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Abstract—Address Event Representation (AER) image sensors
represent the visual information as a sequence of events that
denotes the luminance changes of the scene. In this paper, we
introduce a feature extraction method for AER image sensors
based on the probability theory, namely, Bag of Events (BOE).
The proposed approach represents each object as the joint
probability distribution of the concurrent events and each event
corresponds to an unique activated pixel of the AER sensor.
The advantages of BOE include: 1) It is a statistical learning
method and has a good interpretability in mathematics; 2)
BOE can significantly reduce the effort to tune parameters for
different data sets because it only has one hyper-parameter and
is robust to the value of the parameter; 3) BOE is an online
learning algorithm which does not require the training data to
be collected in advance; 4) BOE can achieve competitive results
in real time for feature extraction (> 275 frames/second and
> 120,000 events/second); 5) The implementation complexity of
BOE only involves some basic operations, e.g., addition and
multiplication. This guarantees the hardware friendliness of
our method. The experimental results on three popular AER
databases (i.e., MNIST-DVS, Poker Card, and Posture) show
that our method is remarkably faster than two recently proposed
AER categorization systems while preserving a good classification
accuracy.

Index Terms—Neuromorphic computing, statistical learning
method, events-based categorization, address-event representa-
tion, online learning, dynamic vision sensor.

I. INTRODUCTION

NEUROMORPHIC engineering develops hardware and

software to mimic the working way of neural systems.

It has attracted a lot of attention from the communities

of machine intelligence, neuroscience, computer vision, data

mining, and electronic circuits [1]–[5].

One of most successful neuromorphic system is the Asyn-

chronous Time-based Image Sensor (TIS) [6] and event-driven

Dynamic Vision Sensor (DVS) [7], [8]. Different from the

traditional camera, DVS generates output (i.e., event) only

when it captures the transient in a scene instead of sending

entire images at fixed frame rates. Each DVS pixel (x, y)
corresponds to a local receptive field and independently senses

the light change, where x and y denote the positions of the
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pixel. If the light changes by a given relative amount, an event

(x, y, p) will be generated, where the polarity p = 1 denotes

the increasing light (i.e., dark-to-light) and p = −1 denotes the

decreasing light (i.e., light-to-dark). There are cases wherein

multiple DVS pixels request to output events at the same

time and these events will be asynchronously output with

sub-microsecond delays. This flow of asynchronous events

is usually in the format of Address Event Representation

(AER). In the context below, AER sensor refers to DVS unless

otherwise stated.

To process the output of DVS in the computer, AER

is usually represented as a collection of the quadruples

(t, x, y, p) [9], where t denotes the timestamp. As an illustra-

tion, Fig. 1 shows the event flow that corresponds to a rotating

object. For each stimulus onset, DVS requests to send out

four events at the same time and these events are sequentially

output in a fairly random manner [10]. The delay between two

consecutive events is generally larger than 1ns but smaller

than 1µs. Moreover, for a static background and a fixed DVS,

the number of events generated by an moving object that is

moving parallel to the focal plane mainly depends on the

moving speed of the object.

AER sensors remove the data redundancy from the scene,

which has an output-by-demand nature and energy-saving

advantage. However, most existing methods cannot be directly

used to handle the output of the sensor. To solve this problem,

some impressive works have been proposed for object recog-

nition [11]–[19], tracking [20]–[23], and visual information

processing [24]–[29]. In this paper, we mainly focus on the

problem of object recognition.

Similar to the traditional image categorization system, the

AER classification system (AERCsys) also consists of two

parts, i.e., the feature extraction module and the classification

module. The major advantages of the AERCsys include high

computational efficiency, hardware friendliness, and low la-

tency. To exploit these advantages, several recent works have

been proposed, which are inspired by the huge success of

deep learning. Chen et al. [15] proposed a bio-inspired feature

extraction method. Extensive theoretical analysis and experi-

mental results show that their method can extract scale- and

translation-invariant features from the output of DVS. Pérez-

Carrasco et al. [16] proposed an event-driven convolutional

neural network which achieves the “pseudo-simultaneity”

property between AER sensing and processing. In short, their

method can handle the event steam very fast. O’Connor et

al. [17] proposed a spiking deep belief network (SDBN) for

feature extraction and classification. The method can perform
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(a) Output by a conven-
tional camera.

Timestamp (ns) x y Polarity

192 1 2 1

282 2 3 -1

367 3 4 -1

396 2 3 1

10192 1 2 -1

... ... ... ...

stimulus
delay

event
delay

(b) The event flow with nano-seconds delays. (c) The event flow output by the DVS camera.

Fig. 1. An example to show the output of the DVS camera, where Figs 1(a) and 1(c) are taken from [8] with permission. To generate points rotating
with a controlled speed (500 Hz), one analog oscilloscope working on XY mode is used. Fig. 1(a) shows one snapshot of the input stimulus taken with an
conventional camera and Fig. 1(c) shows the spatio-temporal representation of the data generated by the DVS camera. Fig. 1(b) reports the event flow of DVS
camera which are asynchronously output with nano-seconds delay. In Fig. 1(c), the red dots correspond to bright-to-dark events (Polarity = −1) and the
blue ones (Polarity = +1) correspond to dark-to-bright events.

feature extraction, information fusion and classification at

event level. Moreover, the experimental studies show that

SDBN is robust to distraction, noise, scaling, translation, and

rotation. Regarding the hardware implementation of SDBN,

Stromatias et al. recently conducted a series of works on the

robustness of SDBN [30], power analysis of SpiNNaker [31],

and a novel realization of a SDBN on the biologically-

inspired parallel SpiNNaker platform [32]. Their works pro-

vide a comprehensive analysis in the scenario of hardware

implementation and further promote the development of deep

learning in the neuromorphic computation. Moreover, Zhao et

al. [18] proposed another AER categorization system based

on HMAX [33] and Tempotron classifier [34]. Their method

is also event-oriented and has achieved state-of-the-art perfor-

mance on a range of data sets.

Despite the success of these methods, it is still challenging

to fully exploit the advantages of AER and design algorithms

that can be easily implemented in hardware. Moreover, many

existing works are based on deep learning and few works are

based on statistical and probability theory. Motivated by the

works in information theory [35] and document analysis [36],

this paper proposes an online feature extraction method, named

Bag of Events (BOE). The proposed method uses the joint

probability distribution (JPD) of the consecutive events to

represent each stimulus. In other words, BOE does not extract

any visual features such as lines or shapes as many existing

methods did. Our contributions can be summarized as follows:

• BOE is a probability-based feature extraction method,

which has the advantage of good interpretability in

mathematics. Moreover, the method has only one hyper-

parameter and is robust to the value of the parameter,

which significantly reduces the effort to tune parameters

for a good performance;

• Different from existing deep learning based methods,

BOE represents the stimulus using the JPD of multiple

events instead of lines, corners, or other visual features.

It only involves some basic operations with low latency,

which implies the hardware friendliness of BOE;

• BOE is an online learning algorithm, which does not

require the whole training data set to be provided in

TABLE I
NOTATIONS AND ABBREVIATIONS.

Notation or Abbr. Definition

n the number of segments
m the number of DVS pixels
k the number of categories
ei the i-th event
sj the j-th segment
fij The frequency of ei within sj
wi the weight factor over ei
DVS Dynamic Vision Sensor
AER Address Event Representation
AERCsys AER Classification System
SR Segment Recorder
LIF neuron Leaky Integrate-and-Fire neuron
HES Hard Event Segmentation
SES Soft Event Segmentation

advance. In other words, when the labeled (i.e., training

data) and unlabeled events (i.e., testing data) are alter-

nately received, BOE can smoothly handle the data and

will not repeatedly train the feature extraction module;

• Extensive experimental analysis shows that BOE extracts

very simple, non-symbolic features from a tiny bag

of events and can achieve competitive performance to

existing, more sophisticated solutions.

Notation: Lower-case bold letters represent column vectors

and upper-case bold ones denote matrices. A
T and A

−1

denote the transpose and pseudo-inverse of the matrix A,

respectively. TABLE I summarizes some mathematic notations

and abbreviations used throughout the paper.

II. SYSTEM OVERVIEW

Fig. 2 illustrates the architecture of the proposed system

which consists of three modules and two processes. The

modules include an AER sensing hardware, a BOE feature

extractor, and a classifier. The last two modules involve two

processes, i.e., learning and prediction. The flow of informa-

tion processing is as follows:
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Fig. 2. The architecture of the proposed system. If the label of the coming event is known, then the learning process is adopted. Otherwise, the prediction
process is adopted. This never-stop learning property is very attractive in practice.

1) AER sensing: Once the AER sensor captures the

changes in a scene, a sequence of events will be output

and each event will be simultaneously sent to a Mo-

tion Symbol Detector (MSD) and a Segment Recorder

(SR). Different segments are caused by different stimuli

(i.e., motions) and each stimulus may generate multiple

events. To avoid performing feature extraction and clas-

sification all the time, we use a MSD to partition the

event flow into multiple segments that are memorized

into SR. At the initial state, SR can be simply regarded

as a m-dimensional zero vector, where m equals to

the number of DVS pixel and SR records the activated

counts of DVS pixel.

2) Motion Symbol Detection: For computational effi-

ciency and energy-saving, it is unnecessary to carry out

feature extraction and classification all the time. In this

paper, we introduce a Leaky Integrate-and-Fire (LIF)

neuron to distinct the events caused by different motions

(i.e., stimuli). Each input event brings a Postsynaptic

Potential (PSP) to this neuron. If the total potential

exceeds a given threshold, the neuron will fire a spike.

At that moment, learning or prediction process will be

triggered.

3) Learning Process: If the events are caused by a labeled

stimulus (i.e., training data) and the LIF neuron is

fired, the system switches to the learning process which

includes the following steps: 1) Append the segment in

SR to the segment set of training data; 2) Reset SR to the

initial state; 3) Calculate the weight matrix and the BOE

features of the training data; 4) Train the classifier. Note

that, step 1 collects the segments of labeled events to

obtain the weight matrix, which seems to be memory-

consuming. In hardware implementation, however, we

only need to keep a vector to record the weights and

the size of vector is upper bounded by the number

of DVS pixel. Therefore, our algorithm can be easily

implemented in hardware. Section III-C will give more

detailed analysis on this aspect.

4) Prediction Process: If the LIF neuron is fired, BOE

will calculates the BOE feature of the current stimulus

by weighting the segment vector in SR. After that, one

resets the SR to the initial state and passes the BOE

feature through a classifier to obtain its label. Note that,

the weight matrix is learnt from the training data, but this

step will be performed for all data since the classification

results are based on BOE features.

III. ONLINE BOE FEATURE EXTRACTION

A. Motion Symbol Detection using an LIF neuron

Although most AER classification systems are designed

based on the event-driven nature, it is still a daunting task

to explore how to use each single event as a source of

meaningful information source. Thus, many works such as

the well-known pencil balancer demo [11] and the jAER

software [37] accumulate the event flow into multiple segments

(i.e., pseudo-pictures) and then perform feature extraction and

classification based on these segments. The methods of accu-

mulating events can be categorized into two classes, i.e., Hard

Events Segmentation (HES) and Soft Events Segmentation

(SES). HES divides the events into segments using fixed time

slices (e.g., 20ms) or fixed number of events (e.g., 200 events

per segment). Different from HES, SES adaptively obtains

the segments according to the statistical characteristics of the

events. Thus, it is generally believed that SES is more flexible

to capture the structure of the data set than HES.

In this paper, we present an SES method by introducing a

single channel (i.e., synapse) Leaky Integrate-and-Fire (LIF)

neuron [38]–[41] as the motion symbol detector. As illustrated

in Fig. 3, each input event initiates a PSP to the LIF neuron.
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Fig. 3. Dynamics of an LIF neuron. ti denotes the timestamp of the current
event, t denotes the current spiking times of the LIF neuron.

For an input event received at time ti, the PSP is defined as:

K(ti) = exp(−
t− ti
τ

), (1)

where τ is the decay time constant of membrane integration.

Then, the accumulated PSP within the time window [t− 1, t]
is calculated by:

K(t) =
∑

ti∈[t−1,t]

K(ti), (2)

where t−1 and t denote the previous and current spiking time

of the neuron.

If K(t) is higher than a specified threshold, the neuron will

be reset to 0 and a message of “SR Reset” will be sent out to

re-initialize the segment recorder.

B. Bag Of Events

Like many existing works, the BOE algorithm divides the

event streams into multiple segments. Each segment can be

regarded as a bag, and the bagged events actually describe

the corresponding stimulus. Note that, BOE cannot be simply

regarded as the process of event accumulation (i.e., bagging

events). Event accumulation is widely adopted by almost

all AERCsys including but not limited to [11], [15]–[18],

however, these methods do not focus on how to use events as

features to represent stimulus. In contrast, they represent each

stimulus using lines, corners, shapes, and other visual features.

In this paper, we propose a feature extraction method based

on statistical principle and the method does not extract any

visual features. To obtain a comprehensive understanding on

our algorithm, we present two different explanations. The first

one intuitively shows that BOE is designed by combining the

advantages of the metrics of popularity and specificity. The

second one establishes the equivalence between BOE and the

expected mutual information.

Let S = {s1, s2, · · · , sn} be a collection of segments and

E = {e1, e2, · · · , em} be a set of distinct events contained

in S, where n and m denote the number of segment and

the number of DVS pixel, respectively. For each segment sj ,

we use the joint probability distribution of E to represent

sj . Mathematically, sj = P (e1, e2, · · · , em). By assuming

feature2

(d)

feature1

(c)

segment2

(b)

segment1

(a)

Fig. 4. Example illustration of measures of popularity and speciality. (a, b)
two segments output by the segment recorder and each segment includes five
different events (pixels). The red box highlights the pixel that is frequently
spiked. (c, d) the discriminative features for these two stimuli.

the occurrences of the events in segments are statistically

independent, then sj can be represented as [f1j , f2j, · · · , fmj],
where fij is the frequency of ei within sj . We called this

representation as Event Frequency (EF).

EF is a kind of measure of popularity, which assumes that

the frequent events are important. The disadvantage of EF

is that some frequent events are emphasized too much but

these events are always less discriminative (e.g., the pixels

highlighted by the red rectangle in Fig. 4(a) and (b)). Thus, EF

is not good enough for classification task. As another measure,

speciality allocates much more weight to the infrequent events

so that the obtained features are more discriminative (see

Fig. 4(c) and (d)). However, the measure of speciality is

sensitive to the noises and outliers. Therefore, we aim to

develop a method that has the advantages of the measures

of popularity and speciality. We formulate the problem with

qij = wifij , (3)

where wi and fij measure the speciality and popularity of

ei, respectively. Clearly, it is key to determine wi so that the

popularity and speciality are well balanced.
Let ni be the number of the segment containing ei. We use

the self-information of ei to weight over itself, i.e.,

wi = − log
n

ni

. (4)

Self-information is derived by Shannon [35], which is used

to measure the information content. By formulating the self-

information into our method, the obtained (4) depicts the

speciality of the events, i.e., the infrequent events (i.e., in-

frequently activated DVS pixels) contain more discrimination

information than the frequently occurring events. For example,

suppose an event appears n times within n segments (i.e.,

ni = n), it has a self-information measure of zero. This

matches with the fact that the event is useless even harmful

to the discrimination of the features.
By combining (3) and (4), BOE is defined as

qij = fij log
ni

n
. (5)

From the above analysis, BOE combines two measures

of information content, i.e., fij and wi. The first metric

fij is the estimation of the probability that the event ei is

actually observed. The second metric wi reflects the change

in the amount of information after observing a specific event.

The combination of these two measures make BOE features

discriminative.
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Besides the above intuitive explanation of our method,

motivated by [42], we have the following theorem which

provides another explanation towards BOE.

Theorem 1. Let S and E be the random variables de-

fined over the space of S = {s1, s2, · · · , sn} and E =
{e1, e2, · · · , em}. I(S ; E ) denotes the expected mutual in-

formation between S and E , BOE feature qij is the quantity

for calculation of I(S ; E ), i.e.,

I(S ; E ) =

m∑

i=1

n∑

j=1

qij . (6)

Proof. LetH(S ) be the marginal entropy of S and H(S |E )
be the conditional entropy of S for the given E . Without loss

of generality, we assume that all segments are equally likely

observed, i.e., p(sj) = 1/n, then we have

H(S ) = −
∑

sj∈S

p(sj) log p(sj)

= − log
1

n
, (7)

and

H(S |ei) = −
∑

sj∈S

p(sj |ei) log p(sj |ei)

= − log
1

ni

, (8)

where ni denotes the number of the segments containing ei.
Based on (7) and (8), the expected mutual information

between S and E is

I(S ; E ) = H(S )−H(S |E )

=
1

λ

∑

ei∈E

p(ei)(H(S )−H(S |ei))

=
1

λ

∑

ei∈E

p(ei) log
n

ni

=
1

λ

∑

ei∈E

∑

sj∈S

fij log
n

ni

, (9)

where fij is the frequency of ei within sj and λ is a constant

factor which can be removed.

The proof is complete.

Theorem 1 provides another way to understand BOE by

bridging the connections between BOE and the expected

mutual information. According to the definition of expected

mutual information, we find that BOE actually quantizes the

mutual dependence between E and L, where E and L denote

the set of events and labels, respectively. In other words, it

measures the extent of L’s uncertainty reduction by knowing

E , and vice versa.

C. Implementation Complexity Analysis

In this section, we investigate the complexity of the pro-

posed feature extraction method from three stages as follows:

1. Events accumulation: On average, the DVS sensor sends

α events to the segment recorder which consists of m counters

(i.e. intra-segment counters), where m denotes the number of

pixel addresses. This step involves α addition operations and

usually α << m.

2. Learning: If the events are labeled, the learning process

will be triggered to update the weight matrix. More specif-

ically, BOE will add 1 to d entries of an m-dimensional

vector (i.e., inter-segment counters), where these d entries

correspond to d unique pixel addresses within α events. Like

intra-segment counters, the number of inter-segment counters

also equals to the number of pixel addresses and each counter

corresponds to each address. In this step, each inter-segment

counter cumulatively records the number of segments that have

received events at the corresponding pixel address. Moreover,

the total number of training segments is also recorded so that

the weights can be scaled. Therefore, the learning process

performs d+ 1 addition operations, where d ≤ α.

3. Prediction: To extracted features from the obtained seg-

ments, two steps are required. First, computing the weight over

each pixel address based on the records in the inter-segment

counters via Eq.4. This step performs m division operations

and logarithm computations. Note that, BOE will only perform

this step one time if no new training data are received. Second,

extracting the feature by weighting the frequency of the current

segment within d multiplication operations.

In summary, for n segments and each with α events,

BOE totally performs n(α + d + 1) addition operations to

update weights in the case of labeled events. Moreover, it also

performs m division operations, m logarithm computations,

and nd multiplication operations to obtain features.

From the above analysis, our algorithm only involves some

basic operations, i.e., addition, multiplication, division, and

logarithm computation. The low complexity of the proposed

method guarantees the hardware friendliness. About the mem-

ory requirement, our algorithm mainly needs two sets of

memory to store the event frequencies (i.e., intra-segment

counters) and the weights (i.e., inter-segment counters). To be

more accurate, BOE does not store the input events; instead,

we only need to store those two sets of counters of which the

intra-segment counter is like short term memory and the inter-

segment counter is like long term memory. Each of these two

sets of counters has m entries. In addition, there is a number-

of-training-segment counter. Thus, the memory requirement of

BOE is only 2m+1 and can be easily implemented using the

block RAM of an FPGA.

IV. EXPERIMENTAL RESULTS

In this section, we investigate the performance of our

method with respect to the classification accuracy and the

efficiency. We also compare BOE with two recently proposed

AER categorization systems on three popular AER data sets.

Benchmark Algorithms: The first method was proposed

by Chen et al. [15], which extracts the features with line

detector from DVS output and performs classification using

a nearest neighbor classifier with Hausdorff distance [43].

The other benchmark algorithm was proposed by Zhao et

al. [18], which extracts high-level features by passing Gabor

features into HMAX model [33]. And the method groups the
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(a) Card database.

(b) MNIST-DVS database.

(c) Posture database.

(d) MNIST database.

Fig. 5. Some reconstructed images from the used databases. (a) The Card
data set consists of four symbols, i.e., Club, Diamond, Heart, and Spade
from left to right. (b) The MNIST-DVS database includes ten classes which
correspond to digit 0 to 9. (c) The Posture database includes three human
actions, i.e., BEND, SITSTAND, and WALK from top to bottom. (d) The
standard MINIST digital images.

new events using an event-driven tempotron classifier. Our

categorization system uses a simple support vector machine

with linear kernel [44] as the classifier. For fair comparison,

we follow the experimental setting in [15], [18] to tune the

parameters for Chen’s method and Zhao’s method. Moreover,

we employ a HES method instead of SES to obtain the

segments from the event steam by fixing the number of

events within each segment. We obtain the MATLAB codes

of the competing methods from the authors and carried out

the experiments using MATLAB on a workstation with two

Xeon E5 2.4GHz CPUs and 32GB RAM. The used data sets

and the code of BOE are provided at the authors’ website

http://machineilab.org/users/pengxi/.

Data sets: Three DVS data sets are used in our experiments,

i.e., MNIST-DVS [45], Posture [18] and Card [16], [46]. The

MNIST-DVS database was generated from 10,000 original

28 × 28 MNIST digit images [47]. Each MNIST image

was upscaled to three scales (scale-4, scale-8, and scale-16)

and was then displayed on a liquid crystal display monitor

with slow motion. After that, the MNIST-DVS database was

generated by using a 128×128 AER sensor [45] to record the

moving digit. As did in [18], the MNIST-DVS dataset with

scale-4 is used in our tests. Each recording has duration of

100ms within a resolution of 28 × 28. It should be pointed

out that MINIST-DVS is more challenging than the standard

MNIST due to the noises, blur, and other factors.

The Posture database was generated by using an AER sensor

to capture three human actions, i.e., bending to pick something

(BEND), sitting down and standing up (SITSTAND), and

walking back and forth (WALK). Each Posture image is in

a scene of 32 × 32. The Card database is an event stream

of poker card symbols with a spatial resolution of 32× 32. It

consists of four symbols, i.e., club, diamond, heart, and spade.

Fig. 5 illustrates some samples of these three databases.

Besides these three DVS data sets, we also carry out

experiments using the original MNIST digit images [47]. The

used data set consists of 60,000 training samples and 10,000

testing samples. Fig. 5(d) shows some sample images.

Experimental Setups: In each test, we randomly partition

the used data set into two parts for training and testing.

Following the common benchmarking procedures, we repeat

the experiment multiple times (e.g., 10 times) with different

training and testing data partitions. We report the final results

with several measures, i.e., the mean, standard deviation, and

median of the recognition rates and the time costs. Moreover,

we also investigate the latency of BOE based classification

system.

A. Robustness to Hyper Parameters

The proposed AER categorization system requires to specify

two hyper parameters, i.e., the number of events within each

segment (denoted by α) and the training data percentage γ.

To investigate the influence of these two hyper parameters, we

carry out experiments on MNIST-DVS.
Fig. 6(a) and 6(b) show the classification accuracy of BOE

when α increases from 50 to 500 and γ increases from 10%

to 90%. From the results, we have the following observations:

• BOE is robust to the number of event within each seg-

ment. While α ranges from 150 to 500, the classification

rate almost remains unchanged, slightly varying from

74.10% to 74.15%;

• BOE can achieve a good result even though a small

amount of training data are available. While γ is increas-

ing from 30% to 90%, the mean recognition rate of BOE

is increasing from 70.99 to 74.28. This benefits from a

fact that BOE is a statistical feature extraction method.

And the well-known advantages of statistical machine

learning method is its good generalization ability. In other

words, BOE can fit a latent distribution well with a small

amount of samples.

B. Scalability Performance Comparison

The low computational cost and high energy efficiency are

two most important advantages of AER sensors. Thus, it is

important to put these two advantages in the first place while

designing an AER categorization system. In this section, we

examine the scalability performance of our system, Zhao’s

method, and Chen’s method. We carry out experiments on the

MNIST-DVS database with increasing number of segments

(i.e., n). For BOE and Chen’s method, we set the value of

the hyper parameter α as 300. For Zhao’s method, we set

http://machineilab.org/users/pengxi/
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(a) Recognition rate on MNIST-DVS with increasing α, where 90%
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(b) Recognition rate on MNIST-DVS with increasing training rate,
where α = 300.

Fig. 6. The robustness of BOE to different hyper parameters.
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Fig. 7. Scalability Performance Comparison on the MNIST-DVS database.

the time constant τm of the motion symbol detector as 30ms
by following the configuration in [18] and the number of the

corresponding bagged events is around 300.

We perform each algorithm ten times on ten different data

partitions. For each test, 90% data are used for training and

the remaining data are used for testing. Fig. 7 reports the

classification accuracy and the time cost, which shows that

• BOE is superior to the other investigated methods in

classification accuracy. For example, when n = 1000,

the accuracy achieved by BOE is 5.85% higher than that

achieved by Zhao’s method and is 12.43% higher than

that achieved by Chen’s method;

• With the increasing of n, three methods achieve a better

accuracy. When less data are available, Zhao’s method

achieves the worst result. The reason is that this method

is based on deep learning methods which need large scale

data to be well trained;

• When n increases from 100 to 5000, the time cost taken

by BOE only increases from 0.59 to 22.09 seconds. Under

the same computational platform, Zhao’s method used

115.09 and 4836.91 seconds to handle 100 and 5000

segments, respectively. The results show that our method

finds a good balance between classification accuracy and

time cost;

• Regarding the frame-per-second (fps), the performance

of BOE ranges from 141.24 to 304.32, whereas Zhao’s

method can only handle one frame per second ([0.87,

1.06]) and Chen’s method can only handle 1.81–4.58

frames per second. Note that, there is no relationship

between α and fps. The α determines the number of

segments for a given event flow, whereas the fps is only

related to the computational power of the computer.

C. Performance on Different AER Data Sets

In this section, we report the performance of BOE on

MNIST-DVS, Card, and Posture database with respect to

the classification accuracy and efficiency. To obtain a more

comprehensive comparison, we use five metrics to measure

the computational efficiency of the tested algorithms for the

feature extraction and classification. The metrics include the

time cost for training, testing, total computation (i.e., training

cost plus testing cost), fps, and tpe, where fps is short for

frame-per-second and tpe denotes the time cost for processing

each event.

1) On MNIST-DVS Data Set: We carry out the experiment

on MNIST-DVS data set by repeating each method ten times.

For each test, 90% samples are randomly selected for training

and the remaining data are used for testing. For BOE, we set

α = 300. Fig. 8 and TABLE II report the classification results

and the time cost, respectively.
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Fig. 8. Confusion table for the MNIST-DVS database. Average classification rates for individual classes are shown along the diagonal. Zhao’s method achieves
the best result on the first five digits and BOE outperforms Zhao’s method and Chen’s method on the last five digits (the best results are indicated by a red
rectangle). The average accuracy of BOE, Zhao’s method, and Chen’s method are 75.09%, 75.35%, and 61.23%, respectively.

TABLE II
THE COMPUTATIONAL EFFICIENCY OF DIFFERENT METHODS FOR FEATURE EXTRACTION AND CLASSIFICATION ON MNIST-DVS DATABASE. FOR ALL

THE METRICS EXCEPT fps, THE VALUE IS BIGGER, THE PERFORMANCE IS BETTER.

Algorithms
Feature Extraction Classification

training(s) testing(s) total(s) fps tpe(s) training(s) testing(s) total(s) fps tpe(s)

BOE 27.89 27.28 55.17 402.65 8.28E-06 3.63 0.12 3.75 5926.63 5.62E-07
Zhao’s [18] 8601.10 955.68 9556.78 1.87 1.17E-03 204.11 26.93 231.05 77.23 2.82E-05
Chen’s [15] 1208.38 134.26 1342.64 16.69 2.00E-04 - 7691.26 7691.26 2.91 1.14E-03

TABLE III
THE RECOGNITION RATE ON THE AER POKER CARD DATABASE. n
DENOTES THE NUMBER OF SEGMENT AND α DENOTES THE AVERAGE

NUMBER OF EVENT WITHIN EACH SEGMENT.

Algorithms mean std. median n α

BOE 93.00% 5.29% 93.88% 519 100
Zhao’s [18] 91.76% 6.19% 92.59% 519 100
Chen’s [15] 92.53% 4.45% 93.12% 519 100

• Fig. 8 shows that BOE and Zhao’s method outperform

Chen’s method by a performance margin of 13.86%

and 14.12%, respectively. If we average the accuracy on

individual class instead of data points, the performance

rates of BOE, Zhao’s method, and Chen’s method are

74.82± 11.77, 75.52± 11.17, and 63.50± 14.84, respec-

tively;

• TABLE II illustrates that Zhao’s method takes more time

for feature extraction than BOE and Chen’s method.

It only can process 1.87 segments within one second,

whereas our method can run at 402.65 fps;

• Chen’s system employs a lazy classifier to perform

categorization. Therefore, it does not need to train the

classifier. Our AER categorization system can classify

5926.63 segments per second, which is 76.74 and 2034.15

times faster than Zhao’s system and Chen’s system,

respectively.

2) On AER Poker Card Data Set: This section investigates

the performance of three methods on AER Card database. For

each method, we still randomly select 90% data for training

0 50 100 150 200

Club

Diamond

Heart

Spade

time (µs)

Ground truth

Decison made

Fig. 9. The Classification result of the proposed method on AER Poker

Card database. We can see that the predicted labels by BOE match very well
with the ground truth.

and perform the evaluation 100 times. Fig. 9 illustrates the

predicted labels of BOE (α = 100) by passing the event stream

into our system. Moreover, TABLE III and IV report the

performance comparison of the tested methods, which show

that

• BOE achieves the highest classification accuracy and

Chen’s method archives the second best results. It should

be pointed out that, all the tested methods employ the

same event segmentation method in this test, i.e., by

fixing the number of event within each segment.

• DVS camera asynchronously outputs the events with sub-

microsecond delay (i.e., 10−6s). From TABLE IV, we

can see that the proposed system processes each event

at the temporal resolution of 10−7, i.e., it can process

the events in real time. This simultaneity or coincidence

property is very attractive for AER processing system, as



IEEE TRANS. ON NEURAL NETWORKS AND LEARNING SYSTEMS, DOI:10.1109/TNNLS.2016.2536741. 9

TABLE V
THE RECOGNITION RATE ON THE AER POSTURE DATABASE. n DENOTES

THE NUMBER OF SEGMENT AND α DENOTES THE AVERAGE NUMBER OF

EVENT WITHIN EACH SEGMENT.

Algorithms mean std. median n α

BOE 98.66% 0.23% 98.65% 24639 500
Zhao’s [18] 95.61% 0.46% 95.50% 17414 714
Chen’s [15] 91.88% 0.68% 91.97% 24639 500

TABLE VII
PERFORMANCE OF THE EVALUATED ALGORITHMS ON 70000 ORIGINAL

MINIST IMAGES, WHERE NBOE DENOTES THE NORMALIZED BOE
FEATURES.

Methods Acc.
Training Cost Testing Cost

total(s) fps total(s) fps

SVM 84.17 196.61 305.17 0.20 50000.00
BOE 88.09 4.93 12170.39 0.49 20408.16
nBOE 91.82 44.05 1362.24 0.33 30444.16

Pẽrez-Carrasco et al. [16] pointed out.

3) On AER Posture Data Set: In this section, we carry

out the experiment on AER Posture database by repeating

each algorithm ten times. In the test, we randomly select 80%

actions for training and use the rest for testing. We fix α = 500
for BOE and Chen’s method and set the search range of motion

symbol detector of Zhao’s method as 30ms.

From TABLE V and VI, we can find that

• BOE outperforms Zhao’s method and Chen’s method by

the performance margin of 3.05% and 6.78%. Note that,

Zhao’s method achieves a correct rate of 99.48% in [18]

when the search range of motion symbol detector is set

as 1s. Here, we set the search range as 30ms for fair

comparison because the corresponding α is around 500.

Note that, a bigger search range means that less decisions

are made and thus the classification accuracy may be

higher;

• For feature extraction phase, the calculation speed of our

method is 164.75 and 21.67 times faster than Zhao’s

method and Chen’s method, respectively. Furthermore,

our method also takes the minimal time to perform

classification. It is 35.99 and 14327.25 times faster than

Zhao’s method and Chen’s method.

4) Performance on the Standard MNIST Image Data Set: In

this section, we evaluate the performance of BOE on the raw

MNIST digital images. In experiments, we adopt the standard

testing protocol [47] by using 60,000 samples for training

and 10,000 samples for testing. In the test, we directly apply

SVM over the original data to obtain a baseline result. Besides

the results of BOE with SVM, we also carry out experiment

by applying SVM on the normalized BOE features (nBOE).

More specifically, we normalize each BOE feature vector x by

its maximal entry, i.e., x ← x/max(x), where the operator

max(·) achieves the maximal element of a given vector.

For each algorithm, we evaluate its efficiency with time

TABLE VIII
COMPARISONS WITH SPARSE REPRESENTATION ON A SUBSET OF THE

ORIGINAL MINIST IMAGES.

Methods Acc.
Training Cost Testing Cost

total(s) fps total(s) fps

BOE 86.50±2.42 0.13 7692.31 2.50E-3 40000
SR 82.30±4.03 265.90 3.76 19.79 5.05

cost as well as fps. For example, BOE takes 4.93 seconds to

handle 60,000 training samples, which consists of the costs for

extracting BOE features and training SVM. By dividing 60,000

by 4.93, we can see that BOE can handle 12,170.39 frame per

second. TABLE VII summarizes the result which shows that

BOE can not only improve the recognition accuracy but also

speed up the convergence of SVM in the training phase.

5) Performance Comparisons with Sparse Representation:

In this section, we compared the normalized BOE features

with another well-known low-level feature extraction method,

i.e., sparse representation (SR) [48]. SR represents each

sample as a linear combination of a few of basis, which

has attracted increasing interests from machine learning and

computer vision. In general, SR can be achieved by solving a

ℓ1-minimization problem which is a convex relaxation of the

ℓ0-minimization problem. In our experiments, we adopted the

well-known Homotopy solver [49] to calculate the SR of the

inputs and then performed recognition by passing the SR into

a linear SVM.

As SR is computationally inefficient, we carried out ex-

periments using a subset of the MNIST database consisting

of 1000 training samples and 100 testing samples that are

randomly drawn from the original MNIST database. Table VIII

reports the results, we can see that BOE remarkably outper-

forms sparse code in terms of recognition rate and computa-

tional efficiency.

D. Performance with Respect to Latency

In the above analysis, we investigated the computational

cost of BOE with respect to the stage of feature extraction

and classification. In this section, we further examine the end-

to-end system latency, i.e., the delay between receiving the

first event and outputting the corresponding label. This inves-

tigation involves three stages, i.e., event accumulation, feature

extraction, and classification. For each stage, we calculate the

mean time cost over all segments. Table IX reports the results

from which we have the following observations:

• The feature extraction and classification stages take much

less time compared to the event accumulation stage. This

is due to the low complexity of our algorithm;

• The time cost of event accumulation depends on the value

of α which is determined based on the characteristics

of data. For different applications, we can increase or

decrease the latency of our AERCsys by changing the

value of α. For example, we set α = 100 for the

Card database and α = 500 for the Posture database,
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TABLE IV
THE COMPUTATIONAL EFFICIENCY OF DIFFERENT METHODS FOR FEATURE EXTRACTION AND CLASSIFICATION ON THE AER POKER CARD DATABASE.

FOR ALL THE METRICS EXCEPT fps, THE VALUE IS BIGGER, THE PERFORMANCE IS BETTER.

Algorithms
Feature Extraction Classification

training(s) testing(s) total(s) fps tpe(s) training(s) testing(s) total(s) fps tpe(s)

BOE 0.02 0.02 0.04 14828.57 6.74E-07 0.01 1.30E-03 0.01 36293.71 2.76E-07
Zhao’s [18] 70.23 7.80 78.03 6.65 1.50E-03 2.89 0.11 3.00 173.00 5.78E-05
Chen’s [15] 30.99 3.44 34.43 15.07 6.63E-04 - 19.90 19.90 26.08 3.83E-04

TABLE VI
THE COMPUTATIONAL EFFICIENCY OF DIFFERENT METHODS FOR FEATURE EXTRACTION AND CLASSIFICATION ON THE AER POSTURE DATABASE. FOR

ALL THE METRICS EXCEPT fps, THE VALUE IS BIGGER, THE PERFORMANCE IS BETTER.

Algorithms
Feature Extraction Classification

training(s) testing(s) total(s) fps tpe(s) training(s) testing(s) total(s) fps tpe(s)

BOE 44.78 44.52 89.31 275.89 7.25E-06 0.68 0.12 0.80 30883.68 6.48E-08
Zhao’s [18] 11770.87 2942.72 14713.58 1.18 1.18E-03 23.62 5.08 28.71 606.55 2.31E-06
Chen’s [15] 1548.19 387.05 1935.24 12.73 1.57E-04 - 11430.28 11430.28 2.16 9.28E-04

TABLE IX
LATENCY OF OUR CATEGORIZATION SYSTEM.

Algorithmic Stage
Training Data Testing Data

MNIST-DVS Cards Posture MNIST-DVS Cards Posture

Event Accumulation (ms) 37.03 0.34 75.16 37.03 0.34 75.16
Feature Extraction (ms) 1.39 0.04 2.02 1.23 0.33 18.07

Classification (ms) 0.18 0.03 0.03 0.05 0.25 0.05
Total (ms) 38.61 0.41 77.21 38.31 0.92 93.28

fps 27.01 2941.18 13.30 27.01 2941.18 13.30

and thus our system can handle 2941.18 and 13.30
segments within each second, respectively. This actually

reflects some characteristics of these two stimuli, i.e., the

movement of human is slower than that of poker cards

in practice.

E. Why BOE features are discriminative?

In this section, we investigate the discrimination of our

BOE In the experiments, we perform the BOE method on

a subset of the MNIST database which consists of all the

testing samples of digit “1” (see Figs. 10(a)) and “2” (see

Figs. 10(c)). For better illustrations, we also show some pixels

into a given box (indicated in the Figs. 10(a)–10(d)). From the

comparison between the original data and the corresponding

BOE features, we can see that the BOE method will obtain a

more discriminative feature by increasing the frequency of the

events that are only activated by one digit (“1” or “2”), as well

as decreasing the frequency of the events that are activated by

both these two digits.

V. CONCLUSION

In this paper, we proposed a feature extraction method

for AER image sensors based on the probability theory,

namely, BOE. We provided two explanations towards our

method, 1) the first one intuitively shows our basic idea, i.e.,

BOE is the combination of the information measurements of

speciality and popularity; and 2) the second one theoretically

show the connections between BOE and the quantity of the

expected mutual information. Moreover, BOE is an online

feature extraction method, i.e., it can handle the labeled and

unlabeled data that are alternately received. Experimental

results demonstrate that our method is significantly faster than

two recently proposed methods while achieving a competitive

recognition accuracy.

The work can be extended or improved from the following

aspects. First, BOE is an unsupervised method. It is possible to

further improve the discrimination of BOE features by incor-

porating the label information, e.g., developing supervised or

semi-supervised BOE method. Second, the basic formulation

of BOE (i.e., Eq.3) might be extended into a more general and

thus other information measurements such as information gain

can be incorporated into our mathematical formulation. Third,

like most existing AER feature extraction methods, BOE

requires accumulating events into segments. Although BOE

represents each stimulus using the joint probability distribution

of consecutive events and does not extract visual features such

as lines from segments, it is more interesting and challenging

to explore how to utilize each single event as a source of

meaningful information without segment reconstruction. This

daunting task has lied on the heart of current neuromorphic
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Fig. 10. A real example to show the discrimination of BOE features. Figs 10(e)–10(h) correspond to the frequency of DVS addresses into the box indicated
in Fig 10(a)–10(d), respectively. For a given DVS sensor, it will activate different event addresses for different patterns as shown in Figs. 10(a) and 10(c)
(e.g., digits “1” and “2”). Due to the existence of overlapping between different patterns, some event addresses will be frequently activated, which are less
discriminative, e.g., the first and the second event address will be used to represent the digit “1” and “2”(see Figs. 10(e) and 10(g)). By applying our BOE
approach over the DVS output, the importance (i.e., frequency) of the first and the second event addresses will be reduced, while increasing the frequency of
the event addresses that are only activated for the digit “2” (see Fig 10(h)).

computing and will be explored in future.
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S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna,
F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang,
and K. Boahen, “Neuromorphic Silicon Neuron Circuits,” Front. Neu-
rosci., vol. 5, pp. 1–23, 2011.

[3] T. Chang, Y. Yang, and W. Lu, “Building Neuromorphic Circuits with
Memristive Devices,” IEEE Circuits Syst. Mag., vol. 13, no. 2, pp. 56–
73, 2013.

[4] D. Monroe, “Neuromorphic computing gets ready for the (really) big
time,” Commun. ACM, vol. 57, no. 6, pp. 13–15, 2014.

[5] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Trans.
Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, Sep. 2009.

[6] C. Posch, D. Matolin, and R. Wohlgenannt, “A QVGA 143 dB Dynamic
Range Frame-Free PWM Image Sensor With Lossless Pixel-Level Video
Compression and Time-Domain CDS,” IEEE J. Solid-State Circuits,
vol. 46, no. 1, pp. 259–275, 2011.

[7] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128x128 120 dB 15µs
Latency Asynchronous Temporal Contrast Vision Sensor,” IEEE J. Solid-
State Circuits, vol. 43, no. 2, pp. 566–576, 2008.
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