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Abstract—Representation learning is vital for the performance
of Multivariate Time Series (MTS) related tasks. Given high-
dimensional MTS data, researchers generally rely on deep learn-
ing (DL) models to learn representative features. Among them,
the methods that can capture the spatial-temporal dependencies
within MTS data generally achieve better performance. However,
they ignored hierarchical relations and the dynamic property
within MTS data, hindering their performance. To address
these problems, we propose a Hierarchical Correlation Pooling
boosted graph neural network (HierCorrPool) for MTS data
representation learning. First, we propose a novel correlation
pooling scheme to learn and capture hierarchical correlations
between sensors. Meanwhile, a new assignment matrix is designed
to ensure the effective learning of hierarchical correlations by
adaptively combining both sensor features and correlations.
Second, we learn sequential graphs to represent the dynamic
property within MTS data, so that this property can be captured
for learning decent representations. We conducted extensive
experiments to test our model on various MTS tasks, including
remaining useful life prediction, human activity recognition, and
sleep stage classification. Experimental results have shown the
effectiveness of our proposed model.

Impact Statement—Multivariate Time Series (MTS) data repre-
sentation learning has received great attention in recent years due
to its importance for downstream tasks. MTS has two important
properties, the temporal and spatial dependencies. Traditionally,
due to highly nonlinear power, deep learning based methods
have been widely applied for addressing the former, but few
works focus on making full of the spatial dependencies. Although
pioneers started to exploit Graph Neural Network to capture the
spatial dependencies, they still have limitations. The proposed
method in this paper learns and captures the hierarchical
correlations between sensors, and meanwhile, sequential graphs
are learned to represent the dynamic property within MTS
data. In this way, the spatial-temporal dependencies within MTS
data can be better leveraged. With significant improvements on
multiple MTS tasks compared to state-of-the-art algorithms, our
method is ready to learn decent representations from MTS signals
in different areas.
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Network (GNN), Multivariate Time Series (MTS) Data
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I. INTRODUCTION

Multivariate time series (MTS) data refer to the sequential
signals ordered in time and collected from multiple sources
(e.g., sensors). The historical information and the relations
between sources should be analyzed for various downstream
tasks, such as prediction [1], [2], e.g., machine Remaining
Useful Life (RUL) prediction, and classification [3], [4],
e.g., Human Activity Recognition (HAR) and Sleep Stage
Classification (SSC). Traditionally, researchers adopted model-
based methods [5], statistic-based methods [6], distance-based
methods [7], and feature-based methods [8] to process MTS
data. However, these traditional methods require expert knowl-
edge and are thus labour-intensive. Besides, spatial (i.e., the
relations between sources) and temporal information (i.e., the
temporal dependencies among historical information) within
MTS data should be analyzed simultaneously, but it is hard
for the traditional models to capture such information.

To achieve satisfactory performance for downstream tasks,
learning decent representations from MTS data became popu-
lar in recent years [8], [9]. Among them, Deep Learning (DL)-
based models have shown to be the leading solutions [10]. Due
to the capability of nonlinear modeling and automatic feature
extraction, DL-based models can learn informative features
without explicitly knowing the complicated dynamics of MTS
data. Thus, DL-based models, such as Convolutional Neural
Network (CNN) [11], [12], [13] and Long Short-Term Memory
(LSTM) [14], [15], [16], have been widely adopted to learn
representations of MTS data. These models have been shown
to perform well in capturing temporal information of time-
series data, thus achieving better performance than traditional
models. However, they are incapable of well capturing spatial
dependencies, i.e., the correlations between sensors, hindering
their performance in representation learning.

Graph Neural Network (GNN) serves as a good solution
to the above problem because of its great success in mod-
elling structured data. Recently, many researchers have started
exploiting GNN to learn MTS representations by capturing
sensor correlations. These GNN-based models have shown
validity in various MTS related areas, such as RUL prediction
[17], SSC [18], and HAR [3]. Although they have achieved
better performance than traditional DL-based models, they still
have limitations in fully utilizing the correlations between sen-
sors. As shown in Fig. 1 (a.1), most works [19], [20] directly
stack the information of sensors to learn representations after
updating sensor features by capturing correlations with GNN.
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Fig. 1: The diagram of differences between (a) directly stacking and (b) capturing hierarchical correlations.

However, the way of direct stacking ignores the important local
information between sensors, while it is more reasonable to
first analyze the local and then the overall spatial information
to learn representations. This is similar with Computer Vision
(CV). For example, researchers in CV prefer to use CNN
as Fig. 1 (b.2) instead of directly stacking all pixels to
extract features from images, as the latter cannot capture
the local spatial information and also requires more trainable
parameters as shown in Fig. 1 (a.2). Similarly, the lack of
local information between sensors hinders the performance of
MTS representation learning. Besides, it is noted that MTS
data show dynamic sensor correlations, i.e., the correlations
between sensors are dynamically changing over time. Let’s
take machine RUL prediction as an example. The correlation
between a fan speed sensor and a temperature sensor will be
different when a machine is in different states, i.e., in good or
bad condition. To achieve better representation learning, it is
useful to capture this dynamic property when generating the
graph structure for MTS data. However, current methods [19],
[20] mainly construct one graph for each MTS sample and are
thus difficult to leverage the dynamic sensor correlations.

To fully leverage the correlations between sensors, we pro-
pose a Hierarchical Correlation Pooling boosted graph neural
network (HierCorrPool). We consider the local correlations as
functional units. Intuitively, we should exploit the local inter-
correlations of sensors at first and then the overall correlations
when analyzing the MTS data, as shown in Fig. 1 (b.1). To
analyze the local correlations, we learn and capture hierar-
chical correlations between sensors layer by layer. With the
local information being captured, we are able to learn better
representations. To achieve good performance, it is necessary
to learn decent hierarchical correlations. Traditionally, graph
pooling methods, such as DiffPool [21], were proposed to
handle binary graphs and learn hierarchical graphs by consid-
ering node features. However, MTS data will derive a weighted
graph instead of a binary graph, so the traditional graph pool-
ing methods may not perform well in MTS related areas. To
address this problem, we propose a novel correlation pooling
scheme to learn the hierarchical correlations between sensors.

Specifically, to incorporate the weighted sensor correlations
into learning hierarchical correlations, we propose to learn a
new assignment matrix by combining the information from
sensor correlations and features adaptively, which is then used
to learn precise hierarchical correlations. Besides, we design
and learn sequential graphs for representing the dynamic
sensor correlations within MTS data. To achieve this, we first
divide an MTS sample into multiple feature windows, and
the sequential feature windows show temporal dependencies.
Then, we adopt CNN to capture the temporal dependencies.
With the learned windows, we construct sequential graphs,
which represent the dynamic sensor correlations and can be
then utilized to learn and capture the hierarchical correlations
by our correlation module and GNN respectively. In this way,
the dynamic sensor correlations can be leveraged to learn
decent representations for MTS data.

Our contributions can be summarized as follows:

« To ensure effective learning and capturing of hierarchical
correlations between sensors, a novel correlation pooling
scheme is proposed. Specifically, a new assignment ma-
trix is designed by adaptively combining the information
from both sensor correlations and features.

« To represent the dynamic sensor correlations within MTS
data, sequential graphs are designed and learned. Then,
the hierarchical correlations in the sequential graphs are
leveraged to learn representative features for MTS data.

o To evaluate the effectiveness of our method, we conduct
extensive experiments on different MTS tasks. The results
demonstrate that our method outperforms state-of-the-art
methods on various MTS tasks.

II. RELATED WORK

This section reviews the related work on DL-based repre-
sentation learning according to different model types.

A. CNN-based Models for MTS Representation Learning

Due to the popularity in computer vision, CNN-based mod-
els have been widely used for learning the representations of



MTS data. To capture the temporal dependencies in time-series
data, 1D CNN was initially applied. Liu et al. [22] proposed
a multivariate CNN by considering the multivariate and lag
features for MTS classification. Wang et al. [23] proposed
multiple CNNs to process the periodic information to make
predictions based on MTS data. Besides, some researchers
exploited 2D CNN to learn representations. Yang et al. [24]
proposed to encode MTS data as two-dimensional images,
which are concatenated as a bigger image and then processed
by CNN to learn feature representation for classification.

B. LSTM-based Models for MTS Representation Learning

LSTM-based model is another branch to learn representa-
tions of MTS data by capturing the temporal dependencies.
Du et al. [25] proposed a bi-directional-LSTM based temporal
attention encoder-decoder model for MTS forecasting. Lu
et al. [1] proposed a generative adversarial network com-
bining LSTM and auto-encoder to learn representations for
RUL prediction. Chen et al. [16] proposed an LSTM-based
framework by combining attention to learn the importance
of time steps for MTS prediction. These models can achieve
better performance than those traditional models, showing the
validity of DL-based solutions. However, most of these CNN-
and LSTM-based models focus on the temporal dependencies
of MTS data but ignore the correlations between sensors,
which limits their performance in representation learning.

C. GNN-based Models for MTS Representation Learning

A few works have been devoted to leverage sensor corre-
lations by GNN for MTS data. They mostly constructed a
graph for each MTS sample and updated sensor features by
leveraging sensor correlations with GNN. With the learned
sensor features, they directly stacked the sensor features to
learn overall representations [26], [27], [28]. For example,
Ailin and Bryan [26] captured the correlations between sensors
by GNN for anomaly detection. In the last layer of GNN,
they stacked all sensor features and learned the representations
by a neural network. Jia et al. [27] modeled the correlations
between sensors by GNN for sleep stage classification. Then,
they concatenated sensor features to learn the representations
for classification. These methods are great pioneers. However,
they cannot capture the hierarchical correlations between sen-
sors. Meanwhile, they ignored the dynamic property of MTS
data. These limitations restrict their performance.

To address the above problems, we learn the hierarchical
correlations between sensors by proposing a novel correlation
pooling module, and meanwhile, we learn sequential graphs to
represent and capture the dynamic property within MTS data.

ITII. HIERARCHICAL CORRELATION POOLING BOOSTED
GRAPH NEURAL NETWORK

A. Overall Structure

The overall structure of our proposed HierCorrPool is shown
in Fig. 2. First, we divide an MTS sample into multiple
feature windows, and the sequential feature windows show
temporal dependencies, which are then captured by a 1D-CNN

module. With the learned windows, we can then construct
sequential graphs to represent the dynamic sensor correlations.
The hierarchical correlations between sensors in each graph
are learned by our proposed correlation pooling scheme. Then,
GNN is adopted for each graph to learn sensor features
by capturing the hierarchical correlations. Multiple layers of
correlation pooling schemes are deployed to improve the
nonlinear expressiveness and learn hierarchical correlations.
Finally, after capturing the hierarchical correlations between
sensors in sequential graphs, the learned hierarchical features
are mapped to learn overall representations. The details of
these modules are introduced in the following parts.

B. Sequential Graph Construction

It is noted that the correlations between sensors change dy-
namically. Let’s take the fan speed sensor and the temperature
sensor when predicting the RUL of a machine as an example.
When the machine is in good condition, 50 /s fan speed
may only make the temperature go up to 50 degrees, but the
same fan speed may cause higher temperature due to the bad
condition of the machine, e.g., increased friction. The current
works [19], [20] construct one graph for each MTS sample
and thus cannot capture the dynamic sensor correlations. To
represent the property, we here learn sequential graphs for each
MTS sample.

Given an MTS sample X = {x,,,}N_, € RN¥*L originating
from N sensors, each sensor x,, has L timestamps, i.e.,
{zm[1], Zm[2], ..., zm[L]}. To learn decent sequential graphs,
we first divide X into L small feature windows with fixed
length f. Regarding the m-th sensor z,,, = {x,[t|}Z,, for
example, we divide it into z,,, = {zn[1], 2m[2], ..., 2m[L]} as
shown in Fig. 3, where z,,[1] = {z[1],2m[2], .., Tm[f]}s
zm[2] = {xm[f + 1], xm[f + 2], ..., zm[2f]}, etc. The sequen-
tial feature windows, i.e., {zn[1], 2m[2], ..., zm[L]}, present
temporal dependencies. To capture these temporal dependen-
cies, we design a 1D-CNN module over the sequential feature
windows. Besides, 1D-CNN has been proved to be capable of
well capturing the temporal dependencies within MTS data in
[29]. In particular, ID-CNN consists of 1D convolutional ker-
nels to capture the temporal dependencies. We suppose kernels
with the learnable weights W = {w¢[1], we (2], ..., welk]},
where k is the kernel size and wc[k] € R/*/". The kernels
are convolved with z,, = {2,[1], 2m[2], ..., zm[L]} regarding
the sensor v,,, as Eqn. (1).

2. = LeakyReLU (zy, * W¢). (1)

Here, * is the standard convolution operation, which is shown
as z) [t] = LeakyReLU (X" _, zp[t — Twelr]),t € [1, L],
where L’ is the number of learned feature windows after con-
volution. Then, we can obtain the new features 2/, € RE>T,
As the 1D convolution has been done along the dimension of
sequential feature windows, it is able to capture the temporal
dependencies of feature windows.

In order to represent the spatial information (i.e., dynamic
sensor correlations) within MTS data, we then design sequen-
tial graphs G = {G[t]} X |, each of which contains node set
V with features Z'[t] € RN*/" and edges E'[t] € RN*N,
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Fig. 2: The overall structure of our proposed HierCorrPool. 1). Each MTS sample is divided into multiple feature windows,
and the sequential feature windows show temporal dependencies, which are captured by 1D-CNN; 2). Sequential graphs are
constructed based on the learned windows, showing the changing dynamics of sensor correlations; 3). Hierarchical correlations
for each graph are learned and captured by our correlation module and GNN respectively; 4). The learned sensor features are

mapped to learn overall representations.
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Fig. 3: The diagram of feature sampling.

representing sensor features and sensor correlations in this
graph. For each graph, we already have sensor features
Z'[t] = {z,[t]}N_,, and we then need to construct edges
E'[t] = {e},,[t]}} =1 to represent the sensor correlations.
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Fig. 4: The diagram of correlation construction.

We argue that the correlations between any two sensors
are large when they have similar features, so we calculate
the similarities between sensors as Fig. 4. Taking z/,[t] and
2z} [t] as an example, the construction process is calculated as
Eqgn. (2), where the similarity is measured by the dot product
of sensors, and h(z., [t], z.[t]) = 2.,[t]z.[t]T represents the

correlation between sensor m and n. Furthermore, the softmax

function is adopted to normalize the correlations, and thus the
value of constructed e, [t] is within the range of [0, 1].
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By calculating the correlations of other sensor pairs, we
obtain E'[t] to represent the sensor correlations, i.e., spatial
information, in the ¢-th graph. In this way, we obtain the
sequential graphs to represent the dynamic changes of the
sensor correlations (i.e., full spatial information). Then, the
hierarchical correlations in each graph are learned and cap-
tured in the following parts.

C. Hierarchical Correlation Pooling Scheme

This part introduces the proposed correlation pooling
scheme to learn the hierarchical correlations between sensors.
As the sensors are with complex topological structures and
they have no natural notion of spatial locality, the correlation
pooling scheme is designed to handle the topological informa-
tion between sensors.

To learn the hierarchical correlations between sensors, we
need to design an assignment matrix S' € RN N ¢
first, which can map N ! nodes (i.e., clusters of sensors) to
N1 nodes as shown in Fig. 5. The assignment matrix can
cluster the sensors with similar properties and then map the
dense correlations into the coarse correlations. Therefore, the
assignment matrix is the key component for learning effective
hierarchical correlations. Here, S! represents the assignment
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Fig. 5: The diagram of the learning of hierarchical correlations,
where N' nodes are mapped to N'*! nodes by the assignment
matrix. In this example, N' and N'*! are 6 and 4, respectively,
and the assignment matrix is S' € R6*4,

matrix in the [-th layer, and the hierarchical correlations are
learned layer by layer.

Traditionally, the assignment matrix is generated based
solely on the node features for graph pooling, such as DiffPool
[21], which was proposed mainly for the graphs with binary
edges (an edge between any two nodes either exists or not).
However, different from the binary graphs, the sensor correla-
tion are weighted graphs as Eqn. (2). Thus, the edges of sensor
correlations are more informative than those in binary graphs.
Therefore, we are motivated to generate the assignment matrix
by both the node features Z and edge weights F.

Given the t-th graph with node features as Z'[t] € RN x?'
and node correlations as E'[t] € RN >*N' in layer I, N!
and d' represent the number of nodes and the feature di-
mension respectively. Z'[t] and FE'[t] are Z'[t] and E'[t]
respectively when [ = 1. We aim to propose a scheme S
to generate a precise assignment matrix S'[t] by considering
both information from features and correlations, i.e., S [t] =
S(Z't), E'[t]; Wh.

Concatenation: The first alternative scheme is the concate-
nation of node features and node correlations, as Eqn. (3).

Selt] = softmaz(o([E'{IIZ IWE)), 3)

where W € RW'+d)xN" This scheme is a simple yet
effective way to generate the assignment matrix, as it allows
neural networks to decide automatically how many weights
should be put on both parts. However, this scheme is only
suitable for the situation where the scales of N' and d' are
close. Otherwise, the neural network may bias towards the
part with the larger size and thus have negative impacts on
the performance of representation learning.

Concatenation + Projection: To address the mentioned
problem, projection functions are introduced to map both parts
into the same dimension, as Eqn. (4).

Seplt] = softmaz(o(lo(E' tIW)||o (2! [t]WlZ)]WlCP))(Z)

where WL € RN'*H' and W}, e R?*H' are projection
functions, and Wép S R2H' XN Here, H' is the target
dimension for both parts. With the projection functions, the
scheme can generate a suitable assignment matrix even in a
situation where the sizes of N' and d' are quite different.

Concatenation + Projection + Propagation: The above
schemes consider both parts separately. To adaptively com-
bine the two parts, this scheme further considers the node
features after propagation E'[t]Z![t] as shown in Eqn. (7),
which considers current node features and their neighbor
nodes. Therefore, we propose the full scheme to generate the
assignment matrix as Eqn. (5).

Sepp = softmaz(o([o(E'[()Wg)|[P[]WEpp)), 5)

Pllt] = o(E'[1) 2" [(]Wp)),

where I/K}% e RN WL e RIXH' and Wi, €

R2H XN In this way, we have the assignment matrix
adaptively combining node features with correlations.

With the assignment matrix, we can learn hierarchical

+1
features Z}[t] = {z},, LYNCZ] and hierarchical correlations

EL[t] = {einn’ wlt] fvnl::l for the ¢-th graph in the layer [ as
Eqn. (6).
ZLit] = S 24 e RV X
! 1T mii ol NIFLx NI+ ©
E;[t] = S'[t] E‘'[t])S'[t] e R .

The sensors with similar properties are clustered by S![¢] and
thus the local information between sensors is captured. Here,
as our assignment matrix is designed specifically for MTS
data, we are able to learn decent hierarchical features and
hierarchical correlations for MTS data.

Then, we need to update the hierarchical features by
capturing the hierarchical correlations, so that the spatial
information can be utilized to learn better representations. We
adopt Message Passing Neural Network (MPNN) [30], a kind
of GNN, to achieve this. With MPNN, the information of
each node is updated by the information propagated from its
neighbour nodes, i.e., Z'1[t] = o(E! [t] Z} [t]W), where o is
the non-linear activation function (e.g., ReLU is adopted), and
W is learnable parameters shared across sequential graphs to
save training costs. The updated features Z!*1[t] are the input
of the next layer. Meanwhile, the hierarchical correlations
E'ft] = E![t] are used for the next layer. From node
level, the propagation is divided into two processes, i.e., the
propagation and updating processes, as shown in Fig. 6. In
the propagation process, the information of neighbor nodes
propagates to the central node, which then is updated via a
neural network in the updating process. The general propa-
gation process of each node can be represented as Eqn. (7),
where NV (m) is the neighbor set of node m. With MPNN, the
features of each node are updated by the weighted average of
neighbor nodes, so the hierarchical correlations are captured.

hin,h [t] = Z elmj,h, [t] Z;,h[t}a
JEN (m) (N
2t Ht] = o (i, W[IW).

m
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Fig. 6: The diagram of MPNN.

Algorithm 1 Framework of HierCorrPool

Input: An MTS sample X = {z,,})_, € R¥*L where
each sensor m has signals with L timestamps, z,, =
{zm[1],2m[2], ..., Tm [L]}s

Output: The learned decent representations H € R? for X;

1: Obtain feature windows z,, = {2,,[t]}L_, for each sensor
m from X.

2: Capture temporal dependencies and obtain learned feature
windows 2/, = {2/ [t]}E, as Eqn. (1).

3: Construct sequential graphs G = {G[t]}Z., based on the

Eqn. (2).

for i =1 to M do //M is the number of model layers
Learn S'[t] = S(Z![t], E'[t]; W) for each graph.
Learn Z}[t] and E![t] as Eqn. (6).

Obtain Z. ™ [t] by capturing Fl,[t] as Eqn. (7).
end for

Obtain H by stacking the hierarchical features.

Do A A

After M layers of learning and capturing hierarchical corre-
lations, the spatial dependencies in each graph are leveraged.
Then, we map the learned hierarchical features in sequential
graphs to learn overall representations. Suppose D[t] as the
node features after multiple layers to capture the hierarchical
correlations, the final representations for a sample are derived
as H = o([D[1]||D[2]]]...||D[L']]W). The pseudocode of our
HierCorrPool can be shown in Algorithm 1. In this way, the
dynamic property and hierarchical correlations are considered
for representation learning. Therefore, the spatial-temporal
information is better leveraged.

IV. EXPERIMENTAL RESULTS

To evaluate the ability of our model on representation
learning, we test our model on different tasks, including RUL
prediction, SSC, and HAR. This section introduces the dataset
details and shows the experimental results.

A. Dataset Descriptions and Experimental Settings

Three datasets are adopted for evaluation, including C-
MAPSS for RUL prediction [31], UCI HAR dataset for HAR
[32], and ISRUC-S3 for SSC [33], whose statistics are shown
in TABLE I. These datasets consist of the signals collected
from multiple sensors, and the signals show correlations
between sensors.

C-MAPSS: The dataset describes the aircraft engine degra-
dation, including four sub-datasets collected in different oper-
ating conditions and fault modes, where FD002 and FD004
have more conditions and modes than FD0OO1 and FDO0O03.
To fully monitor the state of each engine, 21 sensors are
deployed to measure different physical values. As the sensors
with indices 1, 5, 6, 10, 16, 18, and 19 have constant values,
we remove these sensors, and only 14 sensors keep for
experiments [16]. As the datasets record the whole life cycle
of engines, we here crop the signals to our desired dimension
as traditional works did [16], [2]. Specifically, given an engine
with the whole life cycle as 7, we adopt the time window with
the fixed length L to slide along the signals by S steps for
each sampling procedure. In this way, we can obtain the i-th
MTS sample X? € RV*L and its RUL as ¢ = T — L — i S.
Meanwhile, we adopt the piece-wise linear RUL as the label of
each sample [16], [2], i.e., we choose a predefined maximum
RUL and set y® as the value when y¢ is larger than the
predefined value. In particular, S and the maximum RUL are
set as 1 and 125 respectively.

HAR dataset: The dataset describes 30 subjects performing
six activities, including walking, walking upstairs, downstairs,
standing, sitting, and lying down. Nine sensors are deployed
to detect the activities. For training models, we split the data
into 60%, 20%, and 20% for training, validation, and testing
by following the preprocessing in [4].

ISRUC-S3: The dataset describes the sleep stages of ten
subjects, and each recording contains ten channels. The sleep
stages are divided into five stages, including wake, N1 stage,
N2 stage, N3 stage, and REM, according to AASM standards
[34]. For training models, we follow the setting in [18] and
employ ten-fold cross-validation, i.e., we use the data from
nine subjects for training and one subject for testing.

TABLE I: The statistic of datasets

Datasets # Training  # Testing  # Sensors
FDO001 13785 100 14
FD002 30736 259 14
C-MAPSS  ppoo3 15536 100 14
FD004 33263 248 14
UCI HAR 7352 2947 9
ISRUC 7665 924 10

The experiments can be divided into three parts, including
the comparisons with state-of-the-art models, the ablation
study, and the sensitivity analysis. All methods were repeated
30 times, and the average results are shown to prevent ran-
domness. Besides, we set batch size as 50, optimizer as Adam,
learning rate as 0.001, and training epoch as 10 for training our
model. Some hyperparameters of the correlation pooling layer
will be discussed in the sensitivity analysis. Furthermore, we
built our model based on Pytorch 1.9 and trained our model
on NVIDIA GeForce RTX 3080Ti GPU.

To evaluate our model for RUL prediction, two metrics
are adopted, including Root Mean Square Error (RMSE)
and Score as used in [16], [2], [35]. Notably, Score gives
more penalty for late predictions, which cause more serious



TABLE II: Comparisons with SOTA models on C-MAPSS for RUL prediction (RMSE)

FDO001 FD002 FD003 FD004
Models RMSE  P-Value RMSE P-Value RMSE P-Value RMSE  P-Value
Hybrid [16] 1453  4.08E-42 2137 1.65B-56 1324 127E-29 27.08  1.26E-60
MODBNE [36] 1504 1.88E-44 2505 7.89E-61 1251 621E-24 28.66 4.54E-62
KDnet [2] 13.68  6.79E-37 1447 3.70E-38 1295 1.18E-27 1596  2.59E-36
ATS2S [37] 12.63  2.69E-24 1465 3.40E-39 1144 9.83E-05 16.66 2.76E-40
CNN-LSTM [42] 1247  2.16E-15 1341 195E-19 12.02 5.53E-13 1449  2.15E-05
AConvLSTM [43] 1222  6.17E-03 12,50 1.97E-02 12.18 6.73E-18  14.02  5.49E-01
GCN [44] 1287  7.63E-10 1348  6.20E-11 1293 3.95E-13  14.66  2.33E-09
DiffPool [21] 1260  4.16E-12  13.06 9.17E-12  12.08 6.06E-10  15.06  1.52E-12
SAGPool [45] 12.66  5.93E-09 1291 2.84E-08 1238 1.52E-11 1491  3.04E-12
iPool [46] 1266  1.39E-07 1340 1.27E-09 1255 4.19E-12  14.85  1.25E-09
TAP [47] 1281  7.76E-09  13.03 144E-12 1281 1.12E-10 1487  7.62E-11
Ours 12.02 12.38 11.26 - 14.08

consequences than early predictions. The lower RMSE and
Score are, the better the model is. Besides, to evaluate our
model on HAR and SSC, four metrics are adopted, including
Accuracy (ACC), Macro-F1 score (MF1), Specificity (Spec.),
and Sensitivity (Sens.). The higher the indicators are, the better
the model is.

B. Comparison with State-of-the-art Models

This part compares our method with state-of-the-art (SOTA)
methods. As our method is tested on different tasks, we
compare with the SOTA methods specifically designed for
the related areas for fair comparisons. For RUL prediction,
we compare with Hybrid [16], MODBNE [36], KDnet [2],
and AST2S [37], whose results are adopted from their source
works. For HAR, we compare with SupEncoder [4], CPC [38],
and TS-TCC [4], whose results are adopted from [4]. For SSC,
we compare with DeepSleepNet [39], MVN [40], and Se-
gSleepNet [41], whose results are adopted from [18]. Besides,
we also compare the methods designed for capturing spatial-
temporal information within MTS data, including CNN-LSTM
[42] and AConvLSTM [43], whose results are re-implemented
on our datasets according to their setups. Further, we also
compare with GNN-based methods, including the method
which directly stacks sensor features, i.e., GCN [44], and the
graph pooling methods specifically designed for graph data,
including DiffPool [21], SAGPool [45], iPool [46], and TAP
[47]. For fair comparisons, these GNN based methods use the
same baseline as ours, i.e., the way for constructing sequential
graphs. Besides, we also report the statistical significance test
with P-Value for comparisons.

TABLE II and III show the results of RMSE and Score in
C-MAPSS respectively. Compared with GCN which directly
stacks sensor features, we observe from the results that most
graph pooling methods can achieve better performance, indi-
cating that it is useful to improve performance by capturing
the hierarchical correlations between sensors. However, the
current graph pooling methods cannot learn decent hierarchical
correlations between sensors, thus restricting their perfor-
mance. Compared with the second best graph pooling method,
i.e., DiffPool, our method improves by 4.6%, 5.2%, 6.7%,
and 6.5% respectively in terms of RMSE. As the GNN based

methods have the same baseline with ours, the improve-
ments indicate the effectiveness of our proposed correlation
pooling scheme. Besides, compared with non-graph based
methods, our method still achieves the best performance in
most cases, such as FD001, FD002, and FD0O03, improving by
1.6%, 0.96%, and 1.5% respectively. In FD004, AConvLSTM
achieves better performance than our method, i.e., 0.42%. This
is because AConvLSTM also considers the spatial-temporal
information within MTS data by stacking an MTS sample as
a two-dimensional image and capturing sensor correlations by
CNN, and meanwhile, they compute the attentions between
adjacent timestamps, which gives them the powerful ability to
process temporal information. However, the attention modules
also bring them numerous operations and high computational
costs, which is discussed in Section IV-E.

From the results in TABLE IV for HAR, we observe
that our method still achieves better performance than SOTA
methods. While most graph pooling methods achieve better
performance than GCN and other traditional methods, our
method can still achieve better performance than the graph
pooling methods. Compared with the second best method, i.e.,
iPool, our method improves by 1.18%, 1.15%, 1.15%, and
0.23% respectively, indicating the effectiveness of our method.
Meanwhile, the small P-Values can also prove the validity of
the improvements. Similar improvements can also be observed
in TABLE V for SSC. Compared with the second best results,
i.e., TAP, our method improves by 1.06%, 1.21%, 1.3%, and
0.28%. These improvements indicate that our HierCorrPool
can help learn better hierarchical correlations between sensors,
and meanwhile, it is useful to capture the dynamic sensor
correlations within MTS data. Thus, our method can achieve
better performance than SOTA methods.

In addition, we use error bar charts to compare our method
with some well-performing methods for evaluating the robust-
ness. From Fig. 7 and 8, we observe that compared with SOTA
methods, our method can achieve more stable performance.
This is because our proposed correlation pooling scheme can
generate the assignment matrix which considers the infor-
mation from sensor features and correlations simultaneously,
and thus we can learn better hierarchical correlations between
sensors. Meanwhile, our sequential graphs can help us to
capture the dynamic property within MTS data. Therefore, the



TABLE III: Comparisons with SOTA models on C-MAPSS for RUL prediction (Score)

FDO001 FDO002 FDO003 FDO004
Models Score  P-Value Score  P-Value Score  P-Value Score  P-Value
Hybrid [16] 322 5.74E-31 3077  3.43E-66 367 2.68E-38 5649  1.97E-65
MODBNE [36] 334 1.52E-32 5585 5.37E-75 421 1.25E-41 6557 1.25E-67
KDnet [2] 362 1.34E-35 929 8.25E-41 327 423E-35 1303 3.99E-35
ATS2S [37] 243 5.67E-07 876 1.86E-24 263 6.90E-29 1074  2.40E-16
CNN-LSTM [42] 257 2.99E-07 835 1.01E-12 252 6.58E-17 870 8.18E-01
AConvLSTM [43] 242 1.31E-02 661  5.42E-09 267 2.27E-16 886  5.26E-01
GCN [44] 315 5.19E-07 720  4.76E-06 300 9.07E-08 1125  9.08E-07
DiffPool [21] 298 1.21E-12 738 1.16E-08 247 1.86E-08 1275 94E-09
SAGPool [45] 304 1.68E-10 727 2.66E-08 276 6.97E-09 1180  5.36E-10
iPool [46] 296 1.57E-07 790 1.18E-11 274 9.56E-11 1135 1.68E-09
TAP [47] 301 8.66E-11 707 1.64E-10 300 1.18E-08 1211  6.99E-09
Ours 233 - 599 - 189 - 874 -
TABLE IV: Comparisons with SOTA models on UCI HAR
ACC MF1 Sens. Spec.

Models Avg. P-Value Avg. P-Value Avg. P-Value Avg. P-Value
SupEncoder [4] 90.14  1.16E-33 9031 2.48E-33 - - - -

CPC [38] 83.85 4.36E-45 8327 1.05E-45 - - - -

TS-TCC [4] 9293 2.03E-20 93.13 1.34E-19 - - - -

CNN-LSTM [42] 82.86 9.86E-12 77.57 4.18E-12 81.18 4.12E-12 96.56  9.66E-12
AConvLSTM [43] 88.41 1.94E-09 8832 4.07E-09 8832 4.07E-09 97.68 1.68E-09
GCN [44] 92.62 6.51E-15 9281 441E-15 9277 4.02E-15 9852 4.37E-15
DiffPool [21] 93.16 1.36E-09 9333 4.21E-10 9330 5.72E-10 98.63 1.02E-09
SAGPool [45] 93.12  4.05E-17 9326 1.89E-18 9327 3.87E-17 98.62 6.51E-17
iPool [46] 9320 1.09E-08 9336 2.25E-09 93.35 5.57E-09 98.64 1.15E-08
TAP [47] 93.09 7.61E-09 9326 243E-09 9324 3.84E-09 98.61 5.68E-09
Ours 94.38 - 94.51 - 94.50 - 98.87 -

TABLE V: Comparisons with SOTA models on ISRUC-S3 dataset for SSC

ACC MF1 Sens. Spec.
Models Avg.  P-Value  Avg.  P-Value  Avg.  P-Value  Avg.  P-Value
DeepSleepNet [39] 78.80 1.41E-06 7791  9.52E-05 - - - -
MVN [40] 78.10  8.20E-08  76.80 3.7E-07 - - - -
SeqSleepNet [41] 7890 2.14E-06 76.30  3.35E-08 - - - -
CNN-LSTM [42] 69.54 191E-10 58.33 7.45E-09 6190 1.39E-09 91.88 2.11E-11
AConvLSTM [43] 7195 4.53E-16 65.66 1.13E-17 65.08 2.14E-17 9259 8.24E-16
GCN [44] 80.90 1.29E-03 7841 7.29E-06 77.28 1.07E-04  95.00 2.17E-03
DiffPool [21] 8091 191E-03 77.84 4.49E-06 76.40 1.06E-04 9496 3.96E-03
SAGPool [45] 81.38 6.17E-04 78.70 5.04E-06 77.53 7.84E-05 95.09 1.16E-03
iPool [46] 81.49 3.13E-02 7855 1.81E-04 7745 2.53E-03 95.13 4.72E-02
TAP [47] 81.74 7.98E-02 79.19 198E-03 7825 1.65E-02 95.20 1.08E-01
Ours 82.80 - 80.40 - 79.55 - 95.48 -

comprehensive information can lead to stable performance.
Further, although AConvLSTM achieves better performance
than ours in FD0O4, it has larger deviations. This is because
AConvLSTM utilizes spatial information by a 2D CNN in-
stead of GNN, while our method adopts GNN and learns
hierarchical correlation between sensors at the same time, thus
achieving stable performance.

C. Ablation Study

In this section, we conduct ablation study to test the effec-
tiveness of our sequential graphs and the effect of different
fusion schemes on model performance. First, we compare the
model with sequential graphs to the one without sequential
graphs (i.e., only one graph is constructed) to show the

effectiveness of capturing dynamic sensor correlations. The
first variant is GCN w/o Sequential graphs + direct stack,
representing the model without sequential graphs and only
constructing one graph for one sample as current works did
[19], [20], and meanwhile, the sensor features are directly
stacked to learn representations. The second variant is GCN
with Sequential graphs + direct stack, where sequential graphs
are used while the sensor features are still stacked directly
instead of learning hierarchical correlations. At the same time,
we evaluate the three variants of HierCorrPool, where concate-
nation, projection, and propagation are denoted as CAT, PROJ,
and PROP respectively. The third variant is GCN + Sequential
graphs + CAT, where we adopt our CAT fusion scheme to
generate the assignment matrix for correlation pooling. The



TABLE VI: Ablation study for RUL prediction

) FDO001 FD002 FD003 FD004
Variants RMSE Score RMSE Score RMSE Score RMSE  Score
GCN w/o Sequential graphs + direct stack 13.80 293 13.91 831 14.11 357 15.91 1266
GCN + Sequential graphs + direct stack 12.87 315 13.48 720 12.93 300 14.66 1125
GCN + Sequential graphs + CAT 12.28 252 12.49 625 11.61 208 14.39 934
GCN + Sequential graphs + CAT + PROJ 12.15 239 12.44 619 11.42 197 14.19 908
GCN + Sequential graphs + CAT + PROJ + PROP  12.02 233 12.38 599 11.26 189 14.08 874
TABLE VII: Ablation study for HAR and SSC
) HAR ISRUC-S3
Variants ACC  MFl  Sens. Spec. ACC MF1  Sens. Spec.
GCN w/o Sequential graphs + direct stack 91.83 91.83 91.79 9836 79.67 7531 7536 9453
GCN + Sequential graphs + direct stack 92.62 9281 9277 9852 8090 7841 77.28 95.00
GCN + Sequential graphs + CAT 9398 94.10 94.11 98.79 82.07 79.20 78.17 95.29
GCN + Sequential graphs + CAT + PROJ 94.16 9428 9429 98.83 8254 80.12 7921 9541
GCN + Sequential graphs + CAT + PROJ + PROP  94.38 9451 9450 98.87 8280 8040 79.55 9548
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Fig. 7: The diagram of the error bars for RUL in terms of
RMSE.

fourth one is GCN + Sequential graphs + CAT + PROJ,
where the projection matrix is introduced. The final one is
our complete version. TABLE VI and VII show the results for
different tasks.

From the results, we first observe that the sequential graphs
can help to improve the model performance due to considering
the dynamic sensor correlations within MTS data. Let’s take
the results of RMSE in FDOO1 as an example. The model
with sequential graphs improves by 6.7% compared to the one
without sequential graphs. However, the direct stacking for
sensor features still hinders performance due to the ignorance
of hierarchical correlations between sensors. From the results,
we observe that even CAT can achieve better performance
than the model directly stacking sensor features, improving
by 4.6% in FDOOL. Besides, from the results between CAT
and CAT + PROJ, we observe that CAT + PROJ has equal

Fig. 8: The diagram of the error bars for RUL in terms of
Score.

performance to CAT in FD0O02 and better performance in
the other datasets. The improvements indicate that CAT +
PROJ can be applicable to more situations due to the added
projection functions. Besides, we can also find that CAT +
PROJ + PROP has better performance than CAT + PROJ in
most cases.

These results show that the learned sequential graphs can
be useful to improve performance due to dynamic sensor
correlations captured, and that our proposed correlation pool-
ing scheme can further improve performance and also make
performance consistently good in most cases.

D. Sensitivity Analysis

As our method builds multiple correlation pooling layers to
learn hierarchical sensor correlations, it is necessary to analyze
the effect of the number of layers on final performance.
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Fig. 9: The effect of the number of correlation pooling layers.

Besides, the sensor correlations become coarse (i.e., many
sensors are clustered as few sensors) after correlation pooling,
and the sensors in the last layer affect final performance.
Therefore, it is necessary to explore how many sensors in the
last layer are best for the final performance. Further, for each
MTS sample X € RIXN | the size of time window L may
affect the final performance, so we also evaluate the effect
of window size to provide the guideline on how to select the
optimum size of the time window.

1) Number of correlation pooling layers:

Fig. 9 shows the effect of the number of layers on final
performance. From the results, two points can be derived.
First, the increase of correlation pooling layers can improve
the performance of representation learning for some tasks. For
example, the model with two layers shows improvements in
FD002 and FD004 compared to the model with one layer,
indicating the positive effect of increasing correlation pooling
layers. Second, too many layers, however, are not always better
and even hurt the final performance, such as in UCI-HAR. This
is caused by over-smoothing in GNN [48], i.e., more GNN
layers will make the information between neighbor nodes over-
smooth in the message passing process, leading to features
between nodes converging to the same values. Therefore, the
suitable number of layers needs to be determined in the design
of our model. From the results, it can be found that a few
layers (i.e., 1 or 2 layers) would be good enough for learning
representations of MTS data.

2) Number of sensors in the last layer:

We choose at most eight sensors in the last layer for C-
MAPSS since this dataset consists of 14 sensors in total and six
sensors at most for UCI HAR and ISRUC since these datasets
consist of only nine and ten sensors respectively. Fig. 10 shows
the effect of the number of sensors on final performance. From
the results, it can be found that too few sensors in the last layer
may cause poor performance. For example, our model achieves
the worst performance on FD001, FD003, and FD004 for RUL
prediction and UCI HAR for HAR when only two sensors are
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Fig. 10: The effect of the number of sensors in the last layer.
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Fig. 11: The analysis for window size (RMSE).

set in the last layer. This is because too few sensors in the last
layer cannot fully reflect the correlations between sensors. It is
noted that our model utilizes the proposed correlation pooling
scheme to cluster together the sensors with high correlations.
However, uncorrelated sensors may be clustered together when
a small number is set in the last layer, which may ruin the
learned hierarchical correlations. Therefore, it is required to
choose a suitable number of sensors in the last layer. From
Fig. 10, we can find that four sensors for C-MAPSS, two
sensors for UCI HAR and ISRUC are better than the other
choices. With the consideration that there are 14 sensors in
C-MAPSS, 9 sensors in UCI HAR, 10 sensors in ISRUC, we
can derive that our model achieves better performance when
around one-third sensors are clustered.

3) Window size analysis: As the window sizes of UCI-HAR
and ISRUC-S3 are fixed, we only analyze the effect of window
sizes in C-MAPSS. Fig. 11 and 12 show the analysis in terms
of RMSE and Score respectively, where we adopt the size
ranging from 30 to 80 with an interval of 10. Taking the
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Fig. 12: The analysis for window size (Score)

results of RMSE in Fig. 11 as an example, we observe that
our model generally achieves good performance in FDOOI and
FDO003 when the window size is set as a small value, e.g., 40.
But a too small window cannot bring better performance; on
the contrary, the performance may become worse, e.g., our
model achieves worse performance when the window size is
30 in FD0O03. Meanwhile, we can also observe that our model
generally achieves better performance in FD002 and FD004
when the window size is set as a large value, e.g., 60. But the
performance becomes worse when the value is larger than 60.
It is noted that FD0OO2 and FD0O4 contain more operating
conditions and fault modes, so they can be seen as more
complicated than FDOO1 and FD0O3. Therefore, we can derive
from the results that large windows for complicated datasets
and small windows for simple datasets are good for our model
to achieve better performance. However, the sizes cannot be
too large or too small.

E. Model Complexity

Model complexity is a key factor in determining whether
a model is applicable to the real world. A model will be
meaningless if it is too complex to be deployed in real systems,
even though it is able to achieve great performance. Therefore,
we test the model complexity in this section. We here evaluate
the computational and storage complexity by using FLoating-
point Operations Per second (FLOPs) and the number of model
weights respectively. Meanwhile, the training and inference
time are also compared. Notably, we adopt the running time
in one epoch for the training time, as all methods run the
same number of epochs. Further, we simulate the process in
real systems to record the inference time, i.e., we predict the
samples in a testing dataset one by one and calculate the
average time for predicting one sample.

We choose the four most competitive methods based on
the results in TABLE II, III, IV, and V, i.e., AConvLSTM,
DiffPool, iPool, and TAP, to compare with our method for
model complexity. TABLE VIII shows the comparisons. From
the results, we observe that our method requires a little more

FLOPs and model weights than DiffPool. This is because
our method needs extra modules to learn decent assignment
matrices for MTS data, compared with DiffPool. However, the
increased model complexity is very marginal, e.g., increasing
by 0.04% and 0.01% regarding FLOPs and model weights
respectively, while our method has remarkable improvements
compared to DiffPool, e.g., 4.6% in FD00O1 of C-MAPSS.
Further, we also observe that AConvLSTM requires fewer
model weights than ours; however, they need a large number
of FLOPs, which also incurs much more training and inference
time. From the results, we can derive that our method requires
reasonable computation and storage costs and can be thus
applicable to real systems.

TABLE VIII: The comparisons with SOTAs for model com-
plexity

Models FLOPs # Weights  Training/s  Inference/ms
AConvLSTM 17,682,128 67,943 18.61 27.75
DiffPool 939,441 171,261 1.16 1.19
iPool 1,537,480 191,085 1.57 2.83
TAP 1,356,904 300,587 1.62 2.62
Ours 939,889 171,295 1.19 1.21

V. CONCLUSION

To better leverage the spatial-temporal information within
MTS data, we propose a Hierarchical Correlation Pooling
boosted graph neural network (HierCorrPool). We first learn
sequential graphs to represent the dynamic sensor correlations
within MTS data. Second, we learn better hierarchical cor-
relations between sensors by proposing a novel correlation
pooling scheme. Specifically, a new assignment matrix is
designed for MTS data by considering both sensor features
and correlations. Our model is tested on different tasks for
evaluating the performance of representation learning, and the
results show that capturing dynamic hierarchical correlations
between sensors can bring better performance for our method,
and meanwhile, our proposed correlation pooling scheme is
suitable for learning hierarchical correlations from MTS data.

As the training samples in real systems may be difficult to
obtain, we will focus on combining our proposed method with
few-shot learning techniques [49] to save costs for collecting
data in our future work.
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