318 vehicles’.

11



319 Although ML is able to predict the lifetime of batteries, the underlying degradation
320 mechanismare difficult to identifyand correlate to the state of health and lifetime. To this end,
321 incorporation of domain knowledge into a hybrid phydiased ML model caprovide insightand

322 reduce overfitting® However, incorporang the physics of batteryegradation processes into a
323 hybrid model remains challengingrepresentation of electrode materials tlaitcode both
324 compositional and structural information is far from trividlidation of these models also require
325 the development adperandacharactaration techniques, such as liggpdase TEM and ambient
326 pressure XAS, that reflect true operating conditions as closely as p&Ssitkmlly, these
327 characterizatioiechniques should be carried out in a Higtoughput manner, usirfigr example
328 automaed sample changers, in order to generate large datasets for ML.

329

330 [HZ2] Electrocatalysts

331 Electrocatalysis enables the conversion of simple feedstewgls svater, carbon dioxide
332 and nitrogen) into valuable chemicals and/or fuglelk asydrogen, hydrocarbons and ammonia),
333 using renewable energy as an infilithe reverse reactions are also possible in a fuel cell, and
334 hydrogen can be consumed to produce electiiyctive and selective electrocatalysts must be
335 developed to imprav the efficiency of these reactio€! ML has been used to accelerate

336 electrocatalyst development and device optimization.

337 [H3] Electrocatalyst materials discovery

338 The most common descriptof catalytic activityis the adsorption energy mitermediates

339 on a cataly$§'%2 Although these adsorption energies can be calculated using density functional
340 theory (DFT), catalysts possess multiple surface binding sites, each with different adsorption
341 energie®®. The number of possible sites inases dramatically if alloys are considered, and thus
342 becomes intractable under conventional m&ans

343 DFT calculations are criticdbr the searclof electrocatalytic materii$and efforts have

344 been made to acceleratestbalculationsand reduce thecomputational cost by using surrogate
345 ML models®®%® Complex reaction mechanisms involving hundreds of possible species and
346 intermediates can also be simplified using ML, with a surrogate model jpmgdibe most

347 important reaction steps and deithgcthe most likely reaction pathwaysML can alsobe used

348 to screen for active sites across a random, disordered nanoparticle ’$Uff@f€eT calculations

12
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were performed on only a few representative sites, which were then used to train a nearkl netw
to predict the adsorption energies of all active sites.

Catalyst development can benefit from hiphoughput systems for catalyst synthesis and
performance evaluatiofi:"*An automatic MLdriven framework was developed to screen a large
intermetalic chemical space for GQOreduction and W evolution’®> The model predicted the
adsorption energy of new intermetallic systems and DFT was automatically performed on the most
promising candidates to verify the predictions. This process went on iteyaiivel closed
feedback loop. 131 intermetallic surfaces across 54 alloys were ultimately identified as promising
candidates for C@ reduction. Experimental validatiéh with Cu-Al catalysts yielded an
unprecedented Faradaic efficiency of 80 % towardgestle at a high current density of 400 mA
cm? (Fig. 2c).

Because of the large amount of properties that electrocatalysts may fgesskss shape,
size anccomposition), it is difficult to do data mining on the literatdfeElectrocatalyst structures
are complex and difficult to completely characterize; as a result, many properties may not be fully
characterized by research groups in their publications. To avoid situations in which potentially
promising compositions perform poorly as a result of-ri@al synthesis or testing conditions,
other factors (such as current density, particle ampH value) that affect the electrocatalyst
performance must be kept consistent. New approaches such as carbothermal shock’${hthesis
may be a promising amee due to its propensity to generate uniformly sized and shaped alloy
nanoparticles, regardless of composition.

XAS is a powerful technique, especially forsitu measurements, and has been widely
employed to gain crucial insight into the nature of acsites and changes in the electrocatalyst
with time8° Because the data analysis relies heavily on human experience and expertise, there has
been interest in developing ML tools faterpretingXAS data®! Improved random forest models
can predict ta Bader chargéa good approximation to the total electronic charge of an o
nearest neighbour distances, crucial factors that influence the catalytic properties of the $haterial.
The extended Xay absorption fine structure (EXAFS) region of X&&ctra is known to contain
information on bonding environments and coordination numbers. Neural networks can be used to
automatically interpret EXAFS d&fapermitting for example the identification thie structure of
bimetallic nanoparticles usingeerimental XAS daf4. Raman and IR spectroscopy are also
important tools for the mechanistic understanding of electrocatalysis. Together with explainable
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artificial intelligence[G] (Al) which can relate the results with underlying phydiesseanalyses
could be used to discover descriptors hidden in spectra that could lead to new breakthroughs in

electrocatalyst discovery and optimization.

[H3] Fuel cell and electrolyser device management

A fuel cell is an electrochemical device that can be tsednverthechemical energy of
a fuel guch asydrogen) into electrical energfn electrolyser transforms electrical energy into
chemical energysfich as inwater splitting to generate hydrogeiL has been employed to
optimiseandmanage their pesfmance, predict degradatianddevice lifetime as well as detect
and diagnose faultsUsing a hybrid method consisting of extreme learning machine, genetic
algorithm and wavelet analysithe degradation in proteexchange membrane fuel cells
(PEMFCs)was predicted>8® Electrochemical impedance measuremargsd asinput for an
artificial neural networkenabledfault detection and isolation in a higémperature PEMFC
stack’#8

ML approaches can also @mployedo diagnose faulisuch as fuedrd air leakage issuges
in solid oxide fuel cell stack#rtificial neural network canpredict the performance of solid oxide
fuel cells under different operating conditidiisin addition, ML has beemppliedto optimise the
performance of solid oxide electrolysgie CO,/H-0 reductiof®, andchloralkali electrolysefs.

In the future, the use of ML for fuel cells could be combined witlitiscale modding
[G] to help improve their design, for exampte minimize ohmic losses and optimise catalyst
loading. For practical applications, fuel cells may be subject to fluctuations in energy output
requirementsfér example when used in vehicles). ML models could be used to determine the
effects of such fluctations on the lonterm durability and performance of fuel cells, similar to
what has been done for predicting state of health and lifetime for batteries. Furthermore, it remains
to be seen whether the ML techniques for fuel cells can be easily gertetale&ectrolysers and

vice versausing for exampléransfer learningG], asthey are essentially reactions in reverse

[H2] Smart power grids

A power grid is responsible for delivering electrical energy from producers (such as power
plants and soladiarms) to consumers (such as homes and offices). However, enearyafions

from intermittent renewable energy generatcas renderthe grid vulnerablé®. ML algorithms
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410 can be used toptimize theautomatic generation contrfi] of power gridswhich controls the
411 power output of multiple generators in an energy system. For example, whlened[G] deep
412 learningmodel was useds a unified timescale controllefor the automatic generation control
413 unit, thetotal operational costas reduced bypto 80% compared to traditional heuristic control
414  strategiegFig. 2d)’. A smart generation control stratelggsed ommulti-ageniG] reinforcement
415 learning was found toimprove the control performance byl0% compared to other ML
416 algorithms*,

417 Accurate demandndload prediction can support decisioraking operations in energy
418 systemsfor properload scheduling and power allocatiodultiple ML methods have been
419 proposed to precisely predict the demand:léaidexamplelong shoriterm memory|G] was used
420 to successfully and accuratepyedict hourly building loatf. Shortterm load forecasting of
421 diverse customerssch asretail businesses) using a deep neural netvamidkcrossbuilding
422 energy demand forecastingsing a deep belief networ{G] have also been demonstrated
423  effectively?®?”.

424 Demandside management consists afedt of mechanisnthatsha@ consumer electricity
425 consumptionby dynamically adjusting the price of electricity. These incloeiducing (peak
426 shaving), increasing (& growth) and rescheduling (load shifting) the energy demahith
427 allows for flexible balancing of renewable electricity generation and®}oadreinforcement
428 learningbased algorithmesuled in substantial costeductionfor both the servic@rovider and
429 custome®. A decentralized learningased residential demand scheduling technique successfully
430 shiftedup to 35% of the energy demand to periods of high wind availabilibstantiallysaving
431 power cost compared to the unscheduled enedgyandscenarié® Load forecastingisinga
432 multi-agent approach integrates logaekdction with reinforcement learning algorithms to shift
433 energy usagddr example, to differenglectrical devices in a househofdy its optimizatiord®.,
434 This approah reducd pe& usageby more than 30% and incredseff-peak usage by 50%,

435 reducing thecost and energy lossassociated witlenergy storage.
436 [H1] Opportunities for ML in renewable energy

437 ML has the opportunity t@nablesubstantialfurther advances iniffierent areasof the
438 energy materials field, which share similar matenialated challengef~ig. 3). There are also

439 grand challenges for ML application in smart grid and policy optimization.
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[H2] Materials with novel geomeies

A ML representation igeffective when it captures the inherent properties of the system
(such as itphysical symmetries) and can be utilized in downstream ancillary sasitsasransfer
learning to new predictive tasks, building new knowledgmgvisualization or attributin and
generating similar data distributions with generative motféls.

For materials, thenputs are molecules or crystal structures whose physical properties are
modeled by the Schrddinger equati@esigninga general representation of materials tefiecs
these properties is an ongoing research probfEmmolecular systems, several representations
have been used successfully, including fingerpfititSMILES 194 seltreferencing embedded
strings (SELFIESY®> and graphs$%'° Represerning crystalline materials has the added
complexity of needing to incorporate periodicity in the representation. Methods like the smooth
overlap of atomic position'$? Voronoi tessellation®!!1diffraction images$!? multi-perspective
fingerprint$!® and grapkbased algorithnt$!'# have been suggested, but typically lack the
capability for structure reconstruction.

Complex structural systems found in energy materials present additional modelling
challenges a large number of atoms (such asreticular frameworks or polymers), specific
symmetries (such as in molecules with a particular space group and for reticular frameworks
belonging to a certain topology), atomic disordering, partial occupancy, or amorphous phases
(leading to an enormous mmbinatorial space), defects and dislocations (such as interfaces and
grain boundaries) and low dimensionality materials (as in nanoparticles). Reduction
approximations alleviate the first issue (using, for example, RFcode for reticular framework
represention).® but the remaining several problems warrant intensive future research efforts.

Self-supervised learninf(s], which seeks to lever large amounts of synthetic labels and
tasks to continue learning without experimental Iagb8lswlti-task learmg,!'®in whichmultiple
material properties can be modelled jointly to exploit correlation structure between propardies
metalearning!'’ which looks at strategies that allow models to perform better in new datasets or
in outof-distribution dataall offer avenues to build better representati@rsthe modelling front,
new advances imttention mechanisnis®1® graph neural network® and equivariant neural

networks$?! expand our range of tools to model interactions and expected syasnetr
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469 [H2] Robust predictive models

470 Predictive models are the first step when building a pipeline that seeks materials with
471 desired properties. A key component for building these models is trainingnuat@ data will

472 oftentranslate into more performantodels which in turn will translate intobetter accuracy in

473 the prediction of new materialPeep learningnodels tend to scale maig@vourablywith dataset

474  size than traditional ML approaché&such agandom fores). Dataset quality islso essential.

475 However, @periments are usually conducted under diverse conditions with large variation in
476 untracked variables. Additionally, public datasets are more likely to suffer from publication bias,
477 asnegative results are less likely to be published even thikiegtare just as important pssitive

478 results when training statistical modé&ts.

479 Addressing these issues require transparency and standardization of the experimental data
480 reported irtheliterature. xt and natural language processing strategids toenbe employed

481 to extract data from thigerature’’ Data should be reported with the belief that it will eventually

482 be consolidated in a database, such ablti®® databasé?® Autonomots lab techniques will help

483 address this issué&!?*Structured property databases sucthad/aterials Project?and Harvard

484 Clean Energy Projet® can also provide a large amount of da#dditionally, different energy

485 fields- energy storagéyarvesting and conversiershould converge upon a standard and uniform
486 way to report datal'his standard should be continuously updatsiresearchers continue to learn
487 about the systems they are studying, conditions that were previously thought tionpertant

488 will become relevant.

489 New modelling approaches that work in lalata regimessuch aglataefficient models,

490 dataset building strategig¢active sampling}?® and dataaugmentatior{G] techniquesare also

491 important!?” Uncertainty quantificdion [G], data efficiency, interpretability [G] and

492 regularizatio{G] are important considerations that improve the robustness of ML mdtelse

493 considerations relate the notion of generalizabilitpredictionsshouldgeneralize to a new class
494  of materials that is out @hedistributionof theoriginal datasetfResearchersan attempt to model
495 how far away new data points are frémetraining set?® or the variability in predicted labels with
496 uncertainty quantificdon.?° Neural networks are a flexible model class, and often models can be
497 undeespecified™*° Incorporating regularization, inductive biases or priors can boost the credibility
498 of a model Anothereffort to create trustable modealensists irenhanng theinterpretability of

499 ML algorithms by deriving feature relevance and score importance from&hdrhis strategy
17
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could help identify potential chemically meaningful features and form a starting point for

understanding latent factors that dominmaggerial properties. These techniques can also identify

the presence of model bias and overfittirg well as improvegeneralization[G] and

performance3#134
[H2] Stable and synthesizable new materials

The formation energy of a compound is used dstimate

synthesizability:31%® Although negative values usually correspond to stable or synthesizable
compounds, slightly positive formation energies beloWwmdt lead to metastable phases with
unclear synthesizabilit}?”*3This is more apparent when investigating unexplored chemical

spaces with undetermined equilibrium ground states; yet often the metastable phases exhibit

its stability and

superior properties as seen, for examplegtintovoltaics®® andion conductor¥?. It is thus of

interest to develop a method to evaluate the synthesizability of metastable phases. Instead of
estimating the probability that a particular phaaabe synthesized, one can instead evaluate its
synthetic complexityising ML. In organic chemistry, synthes@naplexity is evaluated based on
the accessibility of%otgreeedeptirenctienskhowlediféSimhae s i s
methodologies can be applied to the inorganic field with the ongoing design of automated

synthesisplanning algorithms for inorganic materiafé.14°

Synthesis and evaluation of a new material alone does not ensure that material will make
it to market; material stability is a crucial property that takes a long time to evaluate. Degradation
is a generally complex process that occurs through the loss of active matter or growth of inactive

phases (such as the rocksalt phases formed in layefed battery electrod&¥ or the Pt particle

agglomeration in fuel ceft$’) and/or propagation of defects (such as cracks in cycled battery

electrodé™). Microscopies such as electron microséépand simulations such as continuum

mechanics modiglg!>® are commonly used to investigate growth and propagation dynéimits

is, phase boundary and defect surface movements versus time). However, these technigues are

usually expensive and do not allow rapid degradation prediction. Deep learninigjéeshsuch

as convolutional neural networks areturrent neural networf&] may be able to predict the
phase boundary and/or defect pattern evolution under certain conditions after properftaining.

Similar models can then be built to understand ipleldegradation phenomena and aid the design

of materials with improved cycle life.
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[H2] Optimized smart power grids

A promising prospect of ML in smart grids is automating the decisiaking processes
that are associated with dynamic power suppliesidtildute powemost efficiently.Practical
deployment of ML technologies into physical systeemsains difficult because of data scarcity
andthe risk-averse nndsetof policy makersThe collection of and access to large amounts of
diverse data is chaliging owing to high cost, long delays and concerns over compliance and
security'>2For instance, to capture the variation of renewable resources owing to peageatloff
and seasonal attributes, letegm data collections are implemented for periods of 24 hours to
several year$? Furthermore, although ML algorithms are ideally soggd to account for all
uncertainties and unpredictable situations in energy systems, Haglviskse mindset in the energy
management industry means that implementation still relies on human deceorg >

An ML-based framework that involves gial twin of the physical system can address
these problem®>°¢ The digital twin represents the digitalized cyber models of the physical
system and can be constructed from physical laws and/or ML models trained using data sampled
from the physicalystem. Thisapproachaims toaccuratelysimulate the dynamics of the physical
system, enabling relatively fast generation of large amounts ofciglity synthetic data at low
cost.Notably,becauséiL model training and validation is performed on thetdlgwin, there is
no risk to the actual physical systeBased on the prediction results, proper actions can be
suggested and then implemented in the physical system to ensure stability and/or improve system
operation

[H2] Policy optimization

Finally, researctgenerally is focused oonenarrowaspecbof alarger problemwe argue
thatenergyresearcmeedsa more integrated approatif Energy policy is the manner in which
an entity such aghe governmentaddresses its energy issues, including conversion, distribution
and utilization. ML has been used in the fields of energy economics finance for performance
diagnosticsguch as fooil wells), energy generatiorsch asvind power) and consumptioaych
as power load)forecasts andystem lifespansfich asattery cell life) and failurestch agyrid
outage)prediction'®® They have also been used for energy policy analysis and evalufation (
example for estimating energy savings). A natural extensdmML models is to use them for

policy optimization'>1%%a concept thalas not yet seen widespread use. We posit that the best
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energy policies- including the deployment of the newly discovered materiaan be improved
and augmented with Mland slould be discussed in research reporting accelerated energy

technology platforms
[H1] Conclusions

To summarize, ML has the potential to enable breakthroughs in the development and
deployment of sustainable energy techniques. There have been remarkavenaehts imany
areas of energy technology, from materials design and device management to system deployment.
ML is particularly weltsuited to discovering new materials, aresaarchers in the field are
expecting ML to bring up new materidlsatmay rewlutionize the energy industryhe field is
still nascent, but there is conclusive evidence that ML is at least able to expose the same trends
that human researchers have noticed over decades of resderdfiL Tield itself is still seeing
rapid developrant, with new methodologies being reported ddilwill take time to develop and
adopt these methodologies to solve specific problems in materials sténbelieve that for ML
to truly accelerate the deployment of sustainable energy, it should logetpls a tool, similar to
a synthesis procedure, characterization equipment or control apparatus. Researchers using ML to
accelerate energy technology discovery should judge the success of the method primarily on the
advances it enables. To this end, vewédproposed the XPIs and a series of future directions in
which we hope to see ML deployed.
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580 Fig. 1| Traditional and accelerated approaches to materials discoverya) The traditional

581 Edisonianlike approach, which involves experimental taald error. (b) Highhroughput

582 screening approach involving a combination of theory and experiment. (c) Machine learning

583 (ML)-driven approach whereby theoretical and experimental results are used to train a ML

584 model for predicting structuneroperty relatonships. (d) Medriven approach for property

585 directed and automatic exploration of the chemical space using optimization ML (such as genetic
586 al gorithms or generative models) that solve
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588 Fig. 2 | Examples illustrating the useof ML techniquesfor a sustainable energy future(a)
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Fig. 3 | Areasof opportunity for ML and renewable energy. (a) Energy materials present
additional modelling challengeddL can help in the representation of structurally complex
structures, which can include disordering, dislocations and amorphous fhaBésxible models

that scaleefficiently with varied dataset sizes are in demasaiML can help develop robust
predictive modelsTheyellow dots stand for the addition of unreliable dataset that could harm the
prediction accuracy of the ML moddt) ML -aided phase degradation prediction can boost the
development of materials with enleaa cyclability.The shadowed region stands for the rocksalt
phase, which grows inside of the layered phase. The arrow marks the growth dir@tion.
Synthesis oute prediction remagto be solved for the design of a novel matetratheternary
phasaliagram, the dots stand for the stable compounds in that corresponding phase space and the
red dot stands for the targeted compounao possible synthesis pathwage comparedor a
single compound. Thebtainedscorereflectsthe complexity, cost, andbson of one synthesis
pathway. (e) The use of ML models can help in optimizing energy generation and energy
consumptionAutomating the decisiemaking processes associated with dynamic power supplies
usingML will make the power distribution more efficielff) Energy policy is the manner in which

an entity for example,the government) addresses its energy issues, including conversion,

distribution and utilization, where ML can be used to optimize the correspoacihmgpmy.
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Tables

L . Robotic D.NA-encodeeI
Edisonianlike trial- : library-based
photocatalysis . e
test developmene kinase _|nh|b|tor
P desigrf°
Acceleration factor of new
materials XPI-1 (candidates 0~1 ~10° ~10
examinedper week)
Number of new materials with
threshold performan¢XPI-2 0~-1 -10 -10
Performance of best material
over time XPI-3 (timesof ~1x ~5x ~10%
increment)
Repeatability and
reproducibility of new
materials XPI-4 (percentage o] <100% 100% 100%
success)
Human cost of the accelerate
latform, XPI-5 (percentage of
IOthe amount de(rganded bgy the 100% 6% 109%
trial-test method)
Overall acceleration score, S ~1 ~10 ~10

0.5 day of initiation for 8 daysf unattended runnirig

b Roughly estimated
Table 1Demonstration of the use of the XPIs in evaluating the acceleration performance of typical

materials development platforms.

Boxes

With the availability of large datasét$'®?and increased computing power, various ML
algorithms have been developed to solve diverse problems in energy. Below, we provide a brief
overview of the types of problems ML can solve in energy technology, and then summarize the
status of MLdriven energyresearchMore detailed information of the nuts and bolts of the ML
techniques can be found in previous revié®#s5°
[bH1] Property prediction

Supervised learninghodels are predictiveof discriminative) models which amgiven a
datapointx, and sek to predict a property (for example, the band g&pafter being trainedn a
labeled datasetThe property can be either continuous or discrekbey have been used to aid

or even replace physical simulaticorsmeasurementsder certairtircumstance&®®167
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626 [bH1] Generative materials design

627 Unsupervised learninf§s] models areyenerative modelg3] that cangenerate or output
628 new examplex' (such as new molecuf@d after being trainedn anunlabeled datasetThis
629 generation of ew examplescan be further enhanced with additional information (physical
630 properties) to condition or bias the generative proadksving he models to generagxamples
631 with improved properties and leading to fv@pertyto-structure approach calleaverse design
632 .52,168

633 [bH1] Seltdriving labs

634 Seltdriving or autonomous lab5use ML models to plan and perform experiments,
635 including the automation oktrosynthesi§G] analysis (such as ireinforcement learningided
636  synthesis planniig*%9, prediction of reaction products (such asanvolutionaheural networks
637 [G](CNNSs) for reaction predictidd’13§ and reaction condition optimization (such asdhotic
638 workflows [G] optimized byactive learning[G]**17®174). Seltdriving labs which use active
639 learningfor iterating through rounds of synthesis and measuremantsa key component to the
640 closedloopinverse desigr?

641 [bH1] Aiding characterization

642 ML models have been used to aid the quantitative or qualitative analysisevinesptal
643 observations and measurements, including assisting in the crystal structure deterrfrivation
644 transmission electron microscofyEM) images:’® identifying coordination environmetitand
645 structural transitioff from X-ray absorption speascopy (XAS) and inferring crystal symmetry
646 from electron diffractioff®.

647 [bH1] Accelerating theoretical computations

648 ML models can enable otherwise intractable simulations by reducing the computational
649 cost(processor core amount and tinfie) systems \th increased length and time sc&f¢§and
650 providing potentials and functionals for complex interactfns.

651 [bH1] Optimizing system management

652 ML models can aid the management of energy systems at the device or grid power level
653 by predicting lifetines guch adattery lifé¢>*%, adapting to new loads (suchiagong shoriterm
654 memoryfor building load predictiof?) and optimizing performancgsuch as in reinforcement
655 learning for smart grid contrd).

656 BOX 1 |Essential concepts in ML ML: machine learning
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657

658
659

[bH1] Photovoltaics

[bH2] Materials

[b1] Discover nortoxic (Pd and Cdfree) [bH2] Devices

materials with good optoelectronic propertie [b1] Optimize cell structure fo
[b1] Identify and minimize materials defects maximized light absorptior

light absorber materials and minimized active materia
[b1] Design effective recombinatiomayer usage
materials for tandem solar cells [b1] Tune materials band gaj

[b1] Develop naterials design stratess for for optimal solar harvestin
long-term operational stability?® performance under comple
[b1] Develop (hole/electron) transpc operation conditiong22
materials with high carrier mobility?®

[bH1] Batteries

[bH2] Materials .

[bl]] Develop Earthabundant cathod [PH2] Devices _

materials (Cefree) with high reversibility anc [P1] Understand - correlatiol
charge capacity between defgcts growth i
[b1] Design electrolytes with wide 3&&6% [_naterlals and fct))v?trc
electrochemical windows and ic egradation process of batte
conductivity, * ct?lmponer_lljk. q
[b1] Identify electrolyte systems to boo[ ] une operandc

dis)chargi tocol f
battery performance and lifetinfe g]ilﬁi);ijégmg cag;%i?; © Ioscg

[b1] Discover newmolecules for redox flow (dis)charging rate and optimi

batteries with suitable voltage battery life under diversified

conditions "3

[bH1] Electrocatalysis

[bH2] Materials ]

[b1] Design materials with optimal adsorptic [0H2] Devices _
energy for maximized catalytic activi§?6: ~ [01] ~ Design — multiscale
[b1] Identify and study active sites on cataly €/€ctrode  structuee for

materials®® optimized catalytic activity
[b1] Engineer catalytic materials for extend [bl] ~ Correlate — atomistic
durability, 586061 contamination and growth ¢

. ., catalyst particles to electroc
[b1] Identify a fuller set of material degradation process

. . . 61
descrlptqrs that rel_ate to caﬁalyﬂc actlvﬁ@/ bi] Tune operandc
[b1] Engineer multiple catgtic functionalifes (dis)charging  protocol  fol

. - 60 61 e ,
into the same materi&P minimized capacity loss an
optimal cell life

BOX 2| Grand challenges in energy materials research.
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660

ML approach |

Main research outcome

Photovoltaics

Bayesian
optimisation

By sampling just 1.8% of the compositional spdbe,
perovskitesdentifiedshowed >17-fold stability
improvement ovetheoriginal MAPDbIz without

compromising conversion efficiendy*

Random foresi
classifier

Approachreliability wasverified by screning 10 newly
designed donor materialsith good consistency between
model predictions and experimental outcort@s

ML regression

Six leadfree hybrid perovskitesvith suitable bandgaps fol

algorithms | solar cells andtable atoomtemperature were successful
screened outf 5158 candidates

Gaussian The ML model was able to make bandgap predictions

process elpasolite compoundsith similar accuracy to that of high
regression cost computational calculatioR.

KRR Staring froma set of 1.2 million features, two of them we

identifiedas the mosimportant factors that influengke
bandgamf double perovskite®

Random foresi

Compared tdhe bruteforce method an AF of 700vas

regressor | achievedwith an experimentally validated new perovskite
DNN-based The ML model ould classify compounds 10 times faste!
classifier than human analysis with 90% accurgayd bur leadfree
layered perovskitewere realized experimentalty’
CNN-based CNN-based rystal recognitiorenabledautonomous

classifier and
random forest

characterization of the outcomes of the robotic experime
The regressaoredicedthe optimal conditions for the

regressor synthesis of a new perovskite single cayst®
Bayesian Using anautomated experimentation platform with a
optimisation Bayesian optimizatiora4D parameter space of organic

photovoltaics blend&asmapped and optimized for
photostability'

Random fores!
regressor

Essential features were identified and used for the scree
of the most promisinghin low-dimensionaperovskite
capping layer, which then led to a stability increase of t

stateof-the-art perovskitecell by multipletimes&°

Random fores

Major patterns regarding materials selection/device struc

regressor were captured whichowild be used teredictperovskite
solar cell efficiencie$®!
Genetic Experimental samples processaatlerconditions suggeste:
algorithm by themodelshowed substantiaimprovements in
performancé?®?
Batteries
DNNs, KRR, Themodelenabled a reduction in the amount of densit
andsupport functional theorycalculationgequiredto explore the
vector chemical spaceJp to 5000 candidate materials fbla-ion
machine and K-ion electrodes were identifiéd.
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Acrtificial
neural
network

The model demonstrated accurate estimation of the r
potentialsof molecular electrode materials in-ibih batteries
with contribution analysis confirming that electron atfjn
has the highest contribution to the redox potenffl

Gaussian KRF

Themethodpredicted the redox potentials welhe redox

andGBR potentials ould be explained by a small number of featur:
improvingthe interpretability of the result§
Logistic The screening redudéhe list of candidate materials fron
regression 12831 down to 21 structures that show promise as
electrolytes’®
Linear Themethod transfead physical insights onto more generi

regression anc
support vector

descrptors, allowingthe screening dillions of unknown
compositions for Lion conductivity'8®

machine
Logistic The ML-guided searclvas2.7 times more likely to identify
regression | fast Liion conductors, with at least a 44 times improvem
of roomtemperaturé.i ion conductivity8®
Hierarchical Ab-initio molecular dynamics simulations were used tc
andspectral validate the clusterinm Li-containing compoundsnd
clustering identify top candidatefor highionic conductionwith 16
new Li-ion conductorsliscovered®
Artificial Predicted electrode specific resistances were found to a
neural well with simulated value¥’
network
Crystal graph| The ML modelwasused to screeover 12000 inorganic
CNN, KRR solidsfor their use as solidlectrolytes Four of these solid
and GBR | electrolytescould be used to suppreks dendrite growtt&8
ModeHree The methodvas used texplor tradeoffsin the power
reinforcement| performance design space and congéoca better power
learning managementglicy. Experimental resultsbtainedwith this
technique exhibited a remarkalpewerreductioncompaed
to the existing expethased power manageméfit.
Bagged The model led to golicy for battery usage optimizatighat

decision tree

substantiallyoutperfornedthe leading algorithms he
policy wascapable of improving and adapting as new dz¢
wascollected over timé>°

Electrocatalysis

Random foresi

regressoand
extra trees
regressor

The framework was able to identify 131 intermetallic
surfeces across 54 alloys as promising candidates fer C
reduction. Specifically, a GAl alloy catalyst was identifiec
and experimentally verified to selectively convert,G®
ethylene with record performanée’®

Neural
networks

The modefreducel the number of intermediate ab initio
calculations needed to locate saddle paintshe potential
energy surface usirgnudged elastic bargimulation®®

Gaussian
process
regreser

The model predieiddthe most important reaction stdyat
neededd be calculated witthe computationally demandini
electronic structure theoryith this methodthe most
likely reaction mechanism for the reaction of syngaRdn
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(111) was identified®
Neural A neural network was able to screen for actifes across ¢
networks random, disordered nanoparticle surface. The most like
active sites for C@conversion were identified for Au anc
Cu nanoparticle system&.’?

BOX 3| Summary of advances in applying ML to energy harvesting, storage and conversion.
ML: machine learningAF: Acceleration factolKRR: kernel ridge regression, DNN: deep neural
network, CNN: convolutional neural network, GBR: gradient boosting regression

Glossary terms
Artificial Intelligence (Al)

Theory and development of computer sys$ that exhibit intelligence.

Machine Learning (ML)

Field within Al that deals with learning algorithms, whiatiprove automatically through experience (data).
Deep Learning (DL) & Neural Networks (NN)

ML subfield thatis based on neural networks witlepresentation learning. A NN is composed of
parametrized and optimizable transformations.

Representation

Features used in a representation learning model which transforms inputs into new features for a task.
Supervised Learning

ML techniques that involvéhe usage of labelled data.

Unsupervised Learning

ML techniques that learn patterns from unlabelled data.

Reinforcement Learning

ML techniques that make a sequence of decisions to maximize a reward.

Generative Learning

ML techniques that learn to model thata distribution of a dataset and sample new data points.

Active Learning

ML techniques that can query a user interactively to modify its current straag)ys(label an input).
Transfer Learning

ML techniques thaadapt a learned representationtoategy from one dataset to another.

Regularization

Process of incorporating additional information into the model to constraint its solution space.
Uncertainty Quantification

Process of evaluating the statisticahfidence of model.
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716
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718
719
720
721
722
723
724

Data Augmentation

Process of increasing the amount of data through adding slightly modified copies or newly created synthetic

data from existing data.

Generalization

The ability to adapt to new, unseen data, drawn from the same distribution as the one used to create the

mocel.
Interpretability

Degree at which a human can understand a model's decision. Interpretability can be used to build trust and

credibility.

Retrosynthesis

Technique for solving problems in the planningbémicalsynthess.
Screening Strategy

Designprocess composed of several stages where materials are iteratively filtered and ranked to arrive to a

few top candidates.

iCl olsealpd Approach

A technology development pipeline that incorporaéegomationto go from idea to realization of

technologed”“€efers to the concept

M ultiphysics M odels

t hat

t he

syste

Models thatinvolve the analysis of multiple, simultaneous physical phenomena. These simultaneous

phenomena can include heat transfer, fluid flaleformation, electromagnetics, acoustics, and mass

transport.

Multiscale Modelling

The field of solving problems which have important features at multiple scales of time and/or space.

Automatic Generation Control

A system for adjusting the power outputrofiltiple generators at different power plants, in response to

changes in the load.

Multi -Agentsystem

A computerized system composed of multiple interacting intelligent agents.
Deep Belief Network

A generative graphical model, or alternatively a clasteep neural network, composed of multiple layers

of latent variables, with connections between the layers but not between units within each layer.

Recurrent Neural Network

A class of artificial neural networks where connections between nodes form addineatedirected graph

along a temporal sequence.
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725 InverseDesign

726 A design method whereemv materials and compounde'reverseengineered' simply by inputting a set of

727 desired properties and characteristics and then using an optimization algorithm to generate a predicted
728  solution.

729 Robotic Workflow s

730 A robotic equipment automated chemical synthesis plan.

731 Long Short-Term Memory

732 A special kind of recurrent neural networks that are capable of selectively remembering patterns for long
733  duration of time.
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