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Graph neural network has shown impressive ability to capture relations among support(labeled) and
query(unlabeled) instances in a few-shot task. It is a feasible way that features are extracted using a
pre-trained backbone network, and later adjusted in a few-shot scenario with an episodic meta-
trained graph network. However, these adjusted features cannot well represent the few-shot data char-
acteristics owing to the feature distribution mis-match caused by the different optimizations between
the backbone and the graph network (multi-class pre-train v.s. episodic meta-train). Additionally, learning
from the limited support instances fails to depict true data distributions thus cause incorrect class allo-
cation. In this paper, we propose to transform the features extracted by a pre-trained self-supervised fea-
ture extractor into a Gaussian-like distribution to reduce the feature distribution mis-match, which
significantly benefits the later meta-training of the graph network. To tackle the incorrect class allocation,
we propose to leverage support and query instances to estimate class centers by computing an optimal
class allocation matrix. Extensive experiments on few-shot benchmarks demonstrate that our graph-
based few-shot learning pipeline outperforms baseline by 12%, and surpasses state-of-the-art results
by a large margin under both full-supervised and semi-supervised settings.
1. Introduction

Humans have the ability to quickly acquire knowledge and gen-
eralize them well after seeing only a few examples of them, while
it is extremely difficult for machines to do the same [1]. Although
deep learning [2,3] has made impressive progress in many com-
puter vision tasks [4–6], the demand for a large number of training
data limits its use in many application scenarios [7–10]. Limited
training data restrict the generalization of learning-based methods.
Reducing the cost of annotating data brings great attention to the
research of few-shot learning. To mimic the aforementioned
human ability, few-shot learning [11,12], aiming to learn from a
few labeled data (support set) and make a good prediction on unla-
beled data (query set), attracts considerable attention [13,14].

A practical strategy for few-shot learning is to first pre-train a
learning model using a large scale dataset and fine-tune it for a
specific task with only small number of training samples. However,
this solution may suffer from over-fitting [15] as one or a few
instances are insufficient to model the data distributions of the
novel(unlabeled) classes. Some research aims to apply data aug-
mentation [16] or mix-up [17] methods to enlarge the training
set. Although these techniques may alleviate overfitting in such a
limited-data regime, they do not solve it. Meta-learning, also called
as learning to learn, intends to leverage previous learning experi-
ence to adapt to a new learning scenario rapidly, to address the
over-fitting problem explicitly. It samples few-shot learning tasks
from a large scale dataset for pre-training, and optimizes the model
to perform well on these tasks. Meta-learning methods adopt an
episodic training strategy, which randomly samples only a few
examples (e:g., 1 or 5) from each class in an episode. By this way,
the models are trained episode by episode to gain the ability to
learn from few samples.

A rising trend in recent researches was to process the training
data with Graph neural network (GNN), which has shown its
impressive ability to manipulate structured data. Data instances
in an episode can naturally form an undirected acyclic graph, in
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which nodes represent data instances and edges represent the sim-
ilarities between two connected nodes. Thus, few-shot learning can
be regarded as the edge prediction of the graph. This formulation is
benefit for support set with additional supplementary information,
and makes the model more robust. Many research works use graph
neural network (GNN) to capture the intra- and inter-class rela-
tions in meta-learning, such as Attention-GNN [18], EGNN [19],
TPN [20], DPGN [21,22], and Free-DC [23].

Most graph-based few-shot learning methods employ a back-
bone network to extract and a graph network to propagate fea-
tures. Some works train both backbone and graph networks in
few-shot scenarios solely with episodic strategy, resulting unrep-
resentative features. Pre-training followed by episodic meta-
training has been proven to be a more effective strategy [24]25.
It is a feasible way that features are extracted using a pre-trained
backbone network, and later adjusted in a few-shot scenario with
an episodic meta-trained graph network.

Nevertheless, an optimization problem between the backbone
multi-class pre-training and the graph network episodic meta-
training differs a lot. The backbone network is trained over the
whole base class data (e:g., 64 classes, 600 samples per class in
miniImageNet), while the graph network utilizes episodic meta-
training (e:g., 5 classes, 5 samples per class) to learn from a few
samples. In [25], the authors prove that the classical pre-training
and episodic meta-training produce different feature distributions.
The features extracted by the pre-trained backbone network are
too complex/mis-match to well suit the graph network few-shot
meta-training. Additionally, assigning class labels by limited,
sometimes even one, support node per class may cause severe clas-
sification incorrection because the limited support nodes are not
enough to depict the true data distributions (See Fig. 3). The
instances in the query set are unlabeled thus cannot be directly
used to computed class centers. Inspired by this, we explore a dis-
tribution transport method to make the class center estimation
using both support set and query set possible.

In this paper, we attempt to address the issues mentioned
above and achieve a robust few-shot visual classification. Firstly,
we pre-train the backbone network with self-supervision on base
data set to extract features. Then these features are transformed
to be aligned with a Gaussian assumption to reduce the distribu-
tion mis-match. This feature transformation makes features fit into
the considered few-shot classification task and benefit the graph
network episodic meta-training in the next step. After the graph
feature propagation, we propose to employ support and query
nodes to estimate class centers by an optimal transport algorithm
Fig. 1. An overall illustration of our prop

248
to reduce the uncertainty of allocating classes. The illustration of
our method is shown in Fig. 1. Addressing two problems that exist
in graph-based few-shot learning method, the major contributions
of our work can be summarized as follows:

� We are the first to deal with the issue of feature distribution
mis-match caused by the different training strategies between
the backbone network and the graph network (multi-class pre-
training v.s. episodic meta- training). A feature distribution trans-
formation is proposed to transform the features between back-
bone and graph network to reduce the distribution mis-match
and make distributions more aligned to a Gaussian assumption.
The qualitative and quantitative analysis prove the distribution
transformation makes the features more suitable for a few-shot
scenario and benefits the graph feature propagation.
� Inspired by the optimal transportation problem, we propose to
leverage support and query instances to estimate class centers
simultaneously by computing an optimal allocation matrix
rather than simply assigning query labels with their nearest
support labels. Experiments show that the class centers esti-
mated by the proposed optimal class allocation method can bet-
ter describe the overall data distribution and improve the
classification performance.
� Extensive experiments on miniImageNet and tieredImageNet
have demonstrated our method achieves a significant improve-
ment in both few-shot classification and semi-supervised few-
shot classification tasks.

The remainder of this paper is organized as follows. We review
previous progress of meta-learning, graph neural network and
optimal transport briefly in Section 2. Then, we present the pro-
posed graph-based few-shot learning method in Section 3. Subse-
quently, the experiment and ablation studies are performed in
Section 4. Finally, we draw a short conclusion and describe some
future work in Section 5.
2. Related Work

2.1. Meta-learning

Meta-learning learns meta-level knowledge, i.e. knowledge
about knowledge, across batches of tasks. The mainstream works
of meta-learning can be broadly categorized into three groups:
Optimization-based, Generation-based and Metric-based.
Optimization-based methods train a well-initialized optimizer to
osed few-shot classification method.



quickly adapt it to unseen classes with a few epochs of training. In
[26], the proposed method learned to approximate gradient des-
cent with a LSTM. The proposed method in [27] learned model-
agnostic initial parameters and [28] learned the learner update
direction and learning rate. Generation-based methods learned to
augment data with a generative meta-learner [29], or learned to
predict classification weights for novel classes [30,31]. Metric-
based meta-learning aims to learn proper distance metrics, such
as the matching network [32] and the prototypical network [33].

Many research works use graph neural network (GNN) to cap-
ture the intra- and inter-class relations in meta-learning. Specifi-
cally, the work [18] proposed to build a complete graph network,
where each node feature was concatenated with the corresponding
class label, then node features were updated via the attention
mechanism of graph network to propagate the label information.
Different from this research in [18] which cast the few-shot learn-
ing as a node classification problem, EGNN [19] modeled the few-
shot learning as an edge labeling problem to predict whether the
associated two nodes belong to the same class. In the same vein,
the transductive propagation network (TPN) [20] developed a
transductive setting to propagate one-hot encoded labels over
the entire labeled and unlabeled instances as a whole. DPGN
[21,22] constructed a dual complete graph network to combine
the distribution-level relations and instance-level relations among
all examples.

2.2. Graph Neural Network

Graph neural networks (GNN) were proposed to process graph-
structured data [34,35]. It augments the node representation by
aggregating and transforming neighboring nodes recursively [36].
A rising trend in recent metric-base meta-learning exploits GNN
to capture the intra- and inter-task relations. In [18,37], the
authors cast few-shot learning as the node classification problem
with GNN. Liu et al. [20] brought the transductive setting into
graph-based few-shot learning, which propagated labels from sup-
port set to query set in the graph. Kim et al. [19] used the similar-
ity/dissimilarity between samples and dynamically updated both
node and edge features for complicated interactions. Yang et al.
[21] constructed a dual complete graph to combine the
distribution-level and instance-level relations among all examples.
RGEN [38] modeled the relations among local image regions with
the region-based relation reasoning into zero-shot learning. Lu
et al. [39] built an AGNN model to fully capture knowledge from
the relational visual data, enabling more accurate object discovery
and segmentation. SAGNN [40] proposed an end-to-end scale-
aware graph neural network by reasoning the cross-scale relations
among the support-query images for few-shot semantic segmenta-
tion. Graph-based few-shot learning uses a backbone network to
extract and a GNN to propagate example features. The labels of
query nodes are assigned with the labels of support nodes con-
nected with them. Some works aforementioned trained both back-
bone and graph networks in few-shot scenario with an episodic
strategy, which weakened the ability of the backbone to extract
representative example features. In our method, we firstly pre-
train the backbone network on a base class set. Then episodic strat-
egy is applied to train the graph network to adjust features in a
few-shot scenario. We also perform feature transformation to
bridge the the gap of optimization problem between the pre-
trained backbone and the meta-trained graph network.

2.3. Optimal Transport

Optimal transport provides a way to infer the correspondence
between two distributions. Recently, it has received great attention
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in various computer vision tasks. The work of [41] learned an opti-
mal transportation plan from source domain to target domain to
solve domain adaption problem. In [42,43], authors employed opti-
mal transport to deal with the 3D shape matching and surface reg-
istration problem. The work in [44,45] exploited the effectiveness
of optimal transport on graph matching problem [46–48]. To
reduce the uncertainty of allocating classes with limited labeled
nodes, we compute an optimal class allocation matrix by the opti-
mal transport. This allocates classes for each query node and iter-
atively update estimated class centers according to the optimal
class allocation matrix. In this paper, we tend to leverage optimal
transport to handle the incorrect class allocation.

3. Methodology

In this section we introduce the proposed graph-based few-shot
learning method, as illustrated in Fig. 1. The algorithm of the pro-
posed method is given in Algorithm 1.

3.1. Problem Definition

Given the training set Dbase ¼ xi; yið Þmb
i¼1; yi 2 Cbase

� �
and testing

set Dnovel ¼ xi; yið Þmn
i¼1; yi 2 Cnovel

� �
, where mb and mn are numbers

of samples in Dbase and Dnovel, respectively, Cbase and Cnovel are class
sets of Dbase and Dnovel, respectively, Cbase \ Cnovel ¼£. Few-shot
learning aims to learn a model on Dbase, which is capable of well
generalizing the unseen test set Dnovel with only a few labeled sam-
ples per class. Generally, we can pre-train a classifier over the
large-scale base class data Dbase then fine-tune the classifier on
the Dnovel. However, a small number of labeled samples from each
class are not sufficient to train a model fully reflecting the inter-
and intra-class variations.

Episodic training [32] is a training paradigm that mimics the
few-shot learning setting of test tasks. Given a large labeled train-
ing dataset, episodic training samples a series of training tasks
(episodes) T from a task distribution P Tð Þ. In an episodic training,
the distribution of training tasks is assumed to be similar to that of
test tasks. Specifically, a N-way K-shot classification setting is used
for both training and testing stage. Each few-shot task T has a sup-

port set S and a query set Q : T ¼ S [ Q where S ¼ xi; yið Þf gN�Ki¼1 and

Q ¼ xi; yið Þf gN�KþN�qi¼N�Kþ1 . The support set S contains N classes with K
samples for each class and the query set Q has q samples per class.
In the training stage, data labels are provided for both support set S
and query set Q, where S;Q 2 Dbase. Given testing data Dnovel, clas-
sifier should be able to map the query sample from Q 2 Dnovel to
the corresponding label with few support samples from
S 2 Dnovel. The label space of training and testing tasks are mutually
exclusive Cbase \ Cnovel ¼£.

3.2. Pre-training Feature Extractor with Self-Supervision

Self-supervised learning aims to extract supervisory signals by
defining surrogate tasks using only the structural information pre-
sented in the data. In the first training stage, we pre-train our fea-
ture extractor on the base class data Dbase with self-supervision.
More specifically, a rotation pretext task is considered in our model
to obtain features that can be useful for fast few-shot knowledge
transfer. The input images x 2 Dbase are rotated by r degrees,
r 2 CR ¼ 0�;90�;180�;270�f g. And an auxiliary loss (based on the
predicted rotation angle) is added to the standard classification
loss. The self-supervision loss is formulated as:

Lrot ¼
1
CRj j
�

X
x2Dbase

X
r2CR

L FCrot � f emb xrð Þ; rð Þ; ð1Þ



where CRj j denotes the cardinality of CR; f emb xrð Þ is the feature
embedding of rotated image xr; FCrot is the linear classifier for rota-
tion degree prediction, L is the cross-entropy loss. The image clas-
sification loss is given by:

Lclass ¼ E x;yð Þ2Dbase ;r2CR L FCclass � f emb xrð Þ; yð Þ½ �; ð2Þ

where L is the cross-entropy loss, f emb xrð Þ is the feature embedding
of rotated image xr; FCclass is the linear classifier for image classifica-
tion. The total objective function of the embedding module is the
combination of the self-supervision loss and the classification loss:

Lemb ¼ Lclass þ Lrot: ð3Þ

After the self-supervised pre-training stage, the feature extrac-
tor parameters are determined to extract image features used for
the later episodic meta-training of the graph propagation network.

3.3. Feature Distribution Transform

Many recent works proved that pre-training + meta-training is a
better strategy than solely episodic meta-training [24,49]. We also
found that pre-training the backbone then meta-training the graph
network brings better performance in graph-based few-shot learn-
ing (Table 4). However, the pre-trained backbone f emb is optimized
on the large-scale diverse and fully annotated base class data Dbase,
which differs a lot to the considered few-shot tasks. Additionally,
the classical pre-training and episodic meta-training produce dif-
ferent feature distributions [25]. Therefore, we apply a feature dis-
tribution transformation on all features extracted by backbone to
make them more aligned to a Gaussian distribution before feeding
them to the episodic meta-training of graph network.

Empirically, many previous works [23] found that the image
features extracted by a convolutional neural network form Gaus-
sian distribution well. From the intuitive perspective, the features
from the same class tend to cluster well. The center of the cluster
can be regarded as the class mean. Thus we leverage a power trans-
formation to transform the feature distribution and empirically
found it works very well.

Note that image embedding features are extracted by pre-
trained extractor as f ¼ f emb xð Þ. The following power transforma-
tion is performed to make the distribution of f more Gaussian:

ef ¼ fþ�ð Þb

fþ�ð Þbk k2
if b– 0;

ef ¼ log fþ�ð Þ
k log fþ�ð Þk2

if b ¼ 0:

8><
>: ð4Þ

Here, � equals to 1e� 6 to make f þ �ð Þ strictly positive. b is a hyper-
parameter to adjust the feature distribution. The above transforma-
tion can reduce the mis-match of distribution thus make it as a
Gaussian-like distribution. We prove that the feature distribution
transformation can reduce the distribution mis-match and benefit
the episodic training of graph network qualitatively and quantita-
tively in the experiments section (Table 4 and Fig. 2).

3.4. Graph Feature Propagation

Few-shot learning in an episode needs to fully exploit the rela-
tionships between support set S and query set Q. Therefore using
graph neural networks to iteratively gather neighbor feature infor-
mation can express complex interactions among data instances. As

shown in Fig. 1, the support data S ¼ ef i ; yi
� �n oN�K

i¼1
and query data

Q ¼ ef i ; yi
� �n oN�KþN�q

i¼N�Kþ1
in each episode T ¼ S;Qð Þ can form an undi-

rected acyclic graph G ¼ V; Eð Þ. Each node v i 2 V represents an
image embedding vector and each edge eij 2 E represents an inter-

action between nodes. The adjacency matrix A ¼ Aij
� � Vj j

i;j¼1 is
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defined as semantic similarity between nodes v i and v j, which is
dynamically updated along with the propagation. Given the sup-
port set label, the adjacency matrix is initialized as:

A 0ð Þ
ij ¼

1 if ef i ; ef j 2 S and yi ¼ yj;

0 if ef i ; ef j 2 S and yi – yj;

0:5 otherwise:

8>><
>>: ð5Þ

We construct a L-layers graph to propagate the embeddings to
gather information from neighbors L hops away. The forward prop-
agation of the graph network is an alternate update of node fea-
tures and adjacency matrix (edge features) through layers.

3.4.1. Node Feature Aggregation

Given v ‘�1ð Þ
i and A ‘�1ð Þ

ij from the layer ‘� 1, node features are
firstly updated by neighbor information aggregation. The node fea-
ture v ‘

i at the layer ‘ is updated by aggregating neighbor node fea-

tures according to their similarity A ‘�1ð Þ
ij :

v̂ ‘�1ð Þ
i ¼

X
j

v ‘�1ð Þ
i A ‘�1ð Þ

ij

� �
; ð6Þ

v ‘ð Þ
i ¼ f node v ‘�1ð Þ

i ; v̂ ‘�1ð Þ
i

h i� �
; ð7Þ

where f node is a node feature transformation network and �; �½ � is the
concatenation operation. The node features at the 0th-layer are ini-
tialized with the extracted features with distribution transforma-

tion, i:e:;v 0ð Þ
i ¼ ef i .

3.4.2. Adjacency Matrix Update

After obtaining node features at the ‘th layer, the adjacency fea-

tures at the ‘th layer A ‘ð Þ
ij can be updated by:

eA ‘ð Þ
ij ¼ f edge v ‘ð Þ

i � v
‘ð Þ
j

��� ���� �
; ð8Þ

A ‘ð Þ
ij ¼ D�

1
2eA ‘ð Þ

ij D
�1

2; ð9Þ

where D is the degree matrix of adjacency matrix, f edge is the edge
feature transformation network.

3.4.3. Training
The parameters of the node feature transformation network

f node and the edge feature transformation network f edge are trained
by minimizing the binary cross-entropy loss of ground truth query
edge-labels and the predicted adjacency matrix A:

Le ¼
XL

‘¼1
k‘L Yedge;A ‘ð Þ

� �
; ð10Þ

where Yedge is the set of all ground-truth edge-labels and A ‘ð Þ is the

predicted adjacency matrix at the ‘th layer. k‘ is hyper-parameter.
Notably, in the training phase, we hold the ground truth of support
and query training set to form a similarly matrix, as the supervisor
signal. This matrix is generated by support set label and query set
label, as Yedge and A ‘ð Þ.

3.5. Optimal Class Allocation using Sinkhorn Iteration

After the graph propagation, query nodes are closer to their cor-
responding support nodes from the same class. Therefore we can
simply assign the query labels with their closest class centers com-
puted by averaging all support node features in each class. This
works well when labeled support data are sufficient. However,
estimating class centers using very limited labeled data (1 or 5)



Fig. 2. t-SNE visualization of features in a 5way-5shot experiment. (a) Features before distribution transformation. (b) Features after distribution transformation. (c) Features
after graph propagation. ‘o’ represents support, ‘x’ represents query. Different colors means different labels.
cannot correctly depict the distribution of the entire class thus
cause severe classification incorrection (See Fig. 3). The reason
for estimating class center using both support and query set is that,
due to the extremely limited number of labeled examples in the
support set, e.g., 1 or 5, the support set’s mean is extremely biased
and far from mirroring the ground-truth class center. Using both
support set and query set to estimate the class center can greatly
calibrate the biased class center and result in a more representative
class center feature.

Optimal transport aims at computing minimal cost transporta-
tion from a source distribution to a target distribution. Inspired by
optimal transport algorithm [50], we propose to estimate class
centers by computing optimal transportation between query nodes
and class centers. Denoting support and query nodes at the last
layer of the graph network as VS and VQ , respectively. We firstly
initialize N class centers by averaging labeled support nodes in
each class:

cj ¼
1
K
�

X
v2VS ;v2Cj

v ; j ¼ 1 . . .N; ð11Þ

where N and K are numbers of classes and samples per class, respec-
tively, i:e:;N-way K-shot mentioned above. Cj is class j. Then, we
define a cost matrix Dij which denotes the euclidean distance
between query node v i and class center cj. After that, we use sink-
horn algorithm to compute a class allocation matrix to allocate
unlabeled query samples to class centers with a minimal trans-
portation cost:

P� ¼ Sinkhorn D; kð Þ
¼ argmin

P2U

X
ij

PijDij þ kH Pð Þ; ð12Þ

H Pð Þ denotes the entropy of P regularized by k, which aims to
make the computation practical and effective. U is a set contains
all possible allocation matrices:

U ¼ P 2 RNq�N
þ jP1N ¼ 1Nq;P

T1Nq ¼ q1N

n o
; ð13Þ

where N is the number of classes and q is the number of query sam-
ples per class. The P1N ¼ 1Nq and PT1Nq ¼ q1N are constraints of allo-
cation matrix [50]. The value of Pij means the probability of
allocating query sample v i to class j. The sinkhorn algorithm pro-
vides an efficient method to compute the optimal allocation matrix
that can minimize the transportation cost.

As formulated in Eq. (11), we initialize the class center cj by
averaging support node features. To use unlabeled query nodes
in the class center estimation, we alternately update class centers
and class allocation matrix. At each step, an allocation matrix P on
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the unlabeled query nodes is computed. Then cj is re-estimated
along with labeled support nodes:

lj ¼
PNq

i¼1P
�
ijv i þ

P
v2VS ;v2Cjv

K þ
PNq

i¼1P
�
ij

; ð14Þ

cj  cj þ a lj � cj
� �

; ð15Þ

where a is a hyper-parameter. After k steps of iterative updates on
the allocation matrix P�, the prediction of sample i can be given as:

ŷi ¼ argmax
j

P�ij: ð16Þ

Algorithm1: Inference process of the proposed method.

Require:
G ¼ V; E; Tð Þ, where T ¼ S

S
Q,

S ¼ xi; yið Þf gN�Ki¼1 ;Q ¼ xif gN�KþN�qi¼N�Kþ1 ;
Input:
Node feature transformation network: f node;
Edge feature transformation network: f edge;
Output:

ŷif g
N�KþN�q
i¼N�Kþ1 ;

1: Extract features for input images: f i ¼ f emb xið Þ;8i.
2: Transform feature distributions with Eq. (4);
3: Initialize graph nodes with transformed image features:

v 0ð Þ
i ¼ ef i ;

4: Update node representations with Eq. (6) and (7);
5: Compute adjacency matrix with Eq. (8) and (9);
6: Initialize class centers with Eq. (11);
7: for allk steps do
8: Compute optimal class allocation matrix P with Eq. (12);
9: Update class centers with Eq. (14) and Eq. (15);
10: end for
11: Return ŷi ¼ argmaxjP

�
ij;
4. Experiments and Discussions

In this section, we firstly introduce the experimental setup,
including implementation details and datasets. After that, we com-
pare our results with state-of-the-art algorithms, followed by per-
forming an ablation study.



4.1. Implementation Details

4.1.1. Network Architecture
To make a fair comparison, we use the same embedding net-

works as the most existing works, such as Conv4, WRN, and
ResNet-18. We also adopt the same graph network architecture
as [19], which consists of four convolutional blocks including a
3� 3 convolutions, a batch normalization, a 2� 2 max-pooling
and a LeakyReLU activation.

4.1.2. Parameter Settings.
The parameters of different modules are discussed as follows.
Feature extractor Module: We use three popular networks for

fair comparison, which are Conv4, ResNet18 and WRN. Conv4
mainly consists of four Conv-BN-ReLU blocks [19]. The last two
blocks also contain a dropout layer. ResNet18 is the same as the
one described in [51]. It mainly has four blocks, which include
two residual blocks for ResNet18. WRN was firstly proposed in
[52]. It mainly has three residual blocks and the depth of the net-
work is set to 28 as in [53]. Backbones Conv4, ResNet-18 and WRN
are trained by Adam optimizer with an initial learning rate
lr ¼ 1e� 3. We decay the learning rate by 0.1 per 15000 iterations
and set the weight decay to 1e� 5. We train the feature extractor
on whole base class data (training set) not using episodic strategy.
Following the works in [21,17], the output feature dimensions of
Conv4, ResNet-18 and WRN are 128, 512 and 640, respectively.

Feature Distribution Transformation Module: In Equation.
(4), � equals to 1e� 6 to make f þ � strictly positive. b is used to
control the mis-match of the distribution. We choose b ¼ 0:5 for
the considered datasets.

Graph Feature Propagation Module: At the episodic training
stage, our experiments on all datasets are performed using
N ¼ 5;K ¼ 1 or N ¼ 5;K ¼ 5; i:e. 5way-1shot and 5way-5shot. The
number of query samples q is 15, which means we randomly sam-
ple 15 queries for each of 5 classes. We use a transductive setting
in the previous works [20,19] to process all the query samples
simultaneously. The mini-batch size is 80 and 64 for 1-shot and
5-shot experiments, respectively. The number of graph layers is
3. The loss coefficients in Eq. (10) are 0.5, 0.5 and 1, respectively.
The graph network is trained by Adam optimizer with an initial
learning rate 1e� 3 and weight decay of 1e� 6. The reported
results are obtained by averaging classification accuracy over
10000 tasks.

Optimal Class Allocation Module: The coefficient k of the reg-
ularization item in Eq. (12) is chosen to be 10. The learning rate in
Eq.(15) and iteration steps of class center update are a ¼ 0:2 and
k ¼ 20, respectively.

4.2. Datasets

We conduct extensive experiments on two widely-used few-
shot image classification benchmarks, i:e.miniImageNet, tieredIma-
geNet. Noted that the training set and testing set are also called
base class data and novel class data, respectively.

� miniImageNet is derived from ILSVRC-12 dataset [54]. It con-
tains 100 different classes with 600 samples per class. The
image size is 84� 84� 3. We follow the splits used in [26],
where 64, 16, and 20 classes are used for training, validation,
and testing, respectively.
� tieredImageNet is a larger subset of ILSVRC-12 dataset [54],
which contains 608 classes sampled from hierarchical category
structure. Each class belongs to one of 34 higher-level cate-
gories sampled from the high-level nodes in the ImageNet.
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The average number of images in each class is 1281. We use
351, 97, and 160 classes for training, validation, and testing,
respectively.

4.3. Compared Methods

We compare our method with the following methods:
MAML (Model-Agnostic Meta-Learning) [27] is a classic meta-

learning algorithm proposed by C. Finn. This algorithm aims to find
an initial parameters of a learning model [55], so that the model
can learn quickly on a small amount of training data of new tasks.

MatchingNet (Matching Networks) [32] is an attention- and
memory-based network with metric learning developed by Oriol
Vinyals. This method needs the environment for testing and train-
ing must match.

ProtoNet (Prototypical Networks) [33] regards a few-shot clas-
sification task as finding the prototypical center of each class in
semantic space [56]. It differs form MatchingNet in metric
function.

GNN (Graph Neural Networks) [18] defines a graph neural net-
work architecture that generalizes several of existing few-shot
learning models, by assimilating generic message-passing infer-
ence algorithms [57] with their neural-network counterparts.

EGNN (Edge-Labeling Graph Neural Network) [19] learns the
edge information, that is, the similarities and differences between
nodes, through the graph network for information dissemination,

Baseline++ [58] is a variation of the baseline method that fol-
lows the standard transfer learning procedure. Baseline++ explic-
itly reduces intra-class variation among features during training.

LEO (Transductive Propagation Network) [59] is a few-shot
learning algorithm based on parameter optimization, by building
a latent embedding space.

TPN (Transductive Propagation Network) [20] proposes to use
transductive information to propagate the label of training set
and test set in one episode, so that the pseudo of unlabeled data
could be predicted.

S2M2R (Self-Supervised Manifold Mix) [17] learns relevant fea-
ture manifold using self-supervision and regularization techniques
to significantly improve few-shot learning performance.

DPGN (Distribution Propagation Graph Network) [21] is a dual
graph neural network model, composing of the Propagation Graph
and the Distribution Graph, which fuses the relationship between
instance level and distribution level.

LR + ICI(Tran.) (Instance Credibility Inference) [60] obtains the
pseudo of unlabeled samples by self-training method, and selects
the pseudo with the highest confidence as for data augmentation
[61].

4.4. Comparison with the State-of-The-Art

We compare the performance of our method with aforemen-
tioned state-of-the-art models on two benchmarks, miniImageNet
and tieredImageNet. Among them, EGNN [19] is mostly related to
our approach and could be regarded as a baseline of ours.

Performance on miniImageNet: Table 1 reports the results of
different method. We can observe that with ConvNet4 as the back-
bone, our algorithm brings a significant improvement over base-
line EGNN [19], i.e., 12% improvement in 1-shot scenario and 7%
improvement in 5-shot scenario. Also, our method is superior to
all methods with the same backbone ConvNet4. Notably, ours with
ConvNet4 outperforms all other method with ResNet18 or WRN in
1-shot scenario. Compared with DPGN [21], ours makes a huge
improvement from 66.01% to 71.82 with Conv4 in 1-shot scenario,
but makes a dent in 5-shot scenario up by less than 1%. This phe-
nomenon illustrates that our method performs better in 5-way 1-



Table 1
The 5-way 1-shot and 5-shot classification accuracies (%) on the miniImageNet
dataset, with 95% confidence interval.

Models Backbone 1-shot " 5-shot "

MatchingNet [32] Conv4 43.56 	 0.84 55.31 	 0.73
ProtoNet [33] Conv4 49.42 	 0.79 68.20 	 0.66
MAML [27] Conv4 48.70 	 1.84 55.31 	 0.73
GNN [18] Conv4 50.33 	 0.36 66.41 	0.63
EGNN [19] Conv4 59.63 	 0.52 76.34 	 0.48
DPGN [21] Conv4 66.01 	 0.36 82.83 	 0.41

Ours Conv4 71.82 	 0.88 83.04 	 0.51
Baseline++ [58] ResNet18 51.87 	 0.77 75.68 	 0.63
MAML [27] ResNet18 49.61 	 0.92 65.72 	 0.77
DPGN [21] ResNet18 66.63 	 0.51 84.07 	 0.42

LR + ICI(Tran.) [60] ResNet12 66.80 79.26
Ours ResNet18 73.36 	 0.73 85.01 	 0.91

LEO [59] WRN 61.76 	 0.08 77.59 	 0.12
S2M2R [17] WRN 64.93 	 0.18 83.18 	 0.11
DPGN [21] WRN 67.24 	 0.51 83.72 	 0.44

Ours WRN 74.27 	 0.33 85.13 	 0.11

Table 3
Semi-supervised few-shot classification accuracies (%) on miniImageNet with 95%
confidence intervals. * indicates re-implementation. All models use Conv4 as
backbone.

Methods 5way-5shot "

2-4 20%-labeled 40%-labeled 100%-labeled

GNN-LabeledOnly 50:33	 0:36 56:91	 0:42 66:41	 0:63
GNN-Semi 52:45	 0:88 58:76	 0:86 66:41	 0:63
shot settings than in 5-way 5-shot settings. The same trend hap-
pens with deeper ResNet18 and WRN. In both 5-way 1-shot and
5-way 5-shot settings, our method with Conv4, ResNet18 and
WRN outperforms others.

Performance on tieredImageNet: From Table 2, as can be seen,
with ConvNet4 as the backbone, our method brings about 6% and
7% improvement over our baseline EGNN [19] in 1-shot and 5-
shot scenario respectively. With the backbone Conv4, our method
performs better on tieredImageNet than on miniImageNet. The
improvement of ours on tieredImageNet is larger than on miniIma-
geNet compared with DPGN, by 8% and 2%. Besides, the perfor-
mance of ours is superior to other methods with the same
backbone as well. Significantly, on this more challenging dataset,
our method with WRN as the backbone achieves the state-of-
the-art performance 83.88% in 1-shot scenario and 90.39% in 5-
shot scenario, demonstrating the superiority of our method again.

In summary, as shown in Table 1 and Table 2, our method is
superior to other existing methods and achieves the state-of-the-
art performance equipped with different backbones. A deeper
backbone network can usually extract more powerful features.
We further equip backbones with self-supervision which will make
the features more robust to get better classification performance.
We observe that our model especially performs better in 5way-
1shot settings. Because previous works using only one labeled sup-
port sample to represent the center of the data distribution which
cannot depict the real data distribution. On the contrary, our
method learns all the data including labeled and unlabeled to esti-
mate class centers, hence can estimate class centers well even with
one labeled sample.
Table 2
The 5-way 1-shot and 5-shot classification accuracies (%) on the tieredImageNet
dataset, with 95% confidence interval. * indicates re-implementation.

Models Backbone 1-shot " 5-shot "

MAML* [27] Conv4 51.67 	 1.81 70.30 	 1.75
ProtoNet* [33] Conv4 53.34 	 0.89 72.69 	 0.74

TPN [20] Conv4 59.91 	 0.94 73.30 	 0.75
EGNN [19] Conv4 63.52 	 0.52 80.24 	 0.49
DPGN [21] Conv4 69.43 	 0.49 85.92 	 0.42

Ours Conv4 77.67 	 0.27 87.98 	 1.01
DPGN [21] ResNet18 70.46 	 0.52 86.44 	 0.41

LR + ICI(Tran.) [60] ResNet12 80.79 87.92
Ours ResNet18 83.71 	 0.50 89.35 	 0.87

LEO [59] WRN 66.33 	 0.05 81.44 	 0.09
Ours WRN 83.88 	 0.25 90.39 	 0.22
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4.5. Performance on Semi-supervised Learning

We follow the setting as [18,19] in our semi-supervised classi-
fication experiment. Specifically, the support data is partially
labeled in the semi-supervised regime. Table 3 shows the semi-
supervised 5way-5shot classification results on miniImageNet.
‘20%-labeled’ means only 20% of support data are labeled while
80% of support data are unlabeled. ‘LabeledOnly’ denotes learning
with only labeled support samples without considering unlabeled
support data. ‘Semi’ means the semi-supervised learning. By lever-
aging unlabeled samples to estimate class centers, our method
reduces the uncertainty of estimating class centers using limited
labeled data and achieves the best performance on semi-
supervised learning.

4.6. Ablation Study

4.6.1. Role of Each Module
Table 4 shows the importance of different modules in our

model. Noted that the baseline method (EGNN) trains both back-
bone and graph networks in few-shot scenario solely with episodic
strategy, which may weaken the ability of the backbone to extract
representative features. As we can see, DPGN is more effective than
EGNN. We also believe DPGN will reasonably improve our pipeline.
Compared with EGNN, our Self-supervised Pre-training (SSP) of
backbone network is an effective way to extract representative fea-
tures and can enhances the generalization and robustness of the
extracted features, then graph network is used to adjust those fea-
tures in a few-shot scenario. Moreover, distribution transformation
(DT) can reduce the mis-match of the feature distribution thus
bridge the optimization gap between the backbone and the graph
network and benefit the graph episodic meta-training. Optimal
class allocation (OCA) can reduce the uncertainty of class center
estimation by leveraging all the labeled and unlabeled data to esti-
mate the class centers simultaneously using optimal transport
algorithm. In Table 4, our method without OCA indicates that we
compute class centers by averaging labeled samples only. Fig. 2
shows the t-SNE visualizations of image features in a 5way-5shot
episode. The original distribution of features extracted by pre-
EGNN-LabeledOnly* 58:65	 0:55 56:91	 0:00 75:25	 0:49
EGNN-Semi* 63:62	 0:00 64:32	 0:00 75:25	 0:49

Ours-LabeledOnly 69:56	 0:32 75:28	 0:05 83:04	 0:51
Ours-Semi 73:97	 0:73 78:75	 0:23 83:04	 0:51

Table 4
Ablation study on miniImageNet, with 95% confidence interval. * indicates re-
implementation. All models use Conv4 as backbone.

Methods Backbone miniImageNet (%)

1-shot " 5-shot "

Baseline(EGNN) Conv4 59.63 	 0.52 76.34 	 0.48
Baseline(DPGN*) Conv4 61.32 	 0.62 78.29 	 0.50

Baseline(EGNN)+SSP Conv4 62:93	 0:77 78:37	 0:13
Baseline(EGNN)+SSP + DT Conv4 69:92	 0:26 81:31	 0:18

Baseline(EGNN)+SSP + DT + OCA
(Full)

Conv4 71.82	 0.88 83.04	 0.51



Fig. 3. The visualization of the optimal class allocation process. ‘o’ represents support, ‘x’ represents query, red squares represent estimated class centers. The class centers in
the left figure (iteration 0) were initialized by support features, which in the middle and right figures were re-estimated by support and query features. The classification
accuracies are shown above the figures.
trained feature extractor is shown in Fig. 2 (a), where samples from
different classes are separated coarsely but not clearly due to the
distribution mis-match. The feature distribution transformation
module reduces mis-match of the distributions and makes feature
distributions more aligned to the Gaussian assumption in Fig. 2 (b).
The graph feature propagation further cluster samples from the
same class and pull samples from different classes away in Fig. 2
(c). Our proposed method outperforms the baseline by 12%
relatively.
Fig. 5. Accuracy when increasing iteration in OCA on miniImageNet.
4.6.2. Effect of Optimal Class Allocation
Our optimal class allocation module uses labeled and unlabeled

samples to estimate class centers simultaneously by an optimal
transportation algorithm. Fig. 3 shows the change of the class cen-
ters along with the sinkhorn iteration. Class centers in iteration 0
(left in Fig. 3) are initialized by averaging support samples only.
The initialized centers can only represent the centers of support
features but not the centers of the whole feature distributions.
With our optimal class allocation, the class centers are re-
estimated steps by steps by considering the support and query
data simultaneously. After 20 iterations, the re-estimated class
centers (right in Fig. 3) can represent the centers of the whole dis-
tribution thus improve the classification performance.
4.6.3. Parameter Sensitivity Analysis on b
In Eq. 4, � equals to 1e� 6 to make f þ � strictly positive. b is

used to control the mis-match of the distribution. We conduct
the parameter sensitivity analysis on b to show the reason why
Fig. 4. Parameter sensitivity analysis for b on miniImageNet.
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we finally choose b ¼ 0:5 for the considered datasets. Fig. 4 illus-
trates the test performance reaches the peak when b ¼ 0:5.

4.6.4. Parameter Sensitivity Analysis on Loops of OCA
It is necessary to give evidence of selecting 20 iterations in OCA.

Here, we draw the curve of Test Accuracy(5way-1shot) and itera-
tion in OCA on miniImageNet, to help readers have a comprehen-
sive understanding on this hyper-parameter. In Fig. 5, we could
observe that accuracy and iteration show positive correlation from
iteration = 0 to iteration = 20. In another word, when iterations
increases gradually, test accuracy on miniImageNet also climbs
up. Once the iteration comes to 20, the accuracy reaches the top,
0.7182. When continuing to increase iterations, the accuracy is
almost stable. Considering the Occam’s Razor principle, therefore,
we select iteration = 20 in OCA.

5. Conclusion

In this paper, we addressed two major problems that exist in
the graph-based few-shot learning method. A feature distribution
transformation is proposed to reduce the distribution mis-match
thus bridge the optimization gap between the backbone network
multi-class pre-training and the graph network episodic meta-
training. In order to reduce the uncertainty of allocating classes
by limited support nodes, we proposed to leverage support and
query nodes to allocate classes simultaneously by computing an
optimal class allocation matrix. Experimental results show the sig-
nificant superiority of our method and prove the effectiveness of
each module in our method. Our method can also be well general-
ized in other graph-based few-shot learning methods.
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