
2021 The 21st International Conference on Control, Automation and Systems (ICCAS 2021)
Ramada Plaza Hotel, Jeju, Korea, Oct. 12∼15, 2021

Model-Based Reinforcement Learning with LSTM Networks for Non-Prehensile
Manipulation Planning

Jeffrey Fong1∗, Domenico Campolo2, Cihan Acar3, Keng Peng Tee3

1School of Computing, National University of Singapore,
117417, Singapore (jfong@comp.nus.edu.sg)

2School of Mechanical and Aerospace Engineering, Nanyang Technological University,
639798, Singapore (d.campolo@ntu.edu.sg)

3Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR) ,
138632, Singapore ({acar cihan, kptee}@i2r.a-star.edu.sg) ∗ Corresponding author

Abstract: Solving non-prehensile manipulation tasks requires domain knowledge involving various interactions such as
switching contact dynamics between the robot and the object, and the object-environment interactions. This results in a
switched nonlinear dynamic system governing the physical interactions between the object and the environment. In this
paper, we propose an interactive learning framework that allows a robot to autonomously learn and model an unknown
object’s dynamics, as well as utilise the learned model for efficient planning in completing re-positioning tasks using
non-prehensile manipulation. First, we model the overall object dynamics using a Long Short-Term Memory (LSTM)
neural network. We then assimilate the learned model into the Monte Carlo Tree Search (MCTS) algorithm with a dense
reward function to generate an optimal sequence of push actions for task completion. We demonstrate the framework in
both simulated and real robot that pushes objects on a table.

Keywords: Manipulation planning, non-prehensile, reinforcement learning

1. INTRODUCTION

Non-prehensile manipulation is the manipulation of
objects without grasping, and encompasses a wide range
of actions including pushing, tilting, flipping, and even
throwing. By leveraging on the environment (e.g.
for weight support, or gravity-assisted motion), non-
prehensile manipulation can be more efficient and less
restrictive than conventional prehensile manipulation. In
particular, object manipulation by pushing allows large,
heavy objects to be moved expeditiously, and can be ap-
plied in many industrial tasks, such as material transfer,
sorting, cleaning, and rearrangement.

Non-prehensile manipulation, particularly for pushing
an object, is challenging due to the presence of switch-
ing/sliding contact dynamics and strong friction effects,
which are difficult to model and control. Moreover, un-
certainty in the center of mass location of the object can
introduce rotational instability when pushed at the wrong
locations. Our paper focuses on push planning to reach
a target object pose, which amounts to finding an op-
timal finite sequence of actions on the object, in terms
of the contact locations and the push velocities. This
can be formulated as a Markov Decision Process (MDP)
and solved through reinforcement learning (RL) meth-
ods. Most research works on non-prehensile manipula-
tion planning focus on model-free RL methods, includ-
ing deep Q-Network [1], heuristic value function with re-
ceding horizon planner [2], and natural policy gradient
method [3]. Although these methods have been shown to
produce positive results, they often exhibit low sample ef-
ficiency as a model-free agent needs to learn from scratch
[4]. Due to high sampling cost involving contact-rich in-
teractions between robot and environment, we focus on

Fig. 1.: Graphical representation of the system diagram.
Push planning is done by an MCTS algorithm. Each ac-
tion is illustrated with the action space which serves as
the input to the LSTM network that outputs the predicted
change in state ∆s. The gray and black circles represent
the center of mass of the object while the red dots repre-
sent the spatial center point of the object.

model-based RL, which has higher sample efficiency and
thus more practical compared to model-free RL.

Model-based RL requires learning a model of the ob-
ject dynamics, which allows prediction of the state and
reward resulting from an action. Some works focused on
physics-based parameter estimation techniques for esti-
mating center of mass positions [5] and friction param-
eters [6] in pushing operations. Other works estimate

parameters using model-fitting techniques such as least
squares [7], assuming that the model of the dynamics is
linear-in-the-parameters (LIP) and time-invariant. How-
ever, this does not hold well for the pushing problem
where nonlinear-in-the-parameters friction and discontin-
uous contact switches are present. More recent works
utilised machine learning and artificial intelligence tech-
niques to model the object’s dynamics [8]-[11]. Using the
model of the object dynamics, simulated look ahead can
be performed to plan the optimal action. Existing meth-
ods include model-based RL with model predictive con-
trol [10]-[12], sampling-based motion planning with gen-
erative model [13], and extended Monte Carlo tree search
in unobservable domains for re-arrangement tasks [14].

In this paper, we propose a novel approach using
long short-term memory (LSTM) to learn the complex
object dynamics during object pushing, and integrat-
ing this learnt LSTM model with Monte Carlo Tree
Search (MCTS)-based reinforcement learning to plan
near-optimal sequence of push actions to move the object
close to the target pose. LSTMs are capable of model-
ing time-varying non-linear non-homogeneous ordinary
differential equations governing the object dynamics dur-
ing pushing, and are free from LIP and time-invariance
assumptions. To solve the push planning problem, we
model it as a finite-size finite-horizon MDP, and use
MCTS to plan the optimal set of push actions based on
iterative simulations with the LSTM model predictions.
Obstacle avoidance is achieved through penalizing ac-
tions that lead to collisions during MCTS simulations.
Inspired by the shaped reward function design in [15],
we propose a dense nonlinear reward function provid-
ing dense reward signals with enhanced sensitivity near
the goal. Thanks to the dense rewards providing suffi-
cient guiding signals for the planner, a shallow simula-
tion rollout depth can be fixed to reduce computational
burden. We performed extensive simulations to evalu-
ate the effectiveness of the LSTM model under different
center of mass and friction conditions. A real robot ex-
periment was also conducted to demonstrate feasibility in
real world conditions.

2. NON-PREHENSILE RE-POSITIONING
TASK

The environment consists of an object of interest that
the robot will re-position and a set of obstacles O that
must not have contact with the object. In this paper, we
consider objects that are regular convex polygons with
non-uniform mass density. The state space of the envi-
ronment is denoted by S= {x, y, θ}, where (x, y) ∈ R2

represents the object position on a plane (e.g. floor or
tabletop), and θ ∈ [−π, π] the object orientation, or an-
gle of rotation, about the axis perpendicular to the plane.
We are concerned with completing the task T , which in-
volves pushing the object from the start state s0 to a goal

region

Ωg := {s ∈ S | |x−xg| ≤ δx, |y−yg| ≤ δy, |θ−θg| ≤ δθ}
(1)

surrounding a goal state sg , with δx, δy, δθ being thresh-
old numbers, while avoiding any contact with obstacles
O.

During task planning, we generate a possible action
sequence ζ = {a1, a2, · · · , an} from a start state s0 ∈ S
to a terminal state sT ∈ S . The objective is to pro-
duce an optimal action sequence ζ∗ among all possible
ζ that creates a path to the goal region Ωg ⊂ S with
the least actions needed. This objective can be mod-
eled as a model-based reinforcement learning problem
applied to a finite-size and finite-horizon Markov Deci-
sion Process (MDP). A finite size means that the action
space is discrete while finite horizon refers to the finite
length of the sequence of transitions to the terminal state,
i.e. sk, ak, sk+1, ak+1, sk+2, · · · , sT . All the episodes
from sk to sT can be considered as getting to the same
terminal state but with different experiences and rewards
according to the reward function R(s, a). Theoretically,
the learned model is able to act as a stochastic transition
model P (s′|s, a)→ [0, 1] which attempts to map actions
a to next states s′ as accurately as possible. Throughout
this process, the Markov property is strictly adhered to
in which the planner decides on each action based only
on the current state (represented as the root node in the
tree) and not on the sequence of history of events which
preceded it.

3. MODELING OBJECT-PUSHING
DYNAMICS USING AN LSTM NETWORK

3.1 Dynamics of Object Pushing
In non-prehensile manipulation, the motion of the ob-

ject is governed by the physical interactions between the
object and the environment as well as the contact dynam-
ics between the object and the robot’s end-effector. This
involves simultaneous modeling of various kinematic and
inertial parameters, as well as identifying the relation-
ships between each of these parameters. The underly-
ing dynamics for single-continuous-contact object push-
ing are nonlinear and hybrid [16]:

ṗ =

 b1(p, u) if u ∈MC
b2(p, u) if u >MC
b3(p, u) if u <MC

s = h(p) (2)

where s(t) = [x(t), y(t), θ(t)]T is the object pose at time
t, p(t) the internal state of the dynamics, bi(·) nonlinear
functions modeling the effects of friction and inertia for
different conditions on the motion coneMC at the point
of contact, h(·) the mapping from the internal state to the
output object pose, and u(t) the pusher velocity.

For (2), it is highly difficult to model the functions
and conditions analytically, perform system identifica-
tion, or find the solution to the set of differential equa-

tions, even for single-continuous-contact pushing. For
single-discontinuous-contact pushing considered in this
paper, more switchings in the dynamics are involved,
so the model becomes even more complex. With non-
uniform mass density, the mass center does not neces-
sarily coincide with the geometric center of the polygon,
so it is difficult to predict, from object geometry, how
the object will move when pushed at different points. To
overcome these difficulties, an approach is to use Recur-
rent Neural Networks (RNN), such as Long-Short Term
Memory (LSTM) networks, to approximate such hybrid
nonlinear dynamics and predict the steady-state object
pose given a force or velocity profile of a robot’s end-
effector.

3.2 LSTM Neural Network Dynamics Model
LSTM networks are widely used to model long time

series and it resolves the vanishing gradient problem in-
herent in classical RNNs [17]. Compared to a single acti-
vation function in an RNN unit, each LSTM cell contains
a special internal gating mechanism, consisting of the for-
get, input and output gates, which regulates the flow of
information by retaining or forgetting certain information
selectively.

We parameterize the learned dynamics model as an
LSTM neural network, where the parameter vector λ rep-
resents the weights of the network. The parameters of the
dynamics model learn to predict the change in the object
pose as a result of the push action:

∆sk := sk+1 − sk =

 x(tk+1)− x(tk)
y(tk+1)− y(tk)
θ(tk+1)− θ(tk)

 (3)

where tk and tk+1 are the initial times of the kth and
tk+1 actions, respectively, with tk+1 indicative of the end
of the kth action. Therefore, we can predict the new ob-
ject state ŝk+1, from the current one sk, as a result of the
action ak:

ŝk+1 = sk + f̂λ(sk, ak) (4)

where f̂λ is the function approximator which makes the
predictions using model parameter λ and input ak. The
specific architecture that we use in this study is described
in Section 5.1.

To collect data for training the LSTM network, the
robot performedN random push interactions with the ob-
ject of interest on a tabletop. Each push action is sam-
pled uniformly from an action space A which comprises
all possible combinations of object edges, contact points,
and push magnitudes (see Section 4.1). The input data
for the LSTM consists of the measured object poses sj
before each push, as well as a minimum-jerk [18] time-
series for the push speed. The output data consists of the
measured difference in object poses ∆sj = sj+1 − sj
before and after each push.

Based on the Mean Squared Error (MSE) loss func-
tion:

L =
1

N

N−1∑
j=0

‖∆sj − f̂λ(sj , aj)‖2 (5)

we train the LSTM using stochastic gradient descent with
adaptive learning rate and initialization bias correction
[19].

4. OPTIMAL PUSH PLANNING

Monte Carlo methods are well suited for model-based
reinforcement learning as they are used for planning
in finite-horizon sequential decision-making problems.
Such methods rely on repeated random sampling and
simulations to obtain numerical results and continuously
generate new successor states given an action and a cur-
rent state: sk+1 = F (sk, ak).

4.1 Action Space
We decompose the full action space A as a Cartesian

product of 3 sets of action components E × C ×D:

E =

{
0,

2π

NE
,

4π

NE
, ...,

2(NE − 1)π

NE

}
(6)

C =

{
1

NC
,

2

NC
, ...,

NC − 1

NC

}
(7)

D = {Di}i=1,2,··· ,ND (8)

where E is a list of edges for an NE-sided polygonal ob-
ject expressed in terms of the angular displacement from
a reference edge, C a list of NC − 1 contact locations
along an edge expressed as a fraction of the edge length,
and D a list of ND push distances at a contact location.
For simplicity, we consider that the push is applied only
in the direction normal to the edge.

The edge Ei, i ∈ [1, NE] determines the pushing di-
rection, which we consider to be along the edge normal.
The push distance Di, i ∈ [1, ND] affects the extent of
the motions generated by the specific pushing direction.
For each push distance Di, given push duration τ , we
generate a minimum-jerk time-series for the push speed.

In other words, selecting a particular action instance
ak from action space A involves selecting an edge on the
object from E, a contact location along the selected edge
from C, and a push distance at the selected contact loca-
tion from D. Then, given push duration τ , we generate
the push speed trajectory v(t) for action ak, starting at the
selected contact location and acting in the direction of the
normal to the selected edge. This speed trajectory, along
with the current object pose, are fed into LSTM model
to yield a prediction of the final object pose following
the push. The upper right part of the system diagram in
Figure 1 provides an illustration of the action space for a
rectangular object.

4.2 Monte Carlo Tree Search
The Monte Carlo Tree Search (MCTS) algorithm [20]

is one of the Monte Carlo methods. It is an anytime algo-
rithm and it functions on the basis of iterative episodic
simulations starting from the current initial state to a
terminal state. The execution of the algorithm progres-
sively builds an asymmetric tree whose structure is influ-
enced by the selection process following the Upper Con-

Algorithm 1 MCTS for Optimal Push Planning
1: s0, Sg ← ObserveStates()
2: while not CheckGoalReached(s0, Sg) do
3: ζ, Ŝ ←MonteCarlo(s0, Sg)
4: for i = 1 to Nζ do
5: PerformPushAction(ζi)
6: si ← ObserveStates()
7: if CheckThreshold(si, ŝi) then
8: break

fidence Bound for Trees (UCT) equation [21] given by
UCTi = R̄i +C

√
2 lnn/ni, where R̄i is the average re-

ward received over the number of visits to node ni, n the
total number of expansions, and C a constant controlling
the exploration-exploitation tradeoff.

A good strategy to complete the task can be inferred
as the tree grows until a node whose state falls within the
goal region. We evaluate the value estimations of the ac-
tion sequences through tracking the nodes with the high-
est number of visits. In this case, we consider the se-
quence of actions which lead to the shortest path from
the root node n0 to the goal node ng in the tree to be ζ∗.

4.3 MCTS for Push Planning
The iterative simulation feature of the MCTS algo-

rithm presents a synergistic effect when combined with
the LSTM neural network dynamics model developed in
Section 3.. The learned model is able to act as a simulator
which performs the black-box predictions needed during
the simulation phase of the MCTS algorithm, providing
an automatic process in expanding the tree and producing
the optimal sequence of actions.

Algorithm 1 illustrates the MCTS algorithm modified
for optimal push planning. Each node in the tree stores
the following information:
• ni - the number of times the node has been visited
• si - the state in state space S that describes the node
• ai - the preceding action that created the node
• R̄i - average reward of the node

With an initial state s0 and a goal state Sg , the MCTS
algorithm is executed to generate a feasible action se-
quence ζ to perform, as well as the predicted states
Ŝ = [ŝ1, ŝ2, · · · , ŝNζ], where Nζ denotes the cardinal-
ity of ζ (Line 3). The number of actions in the sequence
will differ depending on how far apart s0 and Sg are. As
the robot performs each action ai in the sequence physi-
cally (Line 5), it observes the next state si+1 (Line 6) and
checks if the error between the network prediction ŝi+1

and ground truth si+1 exceeds a threshold ε (Line 7). If ε
is exceeded, the robot will abort the execution of the cur-
rent ζ and plans for another action sequence ζnew again
with si+1 as the new s0. Otherwise, the robot will pro-
ceed to perform ai+1 and the ε check repeats again. The
procedure stops when the robot successfully pushes the
object to the goal, i.e. sT ∈ Ωg .

4.4 Reward Function
One of the key to implementing efficient MCTS algo-

rithms is to formulate a clear and accurate reward func-
tion. Reward functions provide reward signals which en-

Fig. 2.: Mean squared error loss vs number of epochs
for different COM positions in Object1 (left) and Object2
(middle), as well as different friction coefficients for
Object1 (right).

courage and guide the MCTS planner to evaluate terminal
states succinctly while maximising goal-related informa-
tion gain, thereby expanding the tree as directly as pos-
sible. We design a dense reward function with quadrat-
ically increasing reward as the terminal state approaches
the goal state. To allow different scaling in position and
orientation, we consider 2 reward component functions
RX : R2 → R and Rθ : R→ R.

Let η = X⊕θ. Hence, dX :=
√

(x− xg)2 + (y − yg)2

and d∗X := εX + ∆X , where (xg, yg) is the goal position
and εX ,∆X positive constants representing the size of
the goal region and the spread of the reward function, re-
spectively. Contrarily, dθ := |θ− θg| and d∗θ := εθ + ∆θ,
with θg the goal yaw angle and εθ,∆θ positive constants.
Then, the component reward function is defined as:

Rη(η) =

1 dη ≤ εη
−1 dη > d∗η

2
(
dη−d∗η

∆η

)2

− 1 otherwise

(9)

which provides dense reward signals for both the posi-
tion and orientation components, reaching a maximum
value of 1 within a ε-neighborhood of the goal, and
quadratically decreasing to −1 with increasing distance
from the goal.

We combine the position and orientation components
by a weighted sum to obtain the dense reward function
Rdense : R2 × R → R. Specifically, Rdense(x, y, θ) =
ρRX(x, y) + (1− ρ)Rθ(θ) where ρ ∈ [0, 1] is a constant
which can be adjusted to weigh the relative importance
of position versus orientation error based on the task re-
quirements.

In order to find an action sequence that not only pushes
the object into the goal region, but also minimizes the
number of actions, we add a cost term that penalizes long
action sequences, yielding the overall reward function:

Roverall = %Rdense + (1− %)

(
2

Nζ
− 1

)
(10)

where % ∈ [0, 1] is a constant.

4.5 Obstacle Avoidance
In this study, we are dealing with static obstacles. The

obstacle avoidance feature is achieved by applying the

Table 1.: Statistical measure of the network prediction performance for all 6 COM positions and 2 Friction settings. All
objects are trained with µ = 0.2 unless stated otherwise. Each network was trained 20 times and the statistical measures
values averaged.

Performance Index COMA1

µ = 0.1
COMA1

µ = 0.2
COMB1 COMC1 COMA2 COMB2 COMC2

Average MSE for test set 3.91×10−3 3.22×10−3 2.81×10−3 1.32×10−3 3.23×10−3 2.65×10−3 2.85×10−3

Average MSE for training set 2.18×10−3 1.16×10−3 7.28×10−4 6.45×10−4 1.24×10−3 9.95×10−4 1.04×10−4

Average MPE for test set
(displacement) [m] 5.95×10−3 4.56×10−3 2.35×10−3 2.51×10−3 4.45×10−3 3.83×10−3 3.63×10−3

Average MPE for test set
(orientation) [rad] 0.07634 0.039447 0.03035 0.0357 0.04283 0.04014 0.03871

Gilbert-Johnson-Keerthi (GJK) distance algorithm [22].
We also add a heuristic that penalises the planner if a col-
lision occurs during the simulation phase. If collision oc-
curs during the expansion phase, the corresponding child
node in the tree will be removed and no longer consid-
ered. On the other hand, if collision occurs during the
simulation phase, the current rollout will be terminated
and a reward of −1 will be given instead to penalise the
planner for causing a collision. A large negative reward
was not preferred in this case as it was deemed too harsh
sinceRmax is only kept at unit reward and a harsh penalty
will cause confusion for the UCT algorithm, limiting ex-
ploration.

5. EXPERIMENTS AND RESULTS

We evaluated the prediction performance of the LSTM
network and the efficiency of the MCTS implementation
on both simulated and real 7-DOF arm of the DRC-Hubo
robot. The task was to push a tabletop object to a de-
sired goal region (1) with εx = 0.04, εy = 0.04, and
εθ = π/18. The obstacle avoidance feature described in
Section 4.5was also tested for both the simulation and real
robot experiment.

For simplicity, we considered a rectangular object, al-
though the proposed method is valid for any regular con-
vex polygon. We attached an L-bar to robot hand for bet-
ter contact with the object surface as well as for ease of
trajectory planning. The L-bar was defined as a revolute
joint in simulation to increase the flexibility of the robotic
arm. In the real robot experiment, the L-bar was firmly
grasped in the robot’s hand with known frame transfor-
mations.

The robotic arm was position-controlled in joint space
using desired joint trajectories generated by MoveIt!.
Each push action was based on the minimum-jerk push
velocity trajectories described in Section 4.1. Perception of
the environment in the real robot experiment was done by
using ArUco markers and OpenCV detection algorithms.
Different markers are placed on the object, obstacle and
the goal to allow the robot to identify the types and esti-
mate the poses.

(a) Initial (b) Action 1 (c) Action 2 (d) Action 3 (e) Action 4

Fig. 3.: Representative action sequence planned and pro-
duced by MCTS to push object to the goal area in simu-
lated robot study.

5.1 Evaluating LSTM networks for modeling object
dynamics

For training of the LSTM network, we collected data
of 5000 instances of tabletop object pushing by the robot
(uniformly distributed over action set A) in Gazebo sim-
ulation environment, on 2 objects: Object1 with dimen-
sions 12×10×20 cm, and Object2 20×12×20 cm. Our
network consists of two stacked LSTM hidden layers of
sizes 50 and 25 respectively and each layer is topped with
a dropout layer with rate 0.2. The Adam optimizer [19]
was used for optimization while the Mean Squared Error
(MSE) was used as our loss function. To test for general-
isability of the network, a test set with unseen position of
contact and distance pushed values was used.

We conducted hyperparameter optimization using a
Grid Search algorithm [23] for the learning rate and batch
size to fine-tune the LSTM network. All the networks
in the grid search algorithm were each trained with 50
epochs. The optimal learning rate and batch size were
found to be 0.005 and 64 (79 iterations per epoch) re-
spectively, and used in the remaining of this study.

To further verify the versatility of the LSTM network
in modeling different dynamics, we conducted a series of
tests with variants of the objects mentioned in this section
previously. The variants included varying Center of Mass
(COM) positions, as well as the friction coefficients µ. In
both tests, all the datasets are of size 5000.

5.1.1 Varying Center of Mass
In our experiment, we considered three different COM

positions: COMA = (0.05,−0.03), COMB = (0, 0),
and COMC = (−0.05, 0.03). All other object prop-
erties as well as the environment were kept the same.
Object-specific LSTM networks with the optimal archi-

(a) Trajectory in x

(b) Trajectory in y

(c) Trajectory in θ

Fig. 4.: Object trajectories in x, y and θ sampled from
13 different initial poses. The common goal region is
denoted by the shaded region and the goal state the black
dashed line. Black dots indicate the end of the action
sequence.

tecture were trained. Early stopping was implemented
to prevent overfitting. An evaluation of the three net-
works is shown in Figure 2 and Table 1. All six networks
showed promising prediction performances with encour-
aging rates of convergence within 50 epochs. In addition,
we evaluated the networks statistically with the MSE (5)
and mean prediction errors (MPEs) given by LP,X =
1
N

∑N
j=1 ‖Xj − X̂j‖ and LP,θ = 1

N

∑N
j=1 |θj − θ̂j |,

where Xj := [xj , yj]
T and X̂j := [x̂j , ŷj]

T . The average
MPEs for all the six networks with µ = 0.2 showed pos-
itive results of < 5mm and 0.05rad for the displacement
and orientation errors respectively.

5.1.2 Varying Friction
Friction is controlled by the friction coefficient µ.

Lower µ results in lesser friction. In this experiment, µ
values of 0.1 and 0.2 were compared. In both simulations,
Object1 with COMA position (COMA1) was used with
all the other settings kept constant. Similarly to the ex-
periment for varying COM positions, the results for this
experiment are shown in Figure 2 and Table 1. The net-
work trained to model the dynamic system with µ = 0.1
also converged within 50 epochs and obtained low test
MPEs LP,θ < 0.08 rad and LP,X < 6mm. These values
are larger than those for the µ = 0.2 friction setting, pos-
sibly due to low-friction intermittent sliding between the
end-effector and the object during the push.

Fig. 5.: Average rewards for all actions in a sample push
sequence converge with the number of MCTS iterations.

5.2 Evaluating MCTS for push planning
For both simulated and real robot studies, our robot

performed the push planning task while avoiding an ob-
stacle, if present. In our implementation of MCTS, a sim-
ulation rollout depth of 3 was used to help to ease com-
putational burden. For replanning, we set ε to be 0.1m
for both x and y-directions and 0.524rad for orientation.
Replanning will be triggered when the accumulated er-
ror between the predicted state and ground truth exceeds
ε for any state feature. The reward weights are set as
ρ = 0.5 and % = 0.7.

5.2.1 Simulated robot
We demonstrate the MCTS implementation in simula-

tion by showing snap shots of a generated representative
action sequence in Figure 3. Figure 4 illustrates 13 object
trajectories, sampled at different initial poses, converged
to the common goal region. Of the 13 sequences, 7 con-
verged within 5 actions, and 6 converged in 6-8 actions.
This indicates that both the Euclidean distance and orien-
tation changes were taken into consideration during plan-
ning. Thus, the planner is able to recognize and switch
between different motions depending on the current state
relative to the goal region.

5.2.2 Real robot
For the real robot setup, an obstacle was placed be-

tween the object and the goal. We added another heuris-
tic by only considering the object edge that allows for the
most number of performable actions during motion plan-
ning. This heuristic allowed us to narrow down the action
space to an edge Ei. Figure 6 shows snap shots of an ac-
tion sequence executed by the real robot (more in supple-
mentary video). The robot pushed the object to the goal
region while circumventing the obstacle. Note that re-
planning was triggered more often in the real robot setup
due to slight differences in the object properties. How-
ever, by re-planning automatically, the robot still suc-
ceeded towards the goal most of the time.

(a) Initial (b) Action 1 (c) Action 2

(d) Action 3 (e) Action 4

Fig. 6.: Action sequence planned and executed by a real
robot to push an object around an obstacle to the goal (see
video accompanying this paper).

5.2.3 Reward Shaping
We evaluatedRdense by plotting the average reward of

each action generated in a sampled push sequence against
the number of MCTS iterations as illustrated in Figure 5.
The average rewards for all actions in the push sequence
followed an upward trend before converging to an opti-
mal reward. This indicated that the reward function pro-
vides accurate evaluations of terminal states with respect
to task completion. However, a flattening trend is visible
across the actions. By reducing the differences between
the current state and the goal region, the measurement
error sensitivities for both Euclidean distance and orien-
tation were reduced. Therefore, this resulted in reduced
improvements in the average reward of each action in the
sequence.

6. CONCLUSION

In this work, a model-based reinforcement learning
framework combining learning through an LSTM neu-
ral network and planning with MCTS was proposed. We
demonstrated that the LSTM network can model the un-
derlying dynamics of an unknown object in pushing op-
erations across various environment and object settings
while the MCTS algorithm utilised the learned model as
a black-box simulator in generating optimal action se-
quences for task completion with the use of a dense re-
ward function and various heuristics. The result is a ro-
bust framework that can perform push planning with fea-
tures such as obstacle avoidance. The study provides a
proof-of-concept towards a closed-loop planning frame-
work for non-prehensile manipulation. In future work,
we plan to extend this framework to explore an online
learning approach that can learn incrementally. An ini-
tial sub-optimal model can be used and optimized subse-
quently during the task, reducing the sample complexity
of initial model training. Possibilities of transfer learning

across different environment and object settings can be
explored to provide further versatility. Furthermore, the
framework can be generalized to handle irregular poly-
gons.

ACKNOWLEDGEMENTS

The authors are grateful to Minh Khang Pham for the
fruitful discussions on the experiment design and imple-
mentation, as well as Samuel Cheong, Chong Boon Tan
and Jun Li for their assistance with the robot experiments.

This research is supported by grant no. A19E4a0101
from the Singapore Government’s Research, Innovation
and Enterprise 2020 plan (Advanced Manufacturing and
Engineering domain) and administered by the Agency for
Science, Technology and Research.

REFERENCES

[1] W. Yuan, J. A. Stork, D. Kragic, M. Y. Wang, and
K. Hang, “Rearrangement with nonprehensile ma-
nipulation using deep reinforcement learning,” in
IEEE International Conference on Robotics and Au-
tomation (ICRA), 2018, pp. 270–277.

[2] W. Bejjani, M. R. Dogar, and M. Leonetti, “Learn-
ing physics-based manipulation in clutter: Com-
bining image-based generalization and look-ahead
planning,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2019.

[3] K. Lowrey, S. Kolev, J. Dao, A. Rajeswaran, and
E. Todorov, “Reinforcement learning for non-
prehensile manipulation: Transfer from simulation
to physical system,” in IEEE International Confer-
ence on Simulation, Modeling, and Programming
for Autonomous Robots (SIMPAR), 2018, pp. 35–
42.

[4] R. S. Sutton and A. G. Barto, Introduction to Rein-
forcement Learning, MIT Press, Cambridge, MA,
USA, 1st edition, 1998.

[5] M. T. Mason, “Mechanics and planning of manip-
ulator pushing operations,” The International Jour-
nal of Robotics Research, vol. 5, no. 3, pp. 53–71,
1986.

[6] K. M. Lynch, “Estimating the friction parameters
of pushed objects,” in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS),
1993, pp. 186–193.

[7] D. Kubus, T. Kroger, and F. M. Wahl, “On-line
estimation of inertial parameters using a recursive
total least-squares approach,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS), 2008, pp. 3845–3852.

[8] Y. Wang, “A new concept using LSTM neural net-
works for dynamic system identification,” in 2017
American Control Conference (ACC), May 2017,
pp. 5324–5329.

[9] J.K. Li, D. Hsu, and W.S. Lee, “Push-net: Deep

planar pushing for objects with unknown physical
properties,” in Robotics: Science & Systems, 2018.

[10] A. Nagabandi, G. Kahn, R. S. Fearing, and
S. Levine, “Neural network dynamics for model-
based deep reinforcement learning with model-free
fine-tuning,” in IEEE International Conference on
Robotics and Automation, 2018, pp. 7559–7566.

[11] P. Agrawal, A. Nair, P. Abbeel, J. Malik, and
S. Levine, “Learning to poke by poking: Experi-
ential learning of intuitive physics,” in Proceedings
of the 30th International Conference on Neural In-
formation Processing Systems (NIPS’16), 2016, pp.
5092–5100.

[12] F. Ebert, C. Finn, S. Dasari, A. Xie, A. X. Lee, and
S. Levine, “Visual foresight: Model-based deep re-
inforcement learning for vision-based robotic con-
trol,” arXiv preprint arXiv:1812.00568, 2018.

[13] J. A. Haustein, I. Arnekvist, J. A. Stork, K. Hang,
and D. Kragic, “Learning manipulation states and
actions for efficient non-prehensile rearrangement
planning,” arXiv preprint arXiv:1901.03557, 2019.

[14] J. E. King, V. Ranganeni, and S. S. Srinivasa, “Un-
observable monte carlo planning for nonprehensile
rearrangement tasks,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA),
2017, pp. 4681–4688.

[15] E. J. Jacobsen, R. Greve, and J. Togelius, “Monte
Mario: Platforming with MCTS,” in 2014 Annual
Conference on Genetic and Evolutionary Computa-
tion (GECCO’14), 2014, pp. 293–300.

[16] F. R. Hogan and A. Rodriguez, “Feedback control
of the pusher-slider system: A story of hybrid and
underactuated contact dynamics,” arXiv preprint
arXiv:1611.08268, 2016.

[17] S. Hochreiter and J. Schmidhuber, “Long short-
term memory,” Neural Computation, vol. 9, no. 8,
pp. 1735–1780, November 1997.

[18] T. Flash and N. Hogan, “The coordination of arm
movements: an experimentally confirmed mathe-
matical model,” Journal of Neuroscience, vol. 5,
no. 7, pp. 1688–1703, 1985.

[19] D. P. Kingma and J. Ba, “Adam: A method for
stochastic optimization,” in 3rd International Con-
ference on Learning Representations (ICLR), 2015.

[20] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck,
“Monte-carlo tree search: A new framework for
game ai,” in The Fourth AAAI Conference on Artif-
ical Intelligence and Interactive Digital Entertain-
ment (AIIDE). 2008, pp. 216–217, AAAI Press.

[21] L. Kocsis and C. Szepesvári, “Bandit based monte-
carlo planning,” in Proceedings of the 17th Eu-
ropean Conference on Machine Learning, Berlin,
Heidelberg, 2006, pp. 282–293, Springer-Verlag.

[22] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi,
“A fast procedure for com-puting the distance be-
tween complex objects in three-dimensional space,”
IEEE Journal of Robotics and Automation, vol. 4,
pp. 193–203, April 1988.

[23] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl,
“Algorithms for hyper-parameter optimization,” in
24th International Conference on Neural Infor-
mation Processing Systems (NIPS’11), 2011, pp.
2546–2554.

	Introduction
	Non-Prehensile Re-Positioning Task
	Modeling Object-Pushing Dynamics using an LSTM Network
	Dynamics of Object Pushing
	LSTM Neural Network Dynamics Model

	Optimal Push Planning
	Action Space
	Monte Carlo Tree Search
	MCTS for Push Planning
	Reward Function
	Obstacle Avoidance

	Experiments and Results
	Evaluating LSTM networks for modeling object dynamics
	Varying Center of Mass
	Varying Friction

	Evaluating MCTS for push planning
	Simulated robot
	Real robot
	Reward Shaping

	Conclusion

