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ToC blurb  27 

Machine learning is poised to accelerate the development of technologies for a renewable energy 28 

future. Here, we review recent advances and in particular, propose Acc(X)eleration Performance 29 

Indicators (XPIs) to measure the effectiveness of platforms developed for accelerated energy 30 

materials discovery.  31 

Abstract 32 

Transitioning from fossil fuels to renewable energy sources is a critical global challenge; 33 

it demands advances – at the materials, devices and systems levels – for the efficient harvesting, 34 

storage, conversion and management of renewable energy. Researchers have begun incorporating 35 

machine learning (ML) techniques to accelerate these advances. Here we review recent advances 36 

in ML-driven energy research, outline current and future challenges, and describe what is required 37 

moving forward to best lever ML techniques. To start, we introduce a set of key performance 38 

indicators to help compare the benefits of different ML-accelerated workflows for energy research. 39 

We discuss and evaluate the latest advances in applying ML to the development of energy 40 

harvesting (photovoltaics), storage (batteries), conversion (electrocatalysis) and management 41 

(smart grids). Finally, we offer an outlook of potential research areas in the energy field that stand 42 

to further benefit from the application of ML. 43 

 44 

  45 
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[H1] Introduction  46 

Combustion of fossil fuels, used to fulfill ~80% of the world’s energy needs, is the largest 47 

single source of rising greenhouse gas emissions and global temperature.1 Increased utilization of 48 

renewable sources of energy, notably solar and wind power, is an economically viable path to meet 49 

the climate goals of the Paris Agreement.2 However, the rate at which renewable energy has grown 50 

has been outpaced by ever-growing energy demand, and as a result the fraction of total energy 51 

produced by renewable sources has remained constant since 2000.3 It is thus essential to accelerate 52 

the transition towards sustainable sources of energy.4 Achieving this transition requires energy 53 

technologies, infrastructure and policies that enable and promote the harvest, storage, conversion 54 

and management of renewable energy. 55 

In sustainable energy research, suitable material candidates (such as photovoltaic 56 

materials) must first be chosen from the combinatorial space of possible materials, then 57 

synthesized at a high enough yield and quality for use in devices (such as solar panels). The 58 

timeframe of a representative materials discovery process is 15-20 years5,6 – leaving considerable 59 

room for improvement. Furthermore, the devices have to be optimized for robustness and 60 

reproducibility to be incorporated into energy systems (such as in solar farms),7 where 61 

management of energy usage and generation patterns is needed to further guarantee commercial 62 

success.  63 

Here we explore the extent to which machine learning [G]  (ML) techniques can help to 64 

address many of these challenges.8–10 ML models can be used to predict specific properties of new 65 

materials without the need for costly characterization; they can generate new material structures 66 

with desired properties; they can understand patterns in renewable energy usage and generation; 67 

and they can help inform energy policy by optimizing energy management at both device and grid 68 

levels.  69 

In this Review, we introduce Acc(X)eleration Performance Indicators (XPIs), which can 70 

be used to measure the effectiveness of platforms developed for accelerated energy materials 71 

discovery. Next, we discuss closed-loop [G]  ML frameworks and evaluate the latest advances in 72 

applying ML to the development of energy harvesting, storage and conversion technologies, as 73 

well as the integration of ML into a smart power grid. Finally, we offer an outlook of critical 74 

research directions in the field that stand to further benefit from ML. 75 
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 [H1] Performance Indicators 76 

Because many reports discuss ML-accelerated approaches for materials discovery and 77 

energy systems management, we posit that there should be a consistent baseline from which these 78 

reports can be compared. For energy systems management, performance indicators at the device, 79 

plant and grid levels have been reported,11,12 yet there are no equivalent counterparts for 80 

accelerated materials discovery.  81 

The primary goal in materials discovery is to develop efficient materials that are ready for 82 

commercialization. The commercialization of a new material takes intensive research efforts that 83 

can span up to two decades: the goal of every accelerated approach should be to accomplish 84 

commercialization in an order of magnitude less time. The materials science field can benefit from 85 

studying the case of vaccine development. Historically, new vaccines take 10 years from 86 

conception to market13. However, after the start of the COVID-19 pandemic, several companies 87 

were able to develop and begin releasing vaccines in less than a year. This achievement was in 88 

part due to an unprecedented global research intensity, but also to a shift in the technology: after a 89 

technological breakthrough in 2008, the cost of sequencing DNA began decreasing 90 

exponentially,14,15 enabling researchers to screen orders-of-magnitude more vaccines than 91 

previously possible.  92 

ML for energy technologies has many commonalities with ML for other fields like 93 

biomedicine, sharing the same methodology and principles. However, in practice, models are 94 

exposed to additional unique requirements. For example, ML models for medical applications 95 

usually have complex structures to take into account regulatory oversight and ensure the safe 96 

development, use and monitoring of systems, which usually does not happen in the energy field.16 97 

Moreover, data availability varies substantially from field to field; biomedical researchers can 98 

work with a relatively large amount of data that energy researchers usually lack. This limited data 99 

accessibility can constrain the usage of sophisticated ML models (such as deep learning (DL) [G] 100 

models) in the energy field. However, adaptation has been rather quick among all energy subfields, 101 

with a rapidly increased number of groups recognizing the importance of statistical methods and 102 

starting to use them for various problems. We posit that the use of high-throughput 103 

experimentation (HTE) and ML in materials discovery workflows can result in breakthroughs in 104 

accelerating development, but the field first needs a set of metrics by which ML models can be 105 
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evaluated and compared. 106 

Accelerated materials discovery methods should be judged based on the time it takes for a 107 

new material to be commercialized. We recognize that this is not a useful metric for new platforms, 108 

nor is it one that can be used to quickly decide which platform is best suited for a particular 109 

scenario. To this point, we propose here Acc(X)eleration Performance Indicators (XPIs) that new 110 

materials discovery platforms should report.  111 

[H3] Acceleration factor of new materials, XPI-1 112 

This XPI is evaluated by dividing the number of new materials that are synthesized and 113 

characterized per unit time with the accelerated platform by the number of materials that are 114 

synthesized and characterized with traditional methods. For example, an acceleration factor of 10 115 

means that for a given time period, the accelerated platform can evaluate 10 times more materials 116 

than a traditional platform. For materials with multiple target properties, researchers should report 117 

the rate-limiting acceleration factor. 118 

[H3] Number of new materials with threshold performance, XPI-2 119 

This XPI tracks the number of new materials discovered with an accelerated platform that 120 

have a performance greater than the baseline value. The selection of this baseline value is critical: 121 

it should be something that captures fairly the standard to which new materials need to be 122 

compared. As an example, an accelerated platform that seeks to discover new perovskite solar cell 123 

materials should track the number of devices made with new materials that have a better 124 

performance than the best existing solar cell.17  125 

[H3] Performance of best material over time, XPI-3 126 

This XPI tracks the absolute performance – whether it is Faradaic efficiency, power 127 

conversion efficiency or other – of the best material as a function of time. For the accelerated 128 

framework, the evolution of the performance should increase faster than the performance obtained 129 

by traditional methods.18  130 

[H3] Repeatability and reproducibility of new materials, XPI-4 131 

This XPI seeks to ensure that the new materials discovered are consistent and repeatable: 132 

this is a key consideration to screen out materials that would fail at the commercialization stage. 133 

The performance of a new material should not vary by more than x% of its mean value (where x 134 

is the standard error): if it does, this material should not be included in either XPI-2 (number of 135 

new materials with threshold performance) or XPI-3 (performance of best material over time). 136 
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[H3] Human cost of the accelerated platform, XPI-5 137 

This XPI reports the total costs of the accelerated platform. This should include the total 138 

number of researcher hours needed to design and order the components for the accelerated system, 139 

develop the programming and robotic infrastructure, develop and maintain databases used in the 140 

system and maintain and run the accelerated platform. This metric would provide researchers with 141 

a realistic estimate of the resources required to adapt an accelerated platform for their own 142 

research. 143 

[H3] Use of the XPIs 144 

Each of these XPIs can be measured for computational, experimental or integrated 145 

accelerated systems. Consistently reporting each of these XPIs as new accelerated platforms are 146 

developed will allow researchers to evaluate the growth of these platforms and will  provide a 147 

consistent metric by which different platforms can be compared. As a demonstration, we applied 148 

the XPIs to evaluate the acceleration performance of several typical platforms: Edisonian-like trial-149 

test, robotic photocatalysis development19 and design of a DNA-encoded-library-based kinase 150 

inhibitor20 (Table 1). To have a comprehensive performance estimation, we define one overall 151 

acceleration score S adhering to the following rules. The dependent acceleration factors (XPI-1 152 

and XPI-2), which function in a synergetic way, are added together to reflect their contribution as 153 

a whole. The independent acceleration factors (XPI-3, XPI-4 and XPI-5), which may function in 154 

a reduplicated way, are multiplied together to value their contribution respectively. As a result, the 155 

overall acceleration score can be calculated as S = (XPI-1 + XPI-2) Ἁ XPI-3 Ἁ XPI-4 / XPI-5. As 156 

the reference, the Edisonian-like approach has a calculated overall XPIs score of around 1, whereas 157 

the most advanced method, the DNA encoded library-based drug design, exhibits an overall XPIs 158 

score of 107. For the sustainability field, the robotic photocatalysis platform shows an overall XPIs 159 

score of 105. 160 

For energy systems, the most commonly reported XPI is the acceleration factor, in part 161 

because it is deterministic, but also because it is easy to calculate at the end of the development of 162 

a workflow. In most cases, we expect that authors report the acceleration factor only after 163 

completing the development of the platform. Reporting the other suggested XPIs will provide 164 

researchers with a better sense of both the time and human resources required to develop the 165 

platform until it is ready for publication. Moving forward, we hope that other researchers adopt 166 

the XPIs – or other similar metrics – to allow for fair and consistent comparison between the 167 
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different methods and algorithms that are used to accelerate materials discovery. 168 

[H1] Closed-loop ML for  materials discovery 169 

The traditional approach to materials discovery is often Edisonian-like, relying on trial and 170 

error to develop materials with specific properties. Firstly, a target application is identified, and a 171 

starting pool of possible candidates is selected (Fig. 1a). The materials are then synthesized and 172 

incorporated into a device or system to measure their properties. These results are then used to 173 

establish empirical structure-property relationships, which guide the next round of synthesis and 174 

testing. This slow process goes through as many iterations as required and each cycle can take 175 

several years to complete.  176 

A computation-driven, high-throughput screening approach [G]  (Fig. 1b) offers a faster 177 

turnaround. To explore the overall vast chemical space (~1060 possibilities), human intuition and 178 

expertise can be used to create a library with a substantial number of materials of interest (~104). 179 

Theoretical calculations are carried out on these candidates and the top performers (~102 180 

candidates) are then experimentally verified. With luck, the material with the desired functionality 181 

is ‘discovered’. Otherwise, this process is repeated in another region of the chemical space. This 182 

approach can still be very time-consuming and computationally expensive and can only sample a 183 

small region of the chemical space.  184 

ML can substantially increase the chemical space sampled, without costing extra time and 185 

effort. ML is data-driven, screening datasets to detect patterns, which are the physical laws that 186 

govern the system. In this case, these laws correspond to materials structure-property relationships. 187 

This workflow involves high-throughput virtual screening (Fig. 1c) and begins by selecting a 188 

larger region (~106) of the chemical space of possibilities using human intuition and expertise. 189 

Theoretical calculations are carried out on a representative subset (~104 candidates) and the results 190 

are used for training a discriminative ML model. The model can then be used to make predictions 191 

on the other candidates in the overall selected chemical space.9 The top ~102 candidates are 192 

experimentally verified, and the results are used to improve the predictive capabilities of the model 193 

in an iterative loop. If the desired material is not ‘discovered’, the process is repeated on another 194 

region of the chemical space.  195 

An improvement on the previous approaches is a framework that requires limited human 196 

intuition or expertise to direct the chemical space search: the automated virtual screening approach 197 
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(Fig. 1d). To begin with, a region of the chemical space is picked at random to initiate the process. 198 

Thereafter, this process is similar to the previous approach, except that the computational and 199 

experimental data is also used to train a generative ML model [G] . This generative model solves 200 

the ‘inverse’ problem: given a required property, the goal is to predict an ideal structure and 201 

composition in the chemical space. This enables a directed, automated search of the chemical 202 

space, towards the goal of ‘discovering’ the ideal material.8 203 

[H1] ML for energy  204 

 ML has so far been used to accelerate the development of materials and devices for energy 205 

harvesting (photovoltaics), storage (batteries) and conversion (electrocatalysis), as well as to 206 

optimize power grids. Besides all the examples discussed here, we summarized in three boxes the 207 

essential concepts in ML (BOX 1), the grand challenges in sustainable materials research (BOX 208 

2) and the details of key studies (BOX 3).  209 

[H2] Photovoltaics 210 

 ML is accelerating the discovery of new optoelectronic materials and devices for photovoltaics, 211 

but major challenges are still associated with each step.  212 

[H3] Photovoltaics materials discovery 213 

One materials class for which ML has proved particularly effective is perovskites, because 214 

these materials have a vast chemical space from which the constituents may be chosen. Early 215 

representations [G]  of perovskite materials for ML were atomic-feature representations, in which 216 

each structure is encoded as a fixed-length vector comprised of an average of certain atomic 217 

properties of the atoms in the crystal structure.21,22 A similar technique was used to predict new 218 

lead-free perovskite materials with the proper bandgap for solar cells (Fig. 2a).23 These 219 

representations allowed for high accuracy but did not account for any spatial relation between 220 

atoms.24,25 Materials systems can also be represented as images26 or as graphs,27 enabling the 221 

treatment of systems with diverse number of atoms. The latter representation is particularly 222 

compelling, as perovskites, particularly organic-inorganic perovskites, have crystal structures that 223 

incorporate a varying number of atoms, and the organic molecules can vary in size.  224 

Although bandgap prediction is an important first step, this parameter alone is not sufficient 225 

to indicate a useful optoelectronic material; other parameters, including electronic defect density 226 
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and stability, are equally important. Defect energies are addressable with computational methods, 227 

but the calculation of defects in structures is extremely computationally expensive, which inhibits 228 

the generation of a dataset of defect energies from which an ML model can be trained. To expedite 229 

the high-throughput calculation of defect energies, a python toolkit was developed28 that will be 230 

pivotal in building a database of defect energies in semiconductors. Researchers can then use ML 231 

to predict both the formation energy of defects and the energy levels of these defects. This 232 

knowledge will ensure that the materials selected from high-throughput screening will not only 233 

have the correct bandgap but will also either be defect tolerant or defect resistant, finding use in 234 

commercial optoelectronic devices.  235 

Even without access to a large dataset of experimental results, ML can accelerate the 236 

discovery of optoelectronic materials. Using a self-driving laboratory approach, the number of 237 

experiments required to optimize an organic solar cell can be reduced from 500 to just 60.29 This 238 

robotic synthesis method accelerates the learning rate of the ML models and drastically reduces 239 

the cost of the chemicals needed to run the optimization.  240 

[H3] Solar device structure and fabrication 241 

Photovoltaic devices require optimization of layers other than the active layer to maximize 242 

performance. One component is the top transparent conductive layer, which needs to have both high 243 

optical transparency and high electronic conductivity.30,31 A genetic algorithm that optimised the 244 

topology of a light-trapping structure enabled a broadband absorption efficiency of 48.1%, which 245 

represents more than a 3-fold increase over the Yablonovitch limit, the 4n2 factor (where n is the 246 

refractive index of the material) theoretical limit for light trapping in photovoltaics.32  247 

A universal standard irradiance spectrum is usually used by researchers to determine optimal 248 

band gaps for solar cell operation33. However, actual solar irradiance fluctuates based on factors such 249 

as the position of the sun, atmospheric phenomena and the season. ML can reduce yearly spectral sets 250 

into a few characteristic spectra,33 allowing for the calculation of optimal bandgaps for real-world 251 

conditions.  252 

To optimize device fabrication, a CNN was used to predict the current-voltage characteristics 253 

of as-cut Si wafers based on their photoluminescence (PL) images34. Additionally, an artificial neural 254 

network was used to predict the contact resistance of metallic front contacts for Si solar cells, which 255 

is critical for the manufacturing process35. 256 

Although successful, these studies appear limited to optimising structures and processes 257 
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that are already well established. We suggest that, in future work, ML could be used to augment 258 

simulations, such as the multiphysics models [G]  for solar cells. Design of device architecture 259 

could begin from such simulation models, coupled with ML in an iterative process to quickly 260 

optimise design and reduce computational time and cost. In addition, optimal conditions for the 261 

scaling up of device area and fabrication processes are likely to be very different from those for 262 

lab-scale demonstrations. However, determining these optimal conditions could be expensive in 263 

terms of materials cost and time, due to the need to construct much larger devices. In this regard, 264 

ML, together with the strategic design of experiments, could greatly accelerate the optimisation of 265 

process conditions (such as the annealing temperatures and solvent choice). 266 

 267 

[H2] Electrochemical energy storage 268 

Electrochemical energy storage is an essential component in applications such as electric 269 

vehicles, consumer electronics and stationary power stations. State-of-the-art electrochemical 270 

energy storage solutions have varying efficacy in different applications: for example, lithium-ion 271 

batteries exhibit excellent energy density and are widely used in electronics and electric vehicles, 272 

whereas redox flow batteries (RFBs) have drawn substantial attention for use in stationary power 273 

storage. ML approaches have been widely employed in the field of batteries, including for the 274 

discovery of new materials such as solid-state ion conductors (Fig. 2b).36–38 and redox active 275 

electrolyte for RFBs39 ML has also aided battery management, for example, through state of charge 276 

determination,40 state of health evaluation41,42 and remaining life prediction43,44. In addition, ML 277 

can enable further breakthroughs. 278 

[H3] Electrode and electrolyte materials design 279 

Layered oxide materials, such as LiCoO2 or LiNi xMnyCo1-x-yO2, have been used extensively 280 

as cathode materials for alkali metal-ion (Li/Na/K) batteries. However, developing new Li-ion battery 281 

materials with higher operating voltages, enhanced energy densities and longer lifetimes is of 282 

paramount interest. So far, universal design principles for new battery materials remain undefined, 283 

and hence different approaches have been explored. Data from the Materials Project have been used 284 

to model the electrode voltage profile diagrams for different materials in alkali metal-ion batteries 285 

(Na and K)45, leading to the proposition of 5,000 different electrode materials with appropriate 286 

moderate voltages. ML was also employed to screen 12,000 candidates for solid Li-ion batteries, 287 

https://materialsproject.org/
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resulting in the discovery of 10 new Li-ion conducting materials.46,47  288 

Flow batteries consist of active materials dissolved in electrolytes that flow into a cell with 289 

electrodes that facilitate redox reactions. Organic flow batteries are of particular interest. In flow 290 

batteries, the solubility of the active material in the electrolyte and the charge/discharge stability 291 

dictate performance. ML methods have explored the chemical space to find suitable electrolytes for 292 

organic redox flow batteries48,49. Furthermore, a multi-kernel-Ridge regression [G]  method 293 

accelerated the discovery of active organic molecules using multiple feature training [G] .48 This 294 

method also helped in predicting the solubility dependence of anthraquinone molecules with different 295 

numbers and combinations of sulfonic and hydroxyl groups on pH. Future opportunities lie in the 296 

exploration of large combinatorial spaces for the inverse design [G]  of high-entropy electrodes50 and 297 

high-voltage electrolytes.51 To this end, deep generative models can assist the discovery of new 298 

materials based on the simplified molecular input line entry system (SMILES) representation of 299 

molecules52.  300 

[H3] Battery device and stack management 301 

A combination of mechanistic and semi-empirical models is currently used to estimate 302 

capacity and power loss in lithium-ion batteries. However, the models are only applicable to specific 303 

failure mechanisms or situations and cannot predict the lifetimes of batteries at the early stages of 304 

usage. By contrast, mechanism-agnostic models based on ML can accurately predict battery cycle 305 

life, even at the early stage of a battery’s life.43 A combined early-prediction and Bayesian 306 

optimisation model was used to rapidly identify the optimal charging protocol with the longest cycle 307 

life.44 ML can be used to accelerate the optimization of lithium-ion batteries for longer lifetimes53, 308 

but it remains to be seen if these models can be generalized to different battery chemistries.54  309 

ML methods can also predict important properties of battery storage facilities. A neural 310 

network was used to predict the charge/discharge profiles in two types of stationary battery systems, 311 

lithium iron phosphate and vanadium redox flow batteries55. Battery power management techniques 312 

must also consider the uncertainty and variability that arise from both the environment and the 313 

application. An iterative Q-learning (reinforcement learning [G]) method was also designed for 314 

battery management and control in smart residential environments56. Given the residential load and 315 

the real-time electricity rate, the method is effective at optimizing battery charging/discharging/idle 316 

cycles. Discriminative neural network-based models can also optimize battery usage in electric 317 

vehicles57.  318 
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Although ML is able to predict the lifetime of batteries, the underlying degradation 319 

mechanisms are difficult to identify and correlate to the state of health and lifetime. To this end, 320 

incorporation of domain knowledge into a hybrid physics-based ML model can provide insight and 321 

reduce overfitting.53 However, incorporating the physics of battery degradation processes into a 322 

hybrid model remains challenging; representation of electrode materials that encode both 323 

compositional and structural information is far from trivial. Validation of these models also require 324 

the development of operando characterization techniques, such as liquid-phase TEM and ambient-325 

pressure XAS, that reflect true operating conditions as closely as possible.54 Ideally, these 326 

characterization techniques should be carried out in a high-throughput manner, using for example 327 

automated sample changers, in order to generate large datasets for ML.  328 

 329 

[H2] Electrocatalysts 330 

Electrocatalysis enables the conversion of simple feedstocks (such as water, carbon dioxide 331 

and nitrogen) into valuable chemicals and/or fuels (such as hydrogen, hydrocarbons and ammonia), 332 

using renewable energy as an input.58 The reverse reactions are also possible in a fuel cell, and 333 

hydrogen can be consumed to produce electricity.59 Active and selective electrocatalysts must be 334 

developed to improve the efficiency of these reactions.60,61 ML has been used to accelerate 335 

electrocatalyst development and device optimization.  336 

[H3] Electrocatalyst materials discovery 337 

The most common descriptor of catalytic activity is the adsorption energy of intermediates 338 

on a catalyst61,62. Although these adsorption energies can be calculated using density functional 339 

theory (DFT), catalysts possess multiple surface binding sites, each with different adsorption 340 

energies63. The number of possible sites increases dramatically if alloys are considered, and thus 341 

becomes intractable under conventional means64.  342 

DFT calculations are critical for the search of electrocatalytic materials65 and efforts have 343 

been made to accelerate the calculations and reduce their computational cost by using surrogate 344 

ML models.66–69 Complex reaction mechanisms involving hundreds of possible species and 345 

intermediates can also be simplified using ML, with a surrogate model predicting the most 346 

important reaction steps and deducing the most likely reaction pathways70. ML can also be used 347 

to screen for active sites across a random, disordered nanoparticle surface71,72. DFT calculations 348 
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were performed on only a few representative sites, which were then used to train a neural network 349 

to predict the adsorption energies of all active sites. 350 

Catalyst development can benefit from high-throughput systems for catalyst synthesis and 351 

performance evaluation.73,74 An automatic ML-driven framework was developed to screen a large 352 

intermetallic chemical space for CO2 reduction and H2 evolution.75 The model predicted the 353 

adsorption energy of new intermetallic systems and DFT was automatically performed on the most 354 

promising candidates to verify the predictions. This process went on iteratively in a closed 355 

feedback loop. 131 intermetallic surfaces across 54 alloys were ultimately identified as promising 356 

candidates for CO2 reduction. Experimental validation76 with Cu-Al catalysts yielded an 357 

unprecedented Faradaic efficiency of 80 % towards ethylene at a high current density of 400 mA 358 

cm-2 (Fig. 2c). 359 

Because of the large amount of properties that electrocatalysts may possess (such as shape, 360 

size and composition), it is difficult to do data mining on the literature77. Electrocatalyst structures 361 

are complex and difficult to completely characterize; as a result, many properties may not be fully 362 

characterized by research groups in their publications. To avoid situations in which potentially 363 

promising compositions perform poorly as a result of non-ideal synthesis or testing conditions, 364 

other factors (such as current density, particle size and pH value) that affect the electrocatalyst 365 

performance must be kept consistent. New approaches such as carbothermal shock synthesis78,79 366 

may be a promising avenue due to its propensity to generate uniformly sized and shaped alloy 367 

nanoparticles, regardless of composition. 368 

XAS is a powerful technique, especially for in-situ measurements, and has been widely 369 

employed to gain crucial insight into the nature of active sites and changes in the electrocatalyst 370 

with time.80 Because the data analysis relies heavily on human experience and expertise, there has 371 

been interest in developing ML tools for interpreting XAS data.81 Improved random forest models 372 

can predict the Bader charge (a good approximation to the total electronic charge of an atom) and 373 

nearest neighbour distances, crucial factors that influence the catalytic properties of the material.82 374 

The extended X-ray absorption fine structure (EXAFS) region of XAS spectra is known to contain 375 

information on bonding environments and coordination numbers. Neural networks can be used to 376 

automatically interpret EXAFS data83, permitting for example the identification of the structure of 377 

bimetallic nanoparticles using experimental XAS data84. Raman and IR spectroscopy are also 378 

important tools for the mechanistic understanding of electrocatalysis. Together with explainable 379 
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artificial intelligence [G]  (AI)  which can relate the results with underlying physics, these analyses 380 

could be used to discover descriptors hidden in spectra that could lead to new breakthroughs in 381 

electrocatalyst discovery and optimization. 382 

[H3] Fuel cell and electrolyser device management 383 

A fuel cell is an electrochemical device that can be used to convert the chemical energy of 384 

a fuel (such as hydrogen) into electrical energy. An electrolyser transforms electrical energy into 385 

chemical energy (such as in water splitting to generate hydrogen). ML has been employed to 386 

optimise and manage their performance, predict degradation and device lifetime as well as detect 387 

and diagnose faults. Using a hybrid method consisting of extreme learning machine, genetic 388 

algorithm and wavelet analysis, the degradation in proton-exchange membrane fuel cells 389 

(PEMFCs) was predicted.85,86 Electrochemical impedance measurements used as input for an 390 

artificial neural network enabled fault detection and isolation in a high-temperature PEMFC 391 

stack87,88. 392 

ML approaches can also be employed to diagnose faults, such as fuel and air leakage issues, 393 

in solid oxide fuel cell stacks. Artificial neural networks can predict the performance of solid oxide 394 

fuel cells under different operating conditions89. In addition, ML has been applied to optimise the 395 

performance of solid oxide electrolysers, for CO2/H2O reduction90, and chloralkali electrolysers91.  396 

In the future, the use of ML for fuel cells could be combined with multiscale modelling 397 

[G]  to help improve their design, for example to minimize ohmic losses and optimise catalyst 398 

loading. For practical applications, fuel cells may be subject to fluctuations in energy output 399 

requirements (for example, when used in vehicles). ML models could be used to determine the 400 

effects of such fluctuations on the long-term durability and performance of fuel cells, similar to 401 

what has been done for predicting state of health and lifetime for batteries. Furthermore, it remains 402 

to be seen whether the ML techniques for fuel cells can be easily generalized to electrolysers and 403 

vice versa, using for example transfer learning [G] , as they are essentially reactions in reverse. 404 

 405 

 [H2] Smart power grids 406 

A power grid is responsible for delivering electrical energy from producers (such as power 407 

plants and solar farms) to consumers (such as homes and offices). However, energy fluctuations 408 

from intermittent renewable energy generators can render the grid vulnerable92. ML algorithms 409 
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can be used to optimize the automatic generation control [G]  of power grids, which controls the 410 

power output of multiple generators in an energy system. For example, when a relaxed [G]  deep 411 

learning model was used as a unified time-scale controller for the automatic generation control 412 

unit, the total operational cost was reduced by up to 80% compared to traditional heuristic control 413 

strategies (Fig. 2d)93. A smart generation control strategy based on multi-agent [G]  reinforcement 414 

learning was found to improve the control performance by ~10% compared to other ML 415 

algorithms94.  416 

Accurate demand and load prediction can support decision-making operations in energy 417 

systems for proper load scheduling and power allocation. Multiple ML methods have been 418 

proposed to precisely predict the demand load: for example, long short-term memory [G]  was used 419 

to successfully and accurately predict hourly building load95. Short-term load forecasting of 420 

diverse customers (such as retail businesses) using a deep neural network and cross-building 421 

energy demand forecasting using a deep belief network [G]  have also been demonstrated 422 

effectively96,97.  423 

Demand-side management consists of a set of mechanisms that shape consumer electricity 424 

consumption by dynamically adjusting the price of electricity. These include reducing (peak 425 

shaving), increasing (load growth) and rescheduling (load shifting) the energy demand, which 426 

allows for flexible balancing of renewable electricity generation and load98. A reinforcement-427 

learning-based algorithm resulted in substantial cost reduction for both the service provider and 428 

customer99. A decentralized learning-based residential demand scheduling technique successfully 429 

shifted up to 35% of the energy demand to periods of high wind availability, substantially saving 430 

power costs compared to the unscheduled energy demand scenario100. Load forecasting using a 431 

multi-agent approach integrates load prediction with reinforcement learning algorithms to shift 432 

energy usage (for example, to different electrical devices in a household) for its optimization101. 433 

This approach reduced peak usage by more than 30% and increased off-peak usage by 50%, 434 

reducing the cost and energy losses associated with energy storage. 435 

[H1] Opportunities for ML in renewable energy 436 

ML has the opportunity to enable substantial further advances in different areas of the 437 

energy materials field, which share similar materials-related challenges (Fig. 3). There are also 438 

grand challenges for ML application in smart grid and policy optimization.  439 
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[H2] Materials with novel geometries 440 

A ML representation is effective when it captures the inherent properties of the system 441 

(such as its physical symmetries) and can be utilized in downstream ancillary tasks, such as transfer 442 

learning to new predictive tasks, building new knowledge using visualization or attribution and 443 

generating similar data distributions with generative models.102 444 

For materials, the inputs are molecules or crystal structures whose physical properties are 445 

modelled by the Schrödinger equation. Designing a general representation of materials that reflects 446 

these properties is an ongoing research problem. For molecular systems, several representations 447 

have been used successfully, including fingerprints,103 SMILES,104 self-referencing embedded 448 

strings (SELFIES)105 and graphs.106–108 Representing crystalline materials has the added 449 

complexity of needing to incorporate periodicity in the representation. Methods like the smooth 450 

overlap of atomic positions,109 Voronoi tessellation,110,111 diffraction images,112 multi-perspective 451 

fingerprints113 and graph-based algorithms27,114 have been suggested, but typically lack the 452 

capability for structure reconstruction.  453 

Complex structural systems found in energy materials present additional modelling 454 

challenges: a large number of atoms (such as in reticular frameworks or polymers), specific 455 

symmetries (such as in molecules with a particular space group and for reticular frameworks 456 

belonging to a certain topology), atomic disordering, partial occupancy, or amorphous phases 457 

(leading to an enormous combinatorial space), defects and dislocations (such as interfaces and 458 

grain boundaries) and low dimensionality materials (as in nanoparticles). Reduction 459 

approximations alleviate the first issue (using, for example, RFcode for reticular framework 460 

representation),8 but the remaining several problems warrant intensive future research efforts.  461 

Self-supervised learning [G] , which seeks to lever large amounts of synthetic labels and 462 

tasks to continue learning without experimental labels,115 multi-task learning,116 in which multiple 463 

material properties can be modelled jointly to exploit correlation structure between properties, and 464 

meta-learning,117 which looks at strategies that allow models to perform better in new datasets or 465 

in out-of-distribution data, all offer avenues to build better representations. On the modelling front, 466 

new advances in attention mechanisms,118,119 graph neural networks120 and equivariant neural 467 

networks121 expand our range of tools to model interactions and expected symmetries.  468 
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[H2] Robust predictive models  469 

Predictive models are the first step when building a pipeline that seeks materials with 470 

desired properties. A key component for building these models is training data; more data will 471 

often translate into more performant models, which in turn will translate into better accuracy in 472 

the prediction of new materials. Deep learning models tend to scale more favourably with dataset 473 

size than traditional ML approaches (such as random forests). Dataset quality is also essential. 474 

However, experiments are usually conducted under diverse conditions with large variation in 475 

untracked variables. Additionally, public datasets are more likely to suffer from publication bias, 476 

as negative results are less likely to be published even though they are just as important as positive 477 

results when training statistical models.122  478 

Addressing these issues require transparency and standardization of the experimental data 479 

reported in the literature. Text and natural language processing strategies could then be employed 480 

to extract data from the literature.77 Data should be reported with the belief that it will eventually 481 

be consolidated in a database, such as the MatD3 database.123 Autonomous lab techniques will help 482 

address this issue.19,124 Structured property databases such as the Materials Project122 and Harvard 483 

Clean Energy Project125 can also provide a large amount of data. Additionally, different energy 484 

fields - energy storage, harvesting and conversion - should converge upon a standard and uniform 485 

way to report data. This standard should be continuously updated; as researchers continue to learn 486 

about the systems they are studying, conditions that were previously thought to be unimportant 487 

will become relevant.  488 

New modelling approaches that work in low-data regimes, such as data-efficient models, 489 

dataset building strategies (active sampling)126 and data-augmentation [G]  techniques, are also 490 

important.127 Uncertainty quantification [G] , data efficiency, interpretability [G]  and 491 

regularization [G]  are important considerations that improve the robustness of ML models. These 492 

considerations relate to the notion of generalizability: predictions should generalize to a new class 493 

of materials that is out of the distribution of the original dataset. Researchers can attempt to model 494 

how far away new data points are from the training set128 or the variability in predicted labels with 495 

uncertainty quantification.129 Neural networks are a flexible model class, and often models can be 496 

under-specified.130 Incorporating regularization, inductive biases or priors can boost the credibility 497 

of a model. Another effort to create trustable models consists in enhancing the interpretability of 498 

ML algorithms by deriving feature relevance and score importance from them.131 This strategy 499 

https://github.com/HybriD3-database/MatD3
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could help identify potential chemically meaningful features and form a starting point for 500 

understanding latent factors that dominate material properties. These techniques can also identify 501 

the presence of model bias and overfitting, as well as improve generalization [G]  and 502 

performance.132–134  503 

[H2] Stable and synthesizable new materials 504 

The formation energy of a compound is used to estimate its stability and 505 

synthesizability.135,136 Although negative values usually correspond to stable or synthesizable 506 

compounds, slightly positive formation energies below a limit  lead to metastable phases with 507 

unclear synthesizability.137,138 This is more apparent when investigating unexplored chemical 508 

spaces with undetermined equilibrium ground states; yet often the metastable phases exhibit 509 

superior properties as seen, for example, in photovoltaics140 and ion conductors141. It is thus of 510 

interest to develop a method to evaluate the synthesizability of metastable phases. Instead of 511 

estimating the probability that a particular phase can be synthesized, one can instead evaluate its 512 

synthetic complexity using ML. In organic chemistry, synthesis complexity is evaluated based on 513 

the accessibility of the phases’ synthesis route142 or precedent reaction knowledge.143 Similar 514 

methodologies can be applied to the inorganic field with the ongoing design of automated 515 

synthesis-planning algorithms for inorganic materials.144,145  516 

Synthesis and evaluation of a new material alone does not ensure that material will make 517 

it to market; material stability is a crucial property that takes a long time to evaluate. Degradation 518 

is a generally complex process that occurs through the loss of active matter or growth of inactive 519 

phases (such as the rocksalt phases formed in layered Li-ion battery electrodes146 or the Pt particle 520 

agglomeration in fuel cells147) and/or propagation of defects (such as cracks in cycled battery 521 

electrode148). Microscopies such as electron microscopy149 and simulations such as continuum 522 

mechanics modeling150 are commonly used to investigate growth and propagation dynamics (that 523 

is, phase boundary and defect surface movements versus time). However, these techniques are 524 

usually expensive and do not allow rapid degradation prediction. Deep learning techniques such 525 

as convolutional neural networks and recurrent neural networks [G]  may be able to predict the 526 

phase boundary and/or defect pattern evolution under certain conditions after proper training.151 527 

Similar models can then be built to understand multiple degradation phenomena and aid the design 528 

of materials with improved cycle life. 529 
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[H2] Optimized smart power grids 530 

A promising prospect of ML in smart grids is automating the decision-making processes 531 

that are associated with dynamic power supplies to distribute power most efficiently. Practical 532 

deployment of ML technologies into physical systems remains difficult because of data scarcity 533 

and the risk-averse mindset of policy makers. The collection of and access to large amounts of 534 

diverse data is challenging owing to high cost, long delays and concerns over compliance and 535 

security.152 For instance, to capture the variation of renewable resources owing to peak or off-peak 536 

and seasonal attributes, long-term data collections are implemented for periods of 24 hours to 537 

several years.153 Furthermore, although ML algorithms are ideally supposed to account for all 538 

uncertainties and unpredictable situations in energy systems, the risk-adverse mindset in the energy 539 

management industry means that implementation still relies on human decision-making.154  540 

An ML-based framework that involves a digital twin of the physical system can address 541 

these problems.155,156 The digital twin represents the digitalized cyber models of the physical 542 

system and can be constructed from physical laws and/or ML models trained using data sampled 543 

from the physical system. This approach aims to accurately simulate the dynamics of the physical 544 

system, enabling relatively fast generation of large amounts of high-quality synthetic data at low 545 

cost. Notably, because ML model training and validation is performed on the digital twin, there is 546 

no risk to the actual physical system. Based on the prediction results, proper actions can be 547 

suggested and then implemented in the physical system to ensure stability and/or improve system 548 

operation. 549 

[H2] Policy optimization 550 

Finally, research generally is focused on one narrow aspect of a larger problem; we argue 551 

that energy research needs a more integrated approach.157 Energy policy is the manner in which 552 

an entity, such as the government, addresses its energy issues, including conversion, distribution 553 

and utilization. ML has been used in the fields of energy economics finance for performance 554 

diagnostics (such as for oil wells), energy generation (such as wind power) and consumption (such 555 

as power load) forecasts and system lifespan (such as battery cell life) and failure (such as grid 556 

outage) prediction.158 They have also been used for energy policy analysis and evaluation (for 557 

example, for estimating energy savings). A natural extension of ML models is to use them for 558 

policy optimization,159,160 a concept that has not yet seen widespread use. We posit that the best 559 
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energy policies – including the deployment of the newly discovered materials – can be improved 560 

and augmented with ML and should be discussed in research reporting accelerated energy 561 

technology platforms. 562 

[H1] Conclusions 563 

To summarize, ML has the potential to enable breakthroughs in the development and 564 

deployment of sustainable energy techniques. There have been remarkable achievements in many 565 

areas of energy technology, from materials design and device management to system deployment. 566 

ML is particularly well-suited to discovering new materials, and researchers in the field are 567 

expecting ML to bring up new materials that may revolutionize the energy industry. The field is 568 

still nascent, but there is conclusive evidence that ML is at least able to expose the same trends 569 

that human researchers have noticed over decades of research. The ML field itself is still seeing 570 

rapid development, with new methodologies being reported daily. It will take time to develop and 571 

adopt these methodologies to solve specific problems in materials science. We believe that for ML 572 

to truly accelerate the deployment of sustainable energy, it should be deployed as a tool, similar to 573 

a synthesis procedure, characterization equipment or control apparatus. Researchers using ML to 574 

accelerate energy technology discovery should judge the success of the method primarily on the 575 

advances it enables. To this end, we have proposed the XPIs and a series of future directions in 576 

which we hope to see ML deployed.   577 
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Figures 578 

 579 

Fig. 1 | Traditional and accelerated approaches to materials discovery. (a) The traditional 580 

Edisonian-like approach, which involves experimental trial and error. (b) High-throughput 581 

screening approach involving a combination of theory and experiment. (c) Machine learning 582 

(ML)-driven approach whereby theoretical and experimental results are used to train a ML 583 

model for predicting structure-property relationships. (d) ML-driven approach for property-584 

directed and automatic exploration of the chemical space using optimization ML (such as genetic 585 

algorithms or generative models) that solve the ‘inverse’ design problem. 586 
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 587 

Fig. 2 | Examples illustrating the use of ML techniques for a sustainable energy future. (a) 588 

Energy harvesting23, (b) energy storage38, (c) energy conversion76 and (d) energy management93.  589 
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 590 

Fig. 3 | Areas of opportunity for ML and renewable energy. (a) Energy materials present 591 

additional modelling challenges. ML can help in the representation of structurally complex 592 

structures, which can include disordering, dislocations and amorphous phases. (b) Flexible models 593 

that scale efficiently with varied dataset sizes are in demand, and ML can help develop robust 594 

predictive models. The yellow dots stand for the addition of unreliable dataset that could harm the 595 

prediction accuracy of the ML model. (c) ML-aided phase degradation prediction can boost the 596 

development of materials with enhanced cyclability. The shadowed region stands for the rocksalt 597 

phase, which grows inside of the layered phase. The arrow marks the growth direction. (d) 598 

Synthesis route prediction remains to be solved for the design of a novel material. In the ternary 599 

phase diagram, the dots stand for the stable compounds in that corresponding phase space and the 600 

red dot stands for the targeted compound. Two possible synthesis pathways are compared for a 601 

single compound. The obtained score reflects the complexity, cost, and so on of one synthesis 602 

pathway. (e) The use of ML models can help in optimizing energy generation and energy 603 

consumption. Automating the decision-making processes associated with dynamic power supplies 604 

using ML will make the power distribution more efficient. (f) Energy policy is the manner in which 605 

an entity (for example, the government) addresses its energy issues, including conversion, 606 

distribution and utilization, where ML can be used to optimize the corresponding economy. 607 

608 
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Tables 609 

 
Edisonian-like trial-

test 

Robotic 

photocatalysis 

development19 

DNA-encoded-

library-based 

kinase inhibitor 

design20 

Acceleration factor of new 

materials, XPI-1 (candidates 

examined per week)  

0~1 ~103 ~105 

Number of new materials with 

threshold performance, XPI-2 
0~1 ~102 ~101 

Performance of best material 

over time, XPI-3 (times of 

increment) 

~1x ~5x ~101x 

Repeatability and 

reproducibility of new 

materials, XPI-4 (percentage of 

success) 

≤100% 100% 100% 

Human cost of the accelerated 

platform, XPI-5 (percentage of 

the amount demanded by the 

trial-test method) 

100% ~6%a 10%b 

Overall acceleration score, S ~1 ~105 ~107 
a 0.5 day of initiation for 8 days of unattended running19 610 

b Roughly estimated  611 

Table 1 Demonstration of the use of the XPIs in evaluating the acceleration performance of typical 612 

materials development platforms. 613 

 614 

Boxes 615 

With the availability of large datasets122,162 and increased computing power, various ML 616 

algorithms have been developed to solve diverse problems in energy. Below, we provide a brief 617 

overview of the types of problems ML can solve in energy technology, and then summarize the 618 

status of ML-driven energy research. More detailed information of the nuts and bolts of the ML 619 

techniques can be found in previous reviews.163–165  620 

[bH1] Property prediction 621 

Supervised learning models are predictive (or discriminative) models which are given a 622 

datapoint x, and seek to predict a property y (for example, the band gap27) after being trained on a 623 

labelled dataset. The property y can be either continuous or discrete. They have been used to aid 624 

or even replace physical simulations or measurements under certain circumstances.166,167 625 
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[bH1] Generative materials design 626 

Unsupervised learning [G]  models are generative models [G]  that can generate or output 627 

new examples x’ (such as new molecules104) after being trained on an unlabelled dataset. This 628 

generation of new examples can be further enhanced with additional information (physical 629 

properties) to condition or bias the generative process, allowing the models to generate examples 630 

with improved properties and leading to the property-to-structure approach called inverse design 631 

.52,168  632 

[bH1] Self-driving labs 633 

Self-driving or autonomous labs19 use ML models to plan and perform experiments, 634 

including the automation of retrosynthesis [G]  analysis (such as in reinforcement learning aided 635 

synthesis planning124,169), prediction of reaction products (such as in convolutional neural networks 636 

[G] (CNNs) for reaction prediction137,138) and reaction condition optimization (such as in robotic 637 

workflows [G] optimized by active learning [G]19,170–174). Self-driving labs, which use active 638 

learning for iterating through rounds of synthesis and measurements, are a key component to the 639 

closed-loop inverse design.52 640 

[bH1] Aiding characterization 641 

ML models have been used to aid the quantitative or qualitative analysis of experimental 642 

observations and measurements, including assisting in the crystal structure determination from 643 

transmission electron microscopy (TEM) images,175 identifying coordination environment81 and 644 

structural transition83 from X-ray absorption spectroscopy (XAS) and inferring crystal symmetry 645 

from electron diffraction166. 646 

[bH1] Accelerating theoretical computations 647 

ML models can enable otherwise intractable simulations by reducing the computational 648 

cost (processor core amount and time) for systems with increased length and time scales69,70 and 649 

providing potentials and functionals for complex interactions.68 650 

[bH1] Optimizing system management 651 

ML models can aid the management of energy systems at the device or grid power level 652 

by predicting lifetimes (such as battery life43,44), adapting to new loads (such as in long short-term 653 

memory for building load prediction95) and optimizing performance (such as in reinforcement 654 

learning for smart grid control94). 655 

BOX 1 | Essential concepts in ML. ML: machine learning  656 
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 657 

[bH1] Photovoltaics 

[bH2] Materials 
[b1] Discover non-toxic (Pd- and Cd-free) 

materials with good optoelectronic properties. 

[b1] Identify and minimize materials defects in 

light absorber materials. 

[b1] Design effective recombination layer 

materials for tandem solar cells. 

[b1] Develop materials design strategies for 

long-term operational stability. 125 

[b1] Develop (hole/electron) transport 

materials with high carrier mobility. 125 

[bH2] Devices 

[b1] Optimize cell structure for 

maximized light absorption 

and minimized active materials 

usage. 

[b1] Tune materials band gaps 

for optimal solar harvesting 

performance under complex 

operation conditions. 21,22 

[bH1] Batteries 

[bH2] Materials 
[b1] Develop Earth-abundant cathode 

materials (Co-free) with high reversibility and 

charge capacity. 4 

[b1] Design electrolytes with wider 

electrochemical windows and high 

conductivity. 4 

[b1] Identify electrolyte systems to boost 

battery performance and lifetime. 4 

[b1] Discover new molecules for redox flow 

batteries with suitable voltage. 4 

 

 

[bH2] Devices 

[b1] Understand correlation 

between defects growth in 

battery materials and overall 

degradation process of battery 

components. 

[b1] Tune operando 

(dis)charging protocol for 

minimized capacity loss, 

(dis)charging rate and optimal 

battery life under diversified 

conditions. 7,53 

[bH1] Electrocatalysis 

[bH2] Materials 
[b1] Design materials with optimal adsorption 

energy for maximized catalytic activity. 60,61 

[b1] Identify and study active sites on catalytic 

materials. 58 

[b1] Engineer catalytic materials for extended 

durability. 58,60,61 

[b1] Identify a fuller set of materials 

descriptors that relate to catalytic activity. 60,61 

[b1] Engineer multiple catalytic functionalities 

into the same material. 60,61 

 

 

[bH2] Devices 

[b1] Design multiscale 

electrode structures for 

optimized catalytic activity. 

[b1] Correlate atomistic 

contamination and growth of 

catalyst particles to electrode 

degradation process. 

[b1] Tune operando 

(dis)charging protocol for 

minimized capacity loss and 

optimal cell life. 

 658 

BOX 2 | Grand challenges in energy materials research.   659 
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 660 
ML approach Main research outcome 

Photovoltaics 

Bayesian 

optimisation 

By sampling just 1.8% of the compositional space, the 

perovskites identified showed >17-fold stability 

improvement over the original MAPbI3 without 

compromising conversion efficiency.171 

Random forest 

classifier 

Approach reliability was verified by screening 10 newly 

designed donor materials, with good consistency between 

model predictions and experimental outcomes.176 

ML regression 

algorithms 

Six lead-free hybrid perovskites with suitable bandgaps for 

solar cells and stable at room temperature were successfully 

screened out of 5158 candidates.23 

Gaussian 

process 

regression 

The ML model was able to make bandgap predictions of 

elpasolite compounds with similar accuracy to that of high-

cost computational calculations.21 

 KRR Starting from a set of 1.2 million features, two of them were 

identified as the most important factors that influence the 

bandgap of double perovskites.22 

Random forest 

regressor 

Compared to the brute-force method, an AF of 700 was 

achieved with an experimentally validated new perovskite.24 

DNN-based 

classifier 

The ML model could classify compounds 10 times faster 

than human analysis with 90% accuracy, and four lead-free 

layered perovskites were realized experimentally.177 

CNN-based 

classifier and 

random forest 

regressor 

CNN-based crystal recognition enabled autonomous 

characterization of the outcomes of the robotic experiments. 

The regressor predicted the optimal conditions for the 

synthesis of a new perovskite single crystal.178 

Bayesian 

optimisation 

Using an automated experimentation platform with a 

Bayesian optimization, a 4D parameter space of organic 

photovoltaics blends was mapped and optimized for 

photostability.179 

Random forest 

regressor 

Essential features were identified and used for the screening 

of the most promising thin low-dimensional perovskite 

capping layer, which then led to a stability increase of the 

state-of-the-art perovskite cell by multiple times.180 

Random forest 

regressor 

Major patterns regarding materials selection/device structure 

were captured which could be used to predict perovskite 

solar cell efficiencies.181 

Genetic 

algorithm 

Experimental samples processed under conditions suggested 

by the model showed substantial improvements in 

performance.182 

Batteries 

DNNs, KRR, 

and support 

vector 

machine 

The model enabled a reduction in the amount of density 

functional theory calculations required to explore the 

chemical space. Up to 5,000 candidate materials for Na-ion 

and K-ion electrodes were identified.45 
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Artificial 

neural 

network 

The model demonstrated accurate estimation of the redox 

potentials of molecular electrode materials in Li-ion batteries, 

with contribution analysis confirming that electron affinity 

has the highest contribution to the redox potential.183 

Gaussian KRR 

and GBR 

The method predicted the redox potentials well. The redox 

potentials could be explained by a small number of features, 

improving the interpretability of the results.184 

Logistic 

regression 

The screening reduced the list of candidate materials from 

12831 down to 21 structures that show promise as 

electrolytes.36 

Linear 

regression and 

support vector 

machine 

The method transferred physical insights onto more generic 

descriptors, allowing the screening of billions of unknown 

compositions for Li-ion conductivity.185 

Logistic 

regression 

The ML-guided search was 2.7 times more likely to identify 

fast Li ion conductors, with at least a 44 times improvement 

of room-temperature Li ion conductivity.186 

Hierarchical 

and spectral 

clustering 

Ab-initio molecular dynamics simulations were used to 

validate the clustering in Li-containing compounds and 

identify top candidates for high ionic conduction, with 16 

new Li-ion conductors discovered.38 

Artificial 

neural 

network 

Predicted electrode specific resistances were found to agree 

well with simulated values.187 

Crystal graph 

CNN, KRR 

and GBR 

The ML model was used to screen over 12,000 inorganic 

solids for their use as solid electrolytes. Four of these solid 

electrolytes could be used to suppress Li dendrite growth.188 

Model-free 

reinforcement 

learning 

The method was used to explore trade-offs in the power-

performance design space and converge to a better power 

management policy. Experimental results obtained with this 

technique exhibited a remarkable power reduction compared 

to the existing expert-based power management.189 

Bagged 

decision tree 

The model led to a policy for battery usage optimization that 

substantially outperformed the leading algorithms. The 

policy was capable of improving and adapting as new data 

was collected over time.190 

Electrocatalysis 

Random forest 

regressor and 

extra trees 

regressor 

The framework was able to identify 131 intermetallic 

surfaces across 54 alloys as promising candidates for CO2 

reduction. Specifically, a Cu-Al alloy catalyst was identified 

and experimentally verified to selectively convert CO2 to 

ethylene with record performance.75,76 

Neural 

networks 

The model reduced the number of intermediate ab initio 

calculations needed to locate saddle points on the potential-

energy surface using a nudged elastic band simulation.69 

Gaussian 

process 

regressor 

The model predicted the most important reaction step that 

needed to be calculated with the computationally demanding 

electronic structure theory. With this method, the most 

likely reaction mechanism for the reaction of syngas on Rd 
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(111) was identified.70 

Neural 

networks 

A neural network was able to screen for active sites across a 

random, disordered nanoparticle surface. The most likely 

active sites for CO2 conversion were identified for Au and 

Cu nanoparticle systems.71,72 

BOX 3 | Summary of advances in applying ML to energy harvesting, storage and conversion. 661 
ML: machine learning, AF: Acceleration factor, KRR: kernel ridge regression, DNN: deep neural 662 

network, CNN: convolutional neural network, GBR: gradient boosting regression 663 

 664 

Glossary terms 665 

Artificial Intelligence (AI)  666 

Theory and development of computer systems that exhibit intelligence. 667 

Machine Learning (ML)  668 

Field within AI that deals with learning algorithms, which improve automatically through experience (data). 669 

Deep Learning (DL) & Neural Networks (NN) 670 

ML subfield that is based on neural networks with representation learning. A NN is composed of 671 

parametrized and optimizable transformations. 672 

Representation 673 

Features used in a representation learning model which transforms inputs into new features for a task. 674 

Supervised Learning 675 

ML techniques that involve the usage of labelled data. 676 

Unsupervised Learning 677 

ML techniques that learn patterns from unlabelled data. 678 

Reinforcement Learning 679 

ML techniques that make a sequence of decisions to maximize a reward. 680 

Generative Learning 681 

ML techniques that learn to model the data distribution of a dataset and sample new data points. 682 

Active Learning 683 

ML techniques that can query a user interactively to modify its current strategy (that is, label an input). 684 

Transfer Learning 685 

ML techniques that adapt a learned representation or strategy from one dataset to another. 686 

Regularization 687 

Process of incorporating additional information into the model to constraint its solution space. 688 

Uncertainty Quantification  689 

Process of evaluating the statistical confidence of model. 690 
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Data Augmentation 691 

Process of increasing the amount of data through adding slightly modified copies or newly created synthetic 692 

data from existing data. 693 

Generalization 694 

The ability to adapt to new, unseen data, drawn from the same distribution as the one used to create the 695 

model. 696 

Interpretability  697 

Degree at which a human can understand a model's decision. Interpretability can be used to build trust and 698 

credibility. 699 

Retrosynthesis 700 

Technique for solving problems in the planning of chemical synthesis. 701 

Screening Strategy 702 

Design process composed of several stages where materials are iteratively filtered and ranked to arrive to a 703 

few top candidates. 704 

ñClosed-Loopò Approach 705 

A technology development pipeline that incorporates automation to go from idea to realization of 706 

technology. “Closed” refers to the concept that the system improves with experience and iterations. 707 

Multiphysics Models 708 

Models that involve the analysis of multiple, simultaneous physical phenomena. These simultaneous 709 

phenomena can include heat transfer, fluid flow, deformation, electromagnetics, acoustics, and mass 710 

transport. 711 

Multiscale Modelling 712 

The field of solving problems which have important features at multiple scales of time and/or space. 713 

Automatic Generation Control  714 

A system for adjusting the power output of multiple generators at different power plants, in response to 715 

changes in the load. 716 

Multi -Agent system 717 

A computerized system composed of multiple interacting intelligent agents. 718 

Deep Belief Network 719 

A generative graphical model, or alternatively a class of deep neural network, composed of multiple layers 720 

of latent variables, with connections between the layers but not between units within each layer. 721 

Recurrent Neural Network 722 

A class of artificial neural networks where connections between nodes form a directed or undirected graph 723 

along a temporal sequence. 724 
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Inverse Design  725 

A design method where new materials and compounds are 'reverse-engineered' simply by inputting a set of 726 

desired properties and characteristics and then using an optimization algorithm to generate a predicted 727 

solution. 728 

Robotic Workflow s 729 

A robotic equipment automated chemical synthesis plan. 730 

Long Short-Term Memory 731 

A special kind of recurrent neural networks that are capable of selectively remembering patterns for long 732 

duration of time. 733 

 734 
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