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Abstract 
During pre-flight inspection, technical competency is 

required to identify obstructions and observable damage 
that may impact on the airworthiness of aircraft. This can 
be challenging for ground crew who may be limited by 
time, manpower, or views of an aircraft. In this paper, we 
describe an R&D project that is designed to visually 
inspect the surface of aircraft using commercially 
available cameras. Providing a high-level description, we 
touch on some of the approaches used to identify different 
types of surface defects, including how this information is 
visualized back to the end user. The goal of this research 
is to work towards a more automated process of inspection 
using computer vision solutions. Subsequently, with an 
industry focused on reducing manpower and operational 
costs, the ability to automate the detection and 
documentation of aircraft defects is a relevant and timely 
issue.   

1. Introduction
According to the FAA [1], given the economic

benefits, at least 80 percent of aircraft inspections are 
visual. Visual inspection is primarily used to check the 
airworthiness of aircraft, and the types of defects 
investigated can vary from surface corrosion, to cracks, 
fractures and disbonding [1]. Drury [2] broadly defines 
aircraft inspection as the detection of expected and 
unexpected malfunctions. Known factors affecting 
inspection performance include ease-of-access to the 
aircraft (e.g. the upper regions), poor lighting conditions, 
and surface occlusion from foreign objects, such as dirt. 
Inspection standards are also reported to vary across the 
industry [3], with the potential for inspectors to deal with 
a considerable amount of paper work in checking 
maintenance repair records and log histories [4].  

      With reports of performance differences in the 
detection results of aircraft inspectors [2], visual 
automation has the potential to remove human bias, and 
provide greater accountability in the recording and 

documentation of defects. We foresee this as being 
particularly relevant in countries like Singapore, where 
forecast growth in the aviation industry, coupled with the 
sizable number of aerospace companies that carry out 
local repair and maintenance operations, demonstrates the 
importance of developing technical solutions that can 
improve the productivity and reliance on manpower 
resources. At the same time, for such systems to assist in 
human intervention, they need to demonstrate sufficient 
precision and accuracy in their results.  

2. Related works
In recent years there has been an increasing

momentum by the aviation industry to explore innovative 
solutions to automate the visual inspection process (e.g. 
the use of autonomous drones). However, the 
development of digital technologies to support aircraft 
inspection is not a new concept, with published research 
dating back a number of years.  

To illustrate, in the 1990s, Siegel [5] proposed the use 
of robotic ‘skin crawlers’ that could adhere to the surface 
of an aircraft. However, despite some technical success, 
development limitations in robotic automation were 
highlighted for real-world deployment. Alternatively, 
around the same time, Siewiorek et al. [6] developed a 
wearable speech recognition system for surface 
inspection, while Ockerman and Pritchett [7] investigated 
a wearable display to augment information in a pilot’s 
field-of-view for pre-flight inspection. Both of these 
systems illustrate the potential for reducing the need for 
paper-based instructions, and despite dealing with some 
interaction issues, demonstrated interesting solutions, 
which nowadays are likely to be better supported by 
advancements in wearable technology.  

More recently, published work has included that of 
Jovančević et al. [8], where the use of a ground-based 
robot has been designed to identify state changes in 
surface objects, such as for oxygen bay handles, air-inlet 



vents and static ports. Of the image samples tested on, the 
authors reported a detection accuracy of over 90 percent. 
Likewise, in what appears to be related work, descriptions 
have been provided on the robot’s navigation using laser 
guided sensors, and the recognition of landmark features 
to determine its relative position to an aircraft [9]. 

However, while we do not present an extensive 
literature review in this paper, empirical research on the 
automated inspection of aircraft appears limited. At the 
same time, there are clearly technical challenges that need 
to be addressed in the deployment of real-world vision 
systems. To highlight a few examples:   

• It is imperative that any automated visual inspection
system can provide accurate and timely results that
are at least as good as traditional techniques. Without
this, it is difficult to justify the implementation and
maintenance costs of using the technology.

• An automated visual inspection system needs to be
robust enough to detect a wide range of surface
defects. Technically, this is challenging given the
varying physical characteristics of surface defects on
an aircraft.

• A usable visual inspection system needs to be
scalable and deployed across different aircraft types,
and sizes, which will vary in the engines used,
winglets and body shape, etc.

• Detection accuracy needs to be tested across different
conditions, such as variations in surface structure,
camera position and viewing angle, and object
obstruction to determine their effectiveness.

• Solutions need to accommodate for both indoor and
outdoor environments, including night time and
changing weather conditions, while extracting
unnecessary information from the background of the
aircraft.

• Appropriate visual feedback needs to be provided to
the ground crew, with features that can allow
engineers to filter results, re-classify and archive
relevant information. As such, user interfaces should
be intuitive to use, while serving a practical purpose.

3. Our approach
To attempt to address some of these issues, since

2016, we have been investigating vision-based solutions 
that can scan and identify surface defects on external 
airframe structures to support pre-flight inspection.  

The main focus of our work has been to develop 
computer vision algorithms that can be implemented using 

different hardware solutions. For example, the current 
testing of our system has included drone, tablet and 
standalone PTZ (pan-tilt-zoom) cameras. In the case of the 
drone and tablet technologies, built-in device cameras are 
used to capture the image data. Subsequently, by being 
able to implement our software in these different technical 
forms, flexibility is provided in how the visual inspection 
can occur.  

To illustrate, the inspector can use the assistance of a 
mobile tablet when completing a walk-around of the 
aircraft (Figure 1a). Using the front-facing camera, images 
are periodically captured and processed on the device. 
Alternatively, using standalone (fixed) cameras 
positioned around, or above the aircraft, the surface is 
automatically scanned, and the data streamed to a central 
server that completes the image processing, from which 
the results are separately visualized (Figure 1b). In this 
scenario, the inspector has the option to take further action 
by examining the results identified on a tablet display at a 
distance to the aircraft.  

Figure 1. Examples of the different hardware set-ups of our 
system using a single tablet device and fixed camera system. 

     More specifically, when using fixed cameras, we have 
developed software to determine their location in relation 
to an aircraft. A depth camera, that provides 3D imagery, 
scans the aircraft surface and then matches a scanned area 
with a pre-defined 3D software model. Additional 
calibration is then performed for the fault detection. 
Furthermore, software has been developed to process the 
image data and visualize detection results on a prototype 
interface. Evaluations have included on-site aircraft 
testing. 

     To provide more details, in the following sections we 
describe three aspects of our system using the fixed 
camera set-up: 1) the image localization to map the 
position of the cameras, 2) the fault detection algorithms, 
and 3) the image visualization of the detected results. Our 
current set-up is in an indoor hangar environment. 

3.1 Image localization 
     For the image localization, the goal is to create a model 
that will allow us to map a location on a physical aircraft 
to a set of 3D co-ordinates on a 3D aircraft model. Thus, 
if we are given a physical location, we are able to calculate 



the virtual location, and vice versa. The physical location 
of a defect is determined by the orientation of the PTZ 
camera and the (x, y) co-ordinates on a PTZ image, as 
illustrated below in Figure 2. 

Figure 2. Conversion of a detected fault location, as given by the 
PTZ camera (pan, tilt, zoom) and PTZ image (x, y), to co-

ordinates on a 3D model by a 3D point (x, y, z). 

The existing system uses a commercial depth camera 
that has a range of 0.15 to 10 meters, and a viewing angle 
of 70 by 53 degrees. For the system to return accurate fault 
locations, we assume the configuration of the physical 
aircraft is fixed and identical to the 3D model. That is, the 
external aircraft doors are closed and panels are not 
removed, etc. The challenge of accurate 3D model 
mapping can be resolved by first calculating the 3D 
localization model’s confidence level based on how well 
a depth scan overlaps during a matching phase. From this 
we can use a less specific form of visualization for 
indicating defect locations. For example, if confidence is 
low, a defect can be indicated less specifically on a larger 
area of the aircraft, rather than a specific point, such as the 
top side of a left wing, or bottom side of the middle 
fuselage.  

Once we are able to match the 3D scan to the 3D 
model, we can calculate the camera’s position relative to 
the aircraft (Figure 3). Since the physical camera’s 
orientation is also known when a fault is detected, we can 
mimic both the position and orientation of the virtual 
camera to the 3D aircraft model. Then, by casting a ray 
from the virtual camera, we can define the fault location 
where the ray collides with the 3D model.  

Figure 3. On-site testing of the image localization. (Left) blue 
scanned image with the 3D aircraft model; (middle) completing 
the image matching process; (right) completed result. The white 

dot represents the camera position relative to the aircraft.  

3.2 Vision algorithms for surface defect detection 
Our work focuses on dealing with surface defects that 

can be recognized by the human eye. Features that cannot 
be visibly seen are currently not processed. The iterative 
development of our vision algorithms has been tested on 
hundreds of images, however, one of the key challenges 
we have had to overcome is getting access to 
representative data. Specifically, our work focuses on a 
sub-set of defects, such as hairline cracks, missing 
fasteners and fluid leakage. As previously mentioned, we 
are not limited to a particular platform or imaging device. 

     Detecting aircraft anomalies is challenging due to 
surface deformation, variations in environmental lighting, 
dirt, and paint quality, etc. On a small surface area, few 
visible differences may be observed, however, across the 
aircraft this will most likely change. Subsequently, we 
have developed an active recognition and segmentation 
model to extract and locate defects on a painted surface. 
This involves a learning stage, which is tested with sample 
images under different lighting conditions. In essence, 
scanned surface images are segmented, boundary regions 
drawn around potential defects, and a contour fitting 
algorithm applied to visualize the processed results.   

      Examples can be seen in Figure 4 for detecting 
scratches, protruding and missing rivets, small cracks, and 
surface bulges (or protrusions) with some color 
deformation. Currently, we are able to recognize selected 
defects over 20 pixels in diameter or length.  

Figure 4. Processed images of highlighted defects taken from a 
damaged aircraft panel. (Top left) surface bulge, (top right) 

hairline crack; (bottom left) protruding and missing rivets; and 
(bottom right) scratches.  

For the detection of screws, missing screws and 
fasteners, a separate algorithm has been developed. That 
is, for each processed image, we extract sketch and graph 
patterns to characterize appearance features. A descriptor 
(that describes the visual features) captures the contour 
and edges, while a multi-scale representation encodes the 



dark boundary and center pattern of the screw/fastener, 
and the empty hole region of the missing screw/fastener.  

As part of our implementation work, we are able to 
group associated screws (and fasteners) into lines, which 
is helpful in filtering out false detections. A straight line is 
generated by fitting all the screws into a cluster. This is 
achieved by determining the distances between the 
screws, and the gap sizes in between (see Figure 5).  

Figure 5.  (Top and middle) examples of the screw/missing screw 
and fastener/missing fastener detection for external aircraft 

surfaces. Red boundary boxes/circles indicate missing features, 
while green boundary boxes/circles are the detected visible 

features. (Bottom) the line clustering of screws located along the 
same plane. Note that aircraft identification numbers have been 

blacked out in the figure. 

3.3 UI visualization 
     The third component of our work is to visualize the 
results on a tablet display. This is designed to illustrate 
defects and their position on the airframe, with options to 
view the images captured from the camera’s point-of-
view. When viewing the 3D aircraft model on the 
interface, the user has the option to change the viewing 
perspective, as well as filter regions of interest. Surface 
scans are also timestamped and chronologically ordered.  

     Importantly, users can initiate the image localization 
and scanning process of an aircraft via the display. Using 
a 3D model of the representative aircraft, the user can 
select one or more points to mark the surface regions they 
wish to scan. Through the calibration process, the software 
is able to calculate the pan and tilt values necessary for the 
camera to aim directly at a selected point. Then, by using 
the distance value between the virtual PTZ camera 

location and the clicked point, we can calculate the 
appropriate zoom level before initiating a fault scan. In 
addition, options are also available to edit the defect 
information results using annotations to mark areas-of-
interest, as well as add text descriptions, which 
subsequently can be logged for future viewing. 

4. Conclusion
     In this short paper, we outline details for a vision-based 
inspection system that can automatically scan the airframe 
structure of an aircraft for surface defects. We believe a 
strong component of our work is being able to recognize 
a number of different defects that vary in visual 
characteristics. Moreover, our software implementation is 
not limited to using a particular imaging technology, while 
the range of anomalies that can be detected can be 
relatively small for a non-evasive vision-based inspection 
technique.  

     As this research is ongoing, future work aims to extend 
the range of detectable defects on aircraft, while we are 
currently in the process of benchmarking our results. 
Further, while we do not claim to have a fully operational 
technology, as outlined in this paper, there are a number 
of important issues that need to be addressed in the real-
world deployment of automated visual systems. 
Subsequently, as we progress further, testing across a 
range of aircraft conditions will be an important aspect in 
the improvement of our system.  
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