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Abstract 

Background

Growing evidence supports the importance of characterizing the organizational patterns 

of various cellular constituents in the tumor microenvironment in precision oncology. Most 

existing data on immune cell infiltrates in tumors, which are based on immune cell counts 

or nearest neighbor-type analyses, have failed to fully capture the cellular organization and 

heterogeneity.
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Methods

We introduce a computational algorithm, termed Tumor-Immune Partitioning and Cluster-

ing (TIPC), that jointly measures immune cell partitioning between tumor epithelial and 

stromal areas and immune cell clustering versus dispersion. As proof-of-principle, we 

applied TIPC to a prospective cohort incident tumor biobank containing 931 colorectal car-

cinoma cases. TIPC identified tumor subtypes with unique spatial patterns between tumor 

cells and T lymphocytes linked to certain molecular pathologic and prognostic features. T 

lymphocyte identification and phenotyping were achieved using multiplexed (multispectral) 

immunofluorescence. In a separate hepatocellular carcinoma cohort, we replaced the 

stromal component with specific immune cell types—CXCR3+CD68+ or CD8+—to profile 

their spatial relationships with CXCL9+CD68+ cells.

Results

Six unsupervised TIPC subtypes based on T lymphocyte distribution patterns were 

identified, comprising two cold and four hot subtypes. Three of the four hot subtypes were 

associated with significantly longer colorectal cancer (CRC)-specific survival compared 

to a reference cold subtype. Our analysis showed that variations in T-cell densities among 

the TIPC subtypes did not strictly correlate with prognostic benefits, underscoring the 

prognostic significance of immune cell spatial patterns. Additionally, TIPC revealed two 

spatially distinct and cell density-specific subtypes among microsatellite instability-high 

colorectal cancers, indicating its potential to upgrade tumor subtyping. TIPC was also 

applied to additional immune cell types, eosinophils and neutrophils, identified using 

morphology and supervised machine learning; here two tumor subtypes with similarly low 

densities, namely ‘cold, tumor-rich’ and ‘cold, stroma-rich’, exhibited differential prognostic 

associations. Lastly, we validated our methods and results using The Cancer Genome 

Atlas colon and rectal adenocarcinoma data (n = 570). Moreover, applying TIPC to hepa-

tocellular carcinoma cases (n = 27) highlighted critical cell interactions like CXCL9-CXCR3 

and CXCL9-CD8.

Conclusions

Unsupervised discoveries of microgeometric tissue organizational patterns and novel 

tumor subtypes using the TIPC algorithm can deepen our understanding of the tumor 

immune microenvironment and likely inform precision cancer immunotherapy.

Author summary
We have developed a computational tool called the Tumor-Immune Partitioning and 
Clustering (TIPC) algorithm, designed to reveal the intricate organization of immune 
cells within the tumor microenvironment. Traditionally, studies have mainly focused 
on counting these cells or examining their proximity to one another. Those approaches 
often underestimate the complex roles of immune cells in tumors. With TIPC, we have 
uncovered distinct patterns in the arrangement of immune cells across different tumor 
regions. This advancement has enabled us to identify tumor subtypes that were previous-
ly undetectable with existing methods. Our new method can determine which tumors 
are likely to have longer survival rates or respond better to immunotherapy, based on the 
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layout of immune cells rather than merely their numbers. This breakthrough has signifi-
cant implications for cancer research, highlighting the importance of understanding the 
spatial patterns of immune cells. Such knowledge is crucial for selecting appropriate pa-
tients for specific treatments and for assessing the potential effectiveness of immunother-
apy. By tailoring treatment plans to the unique cellular landscapes of each tumor, we can 
potentially improve outcomes and provide more personalized and effective cancer care.

Introduction
Increasing evidence indicates that not only immune cell abundance but also the organization 
of neoplastic and immune cells plays a crucial role in tumor evolution, treatment response, 
and outcome [1–4]. Recent advances in digital imaging, machine learning, and multiplexed 
tissue-based biomarker assays can generate spatially resolved data mapping the tumor micro-
environment (TME) at single-cell resolution [5–10]. While these approaches provide highly 
granular data, analysis methods for abstracting tumor-immune cell interactions into clinically 
useful measures such as prognostic and predictive markers remain largely unrealized.

Initial efforts to characterize immune cells in the TME focused primarily on measuring 
the density of immune cells [5,8,9] or assessing the density of these cells at specified distances 
from the nearest tumor cells [6,7]. However, in tumors such as melanoma [11] and colorectal 
cancer (CRC) [12], it has long been recognized that immune cell densities are often higher at 
the tumor periphery. Furthermore, in CRC, multiple patterns of lymphocytic response can be 
qualitatively identified and harbor prognostic significance [13,14]. These findings suggest that 
the inherent organization of immune cells with respect to neoplastic cells can provide critical 
information regarding effectiveness of the anti-tumor response.

Several approaches from ecological studies and spatial point pattern analysis (SPPA; S1 
Table) have been applied to analyze immune cell spatial organization within the TME [15–17]. 
These include direct nearest neighbor distance (NND) measurements as well as more sophis-
ticated metrics such as the Morisita-Horn (M-H) index, an ecological measure adapted to 
quantify co-localization of immune and tumor cells based on subregion tessellation [18], and 
the G-cross [17] and L-cross SPPA functions [19]. These SPPA functions estimate a cumu-
lative NND function or a neighborhood count function that reflects proximity between cell 
types. While these spatial measures have been used to identify tumor subtypes with prognostic 
associations, these methods have significant drawbacks including confounding by immune 
cell density, which often harbors independent prognostic significance, and variable tumor 
morphology, particularly with respect to degree of differentiation, which also has prognos-
tic significance for many tumors. Additionally, by compressing an often-heterogeneous 
tumor-immune spatial relationship into a single numerical value, these approaches may 
discard key information. Examples of this information loss are provided (Fig 1), where tumors 
with identical morphology and immune cell densities harbor visually apparent differences in 
immune distribution that are not reliably captured by existing SPPA functions. More recently, 
an unsupervised approach by Schürch et al. [20] managed to delineate 9 distinct cellular 
neighborhoods in CRC using the CODEX technique and 56 markers. However, this compu-
tational approach is tailored for extensively profiled datasets containing a large number of 
markers and may not be applicable to the majority of immunofluorescence-stained datasets, 
particularly those generated in clinical settings.

To circumvent these limitations, we developed Tumor-Immune Partitioning and Clus-
tering (TIPC), a novel computational algorithm designed for flexible exploration of spatial 
patterns in tumor-immune organization, independent of cell density and tumor morphology. 
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As proof-of-principle, we applied TIPC to the prospective cohort incident tumor biobank 
method (PCIBM) [21,22] containing CRC tumor tissue specimens with spatially resolved, 
in-situ T-cell data in two large U.S.-wide prospective cohort studies. We extended our 
approach to neutrophils and eosinophils identified by histomorphology and machine learning 
[23], and subsequently validated the tumor-immune localization profiles using The Cancer 
Genome Atlas (TCGA) colon and rectal adenocarcinoma data. TIPC showed generally supe-
rior or comparable prognostic performance to existing spatial analysis methods, including 
cellular density, G-cross and L-cross functions, and the M-H index. Furthermore, we demon-
strated that TIPC was instrumental in identifying critical cell interactions like CXCL9-CXCR3 
and CXCL9-CD8 in hepatocellular carcinoma.

Results
TIPC requires a dataset specifying the location of individual tumor cells and an immune cell 
type of interest using cartesian coordinates within a region of interest (ROI). A hexagonal 

Fig 1.  Demonstration of the limitations of existing spatial analysis methods, namely nearest neighbor distance (NND), G-cross function and Morisita-
Horn index. Distinct spatial organization of CD3+ T cells in two representative tumor morphologies characterized by (a) stromal-predominant infiltrate, and 
(c) variable stromal and epithelial infiltrate, respectively, were simulated. In each tumor morphology, same amount of T cells either clustered within a small 
area (left panel, labelled as “Clustered”) or dispersed across the entire area (right panel, labelled as “Disperse”). In both simulated tumor morphologies (a, 
c), the two spatially distinct T-cell organizations demonstrate indistinguishably close (b, d) Morisita-Horn (M-H) indices and G-cross function AUCs. M-H 
index was computed based on a 5-by-5 µm rectangular grid; G-cross AUC was measured at r < 20 µm.

https://doi.org/10.1371/journal.pcbi.1012707.g001

https://doi.org/10.1371/journal.pcbi.1012707.g001
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tessellation approach is applied to the ROI, and the number of tumor cells and immune cells 
within each hexagon subregion is calculated (Fig 2). By comparing the cellular composition 
of each hexagon to a global null distribution representing a uniform distribution of immune 
cells, TIPC simultaneously measures the degree of immune cell partitioning between tumor 
epithelial and stromal areas as well as the degree of immune cell clustering versus dispersion. 
These data are summarized as a six-element numerical vector for each ROI (S2 Table). This 
approach enables straightforward comparison between tumors and provides data that is read-
ily amenable to spatial pattern discovery using unsupervised clustering approaches.

Characterization of CD3+ T-cell organization patterns using TIPC
Case-level analysis using TIPC only requires selection of an immune cell of interest and a gran-
ularity or subregion size parameter. Selection of the optimal subregion size requires balancing 

Fig 2.  Implementation of TIPC, a computational method utilizing hexagonal tessellation and a classifier that evaluates multiple spatial parameters 
against a tumor region-specific null model represented by two global ratios based on the total number of immune (user-selected cell type of interest), 
tumor (global I:T) and stromal cells (global I:S). Using the Cartesian coordinates of these cells, TIPC divides the space into a hexagonal grid of subregions 
of specified subregion size and calculates two local ratios namely I:T and I:S for each subregion. The subregions are then classified into six different categories 
based on comparing the local to the global I:T and I:S ratios. In this mIF-stained image example, there were 19 “Tumor only” subregions containing only 
tumor cells; 25 “I:T low” subregions with a local I:T ratio less than the global I:T ratio; and 31 “I:T high” subregions with a local I:T ratio greater than the 
global I:T ratio. The three stromal categories were counted in a similar way. The number of subregions in each category are then normalized using the total 
number of subregions containing cells of any type. The resultant six-element numerical vector encodes the tumor-immune spatial organization of the TME 
for an ROI. Abbreviations: I:T, immune-to-tumor, I:S, immune-to-stroma.

https://doi.org/10.1371/journal.pcbi.1012707.g002

https://doi.org/10.1371/journal.pcbi.1012707.g002


PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012707  February 18, 2025 6 / 32

PLOS Computational Biology Unsupervised identification of tumor-immune patterns in microenvironments

the degree of resolution for immune cell partitioning between tumor epithelial and stromal areas 
against the probability of generating an excess number of uninformative subregions lacking 
immune cells (S1 Fig). The optimal subregion size may therefore vary based upon the distribution 
of the immune cell type being studied. For CD3+ T cells in CRC, evaluation of normalized counts 
across a range of subregion sizes showed that hexagons with a length of 70–80 pixels (35–40 μm) 
provided the most balanced distribution across the six TIPC subregion types (S1 Fig).

To perform spatial pattern discovery using unsupervised clustering across a cohort, an opti-
mal cluster number must also be determined. We assessed three contiguous subregion sizes of 
30, 35, and 40 μm, and observed a reduced granularity at 40 μm, as detailed below. First, the rela-
tive change in the area under the cumulative distribution function (CDF) curve showed that sta-
ble clustering could be achieved using a minimum of seven, four, or seven clusters, respectively 
(Figs 3a, S2a, S2d, and S2g). We next constructed tracking plots to determine the maximum 
number of clusters that would enhance granularity while maintaining an adequate sample size 
(Figs 3b, S2b, S2e, and S2h). To balance statistical power with granularity, we selected 10-cluster, 
9-cluster, and 7-cluster solutions, respectively, which yielded 6, 6, and 5 major clusters each 
comprising at least 30 tumors (S2c, S2f and S2i Fig). Visual inspection of representative tumors 
from these clusters revealed discrete patterns of tumor-immune cell organization. Six similar 
patterns were obtained with subregion sizes of 30 and 35 μm (Figs 3c, S2c and S2f). Tumors with 
abundant T cells comprised four clusters. One cluster, termed “hot and disperse”, contained 
tumors with a disperse distribution of immune cells across tumor and stromal regions. Three 
other clusters containing tumors with abundant immune cells were characterized by significant 
immune cell clustering as opposed to a disperse distribution and could be distinguished based 
upon whether immune cells clustered in tumor intraepithelial regions (“hot, tumor-centric clus-
tering”), stromal regions (“hot, stroma-centric clustering”) or both regions (“hot and clustered”). 
Whereas tumors with uniformly few T cells fell into two clusters distinguished by whether 
tumor regions or stromal regions were predominant and accordingly designated “cold, tumor-
rich” or “cold, stroma-rich”. As “hot and clustered” was undetected at subregion size of 40 μm 
(S2i Fig), we considered subregion sizes of 30 and 35 μm optimal, we used the latter (where 927 
of 931 tumors fell within six clusters) for downstream association analyses (Fig 3c and 3d).

Prognostic significance for distinct CD3+ T-cell patterns identified by TIPC
Given that T cells generally need to be near tumor cells to exert their anti-tumor effect, we 
hypothesized that different TIPC clusters represent anti-tumor immune responses with 
varying degrees of effectiveness and may therefore harbor prognostic significance. Using the 
“cold, tumor-rich” cluster as the reference, the “hot and disperse”, “hot and clustered”, and 
“hot, tumor-centric clustering” clusters demonstrated longer CRC-specific survival in both 
univariable and multivariable analyses (Figs 4a–c, 5a and S3). Notably, while the “hot and 
disperse” cluster had a median T-cell density 3.6-fold higher than the “hot and clustered” 
cluster (Fig 4a), both clusters exhibited similar survival associations with no significant 
differences between these two subtypes for 5-year CRC-specific survival (p>0.05) (Fig 4b 
and 4c).

Comparing TIPC with existing methods using CD3+ T-cell data
Besides showing that the direct NND measure did not harbor any prognostic significance (S4 
Fig), we also compared the performance of TIPC with multiple methods that have been previ-
ously used to measure immune cell spatial distributions. M-H index was used to quantify the 
degree of co-localization between T cells and tumor (or stromal) cells. Overall, very few com-
binations of grid sizes and co-localization cut-offs yielded significant and robust associations 
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Fig 3.  Characterization of CD3 + T-cell spatial distribution in the CRC tumor microenvironment using TIPC. Using the optimal subregion 
size of 35 µm and input cluster number of 9 (which was jointly determined using (a) the consensus cumulative distribution function (CDF) delta 
plot (k ≥ 4) and (b) tracking plot (k = 9), see S2 Fig for details), the resulting TIPC tumor subtypes and their spatial patterns are represented in (c) 
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with CRC-specific survival (S5 Fig). Examination of the overall performance of the M-H index 
did not reveal clear trends in significance aside from a decrease in false discovery rate (FDR) 
at higher index values. While the prognostic significance of tumor subtypes identified by the 
M-H index was confounded by T-cell density (Figs 4d and S6), prognostic utility could be 
improved by adjustment for T-cell density (S3 Table).

A SPPA metric, namely G-cross function, evaluates the likelihood of a tumor cell having at 
least one T cell within a specified radius. Using a Cox regression model, we found that larger 
area under the curve (AUC) for the G-cross function was associated with better CRC-specific 
survival (Figs 4h–I and S7). While G-cross-defined subtypes were also significantly con-
founded by T-cell density (Figs 4g and S7), unlike the M-H index, they did not harbor prog-
nostic significance after adjustment for T-cell density in a multivariable Cox regression model 
(S3 Table). A related measure, the L-cross function, measures the expected number of T cells 
within a specified radius of a tumor cell. Analysis of L-cross AUCs did not identify prognostic 
significance (Figs 4k, 4l and S8) using all available L-cross estimators (isotropic, translation, 
and border). L-cross AUCs exhibited a lower correlation with T-cell density (Figs 4j and S8). 
In contrast to the M-H index and G- and L-cross functions, TIPC subtypes harbored prognos-
tic significance that was minimally confounded by T-cell density (S4 Table). Moreover, mul-
tivariable Cox regression analyses suggested that TIPC subtypes are more robust than tumor 
subtypes identified by the M-H index and G- and L-cross functions (S4 Table) in that they are 
less confounded by other clinicopathologic features and remain stable when hexagon sizes and 
cluster number vary (Fig 5a and 5b).

Clinicopathologic correlates of TIPC subtypes for CD3+ T cell
Beyond prognostic utility, correlating tumor-immune cell spatial distributions with pathologic 
and molecular features may help to refine tumor subtypes and our understanding of tumor 
biology, potentially improving treatment decisions. We found that TIPC tumor subtypes were 
associated with multiple histologic and molecular features including qualitatively assessed 
lymphocytic reaction patterns, American Joint Committee on Cancer (AJCC) stage, and 
microsatellite instability (MSI)-high status (Figs 5c and S9). While tumors in both the “hot 
and disperse” and “hot, tumor-centric clustering” clusters showed similar associations with 
MSI-high status, these tumors differed in T-cell spatial distribution with a 4.7-fold difference 
in median T-cell density, suggesting the ability of TIPC to uncover previously underrecog-
nized positional patterns amongst highly immunogenic MSI-high tumors. TIPC subtypes 
also showed a strong association with the level of tumor-infiltrating PDCD1 (PD-1)+ cells and 
tumor PDCD1LG2 (PD-L2) expression, suggesting immune checkpoint-related mechanisms 
may be involved in sculpting T-cell spatial distributions. Finally, differential tumor expression 
of CDH1 (E-cadherin), an adhesion junction protein that is critical for maintaining epithelial 
cell-cell contacts, was observed between tumor subtypes with nearly the same T-cell density 
but different spatial patterns, raising the possibility that physical interactions between tumor 
cells, which manifest as tumor morphology, may shape tumor-immune spatial interactions.

a heat-map with corresponding CD3+ T-cell density; subtypes comprising <30 tumors were excluded. (d) Representative cases with similar CD3+ 
T-cell densities (all within the 3rd quartile) were selected from each of the six main TIPC subtype clusters to illustrate the distinct spatial organiza-
tion of CD3+ T cells in CRC. From top to bottom, the panels show TIPC subregion categories, cell locations, multiplexed immunofluorescence-based 
histology, and H&E-stained histology of adjacent slides. TIPC spatial parameter values are depicted on a linear scale showing ordered from left to 
right: tumor-only, I:T low, I:T high, stroma-only, I:S low, I:S high subregion categories. Abbreviations: I:T = immune-to-tumor, I:S = immune-to-
stroma, CSR = cold, stroma-rich, CTR = cold, tumor-rich, HTCC = hot, tumor-centric clustering, HD = hot and disperse, HSCC = hot, stroma-
centric clustering, HC = hot and clustered, and O = outliers.

https://doi.org/10.1371/journal.pcbi.1012707.g003

https://doi.org/10.1371/journal.pcbi.1012707.g003
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Fig 4.  Comparison of TIPC performance with existing analysis methods, using CD3 + T-cell data. Tumor subtypes were identified using (a-c) TIPC, 
(d-f) Morisita-Horn (M-H) tumor cell:CD3+, (g-i) G-cross tumor cell:CD3+, and (j-l) L-cross tumor cell:CD3+. Box plots show that (a) TIPC sub-
types were less confounded by the overall CD3+ T-cell density as compared to (d,g,j) other methods. Kaplan-Meier and log-rank test show (b,c,e,f,h,i) 
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Fig 5.  Prognostic and molecular associations TIPC subtypes identified using CD3 + T-cells in CRC. (a) Forest plots show the hazard ratios 
and confidence intervals determined using univariate and multivariate Cox regression models; symbols *** p < 0.001, ** p < 0.01, * p < 0.05, not 
significant (ns) p > 0.05. (b) Performance evaluation on the effect of subregion sizes and cluster number (k) on spatial subtype identification and 
prognostic significance, based on univariate Cox PH regression model (see S17 Fig for full data). (c) Stacked bar plots show the enrichment of 
clinicopathological features within individual TIPC subtypes, where extended Cochran–Armitage test was used to test the association significance. 
Abbreviations: CSR = cold, stroma-rich, CTR = cold, tumor-rich, HTCC = hot, tumor-centric clustering, HD = hot and disperse, HSCC = hot, 
stroma-centric clustering, and HC = hot and clustered. TIPC subtypes shown in (a,c) were obtained using the optimal subregion size of 35µm and 
input number of clusters of 9 (see S2 Fig).

https://doi.org/10.1371/journal.pcbi.1012707.g005

subtyped derived by TIPC, M-H, and G-cross harbored significant associations with colorectal cancer-specific survival, but otherwise for (k,l) L-cross 
method. G-cross and L-cross AUC quartiles were measured using radius of 20 µm based on stromal CD3+ cells (S7 and S8 Figs); M-H index was calcu-
lated using a 5-by-5 µm rectangular grid and 80th percentile dichotomization cut-off (S5 Fig); TIPC subtypes were obtained at the optimal subregion 
size of 35 µm and input number of clusters of 9 (S2 Fig). Abbreviations: CSR = Cold, stroma-rich; CTR = Cold, tumor-rich; HTCC = Hot, tumor-centric 
clustering; HD = Host and disperse; HSCC = Hot, stroma-centric clustering; HC = Hot and clustered.

https://doi.org/10.1371/journal.pcbi.1012707.g004

https://doi.org/10.1371/journal.pcbi.1012707.g005
https://doi.org/10.1371/journal.pcbi.1012707.g004
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Cytotoxic memory T-cell spatial characterization using TIPC
T cells in the CRC TME comprise numerous, functionally distinct subsets. By incorporating 
additional markers profiled in our multiplex immunofluorescence assay, we used TIPC to 
explore the geographic placement of cytotoxic memory T cells (CD3+CD8+CD45RO+), one of 
the most biologically important T-cell subsets. This analysis grouped the 930 tumors into six 
subtypes (n=47–451 per subtype) with varying degree of immune cell infiltration, predom-
inance of tumor or stromal regions and degree of immune cell clustering or dispersion (Fig 
6a). These clusters exhibited variable yet overlapping cytotoxic memory T-cell densities (Fig 
6b). Unlike the TIPC subtypes of CD3+ T cells, density scores can identify different subtypes 
within each TIPC cytotoxic memory T-cell subtype. Survival analysis showed that cytotoxic 
memory T-cell spatial distribution was associated with 10-year CRC-specific survival (Fig 
6c). Using the “cold, tumor-rich” subtype as a reference, univariable Cox regression anal-
ysis revealed better CRC-specific survival for the “hot, tumor-centric clustering”, “hot and 
disperse”, and “hot and clustered” subtypes (S10–S12 Figs). However, these TIPC subtypes did 
not provide additional prognostic value to the cell density (S11 and S12 Figs). This suggests 
that both cell density and geographic placement of cytotoxic memory T cells may play equally 
important roles in anti-tumor response.

Validation of TIPC using morphologically identified eosinophils and 
neutrophils
Although multiplex immunofluorescence enables highly accurate identification of many 
immune cell types, cost and assay complexity limit the widespread adoption of this approach. 
Our previous studies have shown that morphologically distinct immune cells, such as eosin-
ophils and neutrophils, can be identified using routine hematoxylin & eosin (H&E)-stained 
CRC tissue sections and machine learning at an accuracy comparable to that of a gastroin-
testinal pathologist [23]. The significance of different localization patterns for myeloid cells 
in the TME is even less well understood than that for T cells. We applied TIPC to explore 
whether eosinophils and neutrophils exhibit distinct spatial distributions in the CRC micro-
environment. Using TIPC to evaluate eosinophils or neutrophils both divided tumors into 
five major subtypes containing 34–362 tumors per subtype (Figs 6d, 6g, and S13–S16). Both 
analyses showed that TIPC could identify distinct distributions of neutrophils and eosino-
phils in tumors with overlapping immune cell densities (Fig 6e and 6h). Tumors with low 
neutrophil or eosinophil densities that fell into two TIPC subtypes, “cold, stroma-rich” and 
“cold, tumor-rich”, exhibited differential associations with CRC-specific survival (Figs 6f, 
6i, and S10). Using the “cold, stroma-rich” subtype as the reference, these analyses revealed 
that tumor subtypes with largely overlapping cell density distributions, including “hot and 
clustered, tumor-rich” and “cold, tumor-rich” (Fig 6e and 6h), exhibited significantly better 
CRC-specific survival even after adjusting for neutrophil or eosinophil density (S11 Fig and 
S5 Table). In addition, the “hot and disperse” tumors exhibiting relatively high neutrophil or 
eosinophil densities were associated with better CRC-specific survival, even after adjusting for 
immune cell density (S5 Table) or clinicopathologic features (S11 Fig) in multivariable Cox 
regression model. For neutrophils, this subtype remained significant after joint adjustment for 
both immune cell density and clinicopathologic features (S12 Fig), highlighting the prognostic 
value of neutrophil spatial distributions.

Evaluation of TIPC result stability
Modification of subregion size and cluster number can impact the spatial subtypes identified 
by TIPC. To investigate clustering solution robustness and stability, we combinatorially tested 



PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012707  February 18, 2025 12 / 32

PLOS Computational Biology Unsupervised identification of tumor-immune patterns in microenvironments

Fig 6.  TIPC application on three different immune cell types, namely (a-c) cytotoxic memory T cells, (d-f) eosinophils, and (g-i) neutrophils in CRC (NHS/ 
HPFS). (a,d,g) Heat maps display the distinct immune cell organization of the resulting TIPC subtypes which demonstrate (b,e,h) variable but overlapping immune 
cell densities. (c,f,i) Kaplan-Meier and log-rank test show that these TIPC spatial subtypes were significantly associated with CRC-specific survival (see S3 Fig for the 
corresponding risk tables). Abbreviations, CSR = cold, stroma-rich, CTR = cold, tumor-rich, HD = hot and disperse, HTCC = hot, tumor-centric clustering, HSCC = 
hot, stroma-centric clustering, HC = hot and clustered, HCTR = hot and clustered, tumor-rich, HCSR = hot and clustered, stroma-rich.

https://doi.org/10.1371/journal.pcbi.1012707.g006

https://doi.org/10.1371/journal.pcbi.1012707.g006
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a broad range of subregion sizes (hexagon side length 30–50 μm, equivalent to 2301–6392 
μm2) and input cluster numbers [4–10] in the CD3+ T-cell and H&E neutrophil datasets (Figs 
5b, S17, and S18). Our interpretation was based on major clusters which comprised more than 
30 tumors. In both analyses, when compared to the TIPC subtype with the lowest median 
immune cell density, the “hot and disperse” subtype maintained prognostic significance across 
all 35 tested combinations. Additionally, the “cold, tumor-rich” subtype exhibited equally 
broad and robust prognostic significance for neutrophil analysis. Less broad, yet still robust 
associations were seen for the “hot, tumor-centric clustering” subtype identified using CD3+ T 
cells and the “hot and clustered, tumor-rich” subtype identified using neutrophils.

In general, a more granular characterization of the immune cell spatial landscape was 
achieved using a smaller subregion size and larger cluster number. In this study, we excluded 
clusters comprising less than 3% (i.e., 30) of the total number of tumors for downstream asso-
ciation analysis to prevent unstable subtypes. Across the tested immune cell types, subregion 
sizes in the range of 35–45 μm with at least 6 input clusters demonstrated robust TIPC solu-
tions which contained consistent spatial subtypes with prognostic significance.

In addition to demonstrating the stability of TIPC analysis, we provide heuristic-based 
approaches to further simplify analysis and minimize user intervention. These computational 
methods include variance minimization to identify the most informative subregion size, shoulder 
point detection to determine stable cluster numbers, and tracking the consistency of normal-
ized mutual information at increasing k to select granular yet stable cluster numbers (S19 Fig). 
Using the heuristic algorithms, we obtained spatial subtypes with characteristics similar to those 
achieved through careful selection of subregion size and cluster numbers. Notably, in the CD3+ 
T-cell analysis, the subregion size and cluster numbers determined by these algorithms matched 
those based on manual selection, and the eosinophil and neutrophil analyses produced identical 
spatial subtypes, despite using different subregion sizes (S19d–I Fig). However, in the cytotoxic 
memory T-cell analysis, the heuristic approach resulted in an additional subtype characterized by 
both ‘cold, tumor-rich’ and ‘cold, stroma-rich’ regions (S19a–c Fig). These two subtypes of cyto-
toxic memory T-cells did not differ in cell density (Fig 6b) or prognosis (S11a and S12a Figs).

Extrapolation of TIPC spatial subtypes in The Cancer Genome Atlas 
(TCGA)
We hypothesized that the heterogeneous, yet unique anti-tumor immune response captured 
by TIPC subtypes would preserve in the same tumor type (in this case, CRC), and thus patient 
stratification paradigm constructed using TIPC and the associated prognostic utility obtained 
in our cohorts (i.e., Nurses’ Health Study (NHS) and Health Professionals Follow-up Study 
(HPFS) CRC datasets [24,25]) could be extended to unseen CRC tumors in other cohorts. 
Given the suboptimal nature of some of the H&E images in TCGA, the validation analysis 
focused only on eosinophils which can be morphologically identified from H&E images with 
high confidence. Using eosinophils identified from the H&E images of 571 CRC tumors from 
TCGA, we assigned each of these tumors to the most similar TIPC subtype found in our 
cohorts using k-nearest neighbor (kNN) method, resulting in three major subtypes containing 
52–280 tumors per subtype (Fig 7a). We noticed that both the “cold, stroma-rich” and “hot 
and clustered” subtypes were under-represented in TCGA cohort, comprising of only 11 and 
8 tumors, respectively (Fig 7a).

In our cohorts, based on the Kaplan-Meier estimates, the “cold, stroma-rich” subtype 
harbored significantly worse CRC-specific survival (Fig 6f and 6i) in eosinophils, while other 
subtypes showed largely similar prognosis except for the “Cold, tumor-rich” (Fig 6f). Such 
prognostic associations can be validated in TCGA cohort (Figs 7b and S20) that, with the 
“cold, stroma-rich” subtype absent, “cold, tumor-rich” subtype still harbored significantly 
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worse prognosis in eosinophils (Figs 7b and S20a–b). Conversely, density- and NND-based 
survival analyses (Figs 7c and S20c) were unable to resolve such granular information.

Above we have showed that, among existing methods under studied, only M-H index (also 
a tessellation-based method) harbored prognostic value beyond CD3+ cell densities (S3 Table). 
To validate the prognostic utility of M-H index, we first determined the optimal grid sizes and 
co-localization cut-offs using the eosinophils identified in our cohorts. The data showed that 
none of the tested combinations on eosinophils harbored a significant association (S21 Fig). 
When applying to TCGA cohort, these cut-off values resulted in extremely skewed distribu-
tions of tumor subtypes (M-H high and low groups) (S22 Fig).

Evaluation of the significance of CXCL9-CXCR3 axis in hepatocellular 
carcinoma using TIPC
We extended the application of TIPC to assess how the spatial distributions of immune activ-
ity markers correlate with the response of hepatocellular carcinoma (HCC) to a combination 

Fig 7.  Validation of TIPC spatial subtypes which were first determined in NHS/ HPFS cohort and later recapitulated in TCGA cohort, using eosin-
ophils identified morphologically in H&E images. (a) Among the five major TIPC subtypes determined in NHS/ HPFS cohort, three comprised of >30 
tumors (i.e., CTR, HD, HCTR). (b) Kaplan-Meier estimates associated with these TIPC subtypes of eosinophils harbored significant association with 
overall survival (OS); (c) forest plot summarizes Cox regression analysis of tumor subtypes determined using cell density or nearest neighbor distance 
(NND) (see S19 Fig for the associations with disease-specific survival and progression-free intervals). Symbols *** p < 0.001, ** p < 0.01, * p < 0.05, not 
significant (ns) p > 0.05. Abbreviations, CTR = cold, tumor-rich, HD = hot and disperse, HCTR = hot and clustered, tumor-rich.

https://doi.org/10.1371/journal.pcbi.1012707.g007

https://doi.org/10.1371/journal.pcbi.1012707.g007
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of Y90-radioembolization and nivolumab treatment [26]. We focused on the organizational 
patterns of two phenotypes, CXCL9+CD68+ and CXCR3+CD68+; the latter replaced stromal 
cells in the TIPC analysis. A previous study assessing independently each phenotype within 
the same subjects demonstrated their positive correlation with patient responses [27]. Our 
TIPC analysis revealed that responders were characterized by a unique spatial pattern, includ-
ing a uniform distribution of CXCL9+CD68+ cells within tumor regions and the simultane-
ous presence of CXCL9+CD68+ and CXCR3+CD68+ cells, identified as TIPC cluster 1 (Fig 
8a). Given the critical role of CXCL9 as a T-cell attractant, effective anti-tumor response of 
CXCL9+CD68+ cells may necessitate their proximity to T cells. Hence, we examined the local-
ization relationship between CXCL9+CD68+ and CD8+ T cells within the HCC TME, where 
CD8+ T cells replaced stromal cells in the TIPC analysis. Our findings indicate that tumor 
lacking CXCL9+CD68+ were consistently correlated with adverse outcomes, categorizing these 
non-responders as TIPC cluster 2 (Fig 8b). All CXCL9+CD68+–associated TIPC metrics were 
significantly linked to response status, with p-values < 0.05 using the Kruskal-Wallis test. Con-
versely, responders exhibited a concurrent enrichment of CXCL9+CD68+ across both tumor 
and CD8+ regions (as shown in cluster 1 of Fig 8b).

Fig 8.  Using TIPC to discern spatial patterns of immune activity in an HCC cohort and their correlation with patient treatment 
response. (a) Responders (Rs) exhibited a unique spatial pattern of CXCL9+/CXCR3+ CD68+ macrophages: a uniform distribution of 
CXCL9+CD68+ cells within tumor regions, along with the co-existence of CXCL9+CD68+ and CXCR3+CD68+ cells, identified as TIPC 
cluster 1, where CXCR3+CD68+ cells replaced stromal cells in the TIPC analysis. (b) Patients enriched with tumor areas deficient in 
CXCL9+CD68+ consistently correlate with adverse outcomes, identified as TIPC cluster 2. Additionally, Rs exhibited concurrent enrich-
ment of CXCL9+CD68+ in both tumors and CD8+ regions, where CD8+ T cells replaced stromal cells in the TIPC analysis. Both sets of 
TIPC subtypes were obtained at the optimal subregion size of 30 µm and input number of clusters of 2, determined based on the most 
significant p values. Tumor cells were determined as those no expressing CD8, CD68, and CD45 expression.

https://doi.org/10.1371/journal.pcbi.1012707.g008

https://doi.org/10.1371/journal.pcbi.1012707.g008
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Discussion
Recent advances in digital imaging and multiplexed marker analysis by immunofluores-
cence have enabled deep phenotyping of immune cells in the TME. However, the optimal 
methods to analyze these data remain uncertain. Immune cell density is an easily defined 
and computed characteristic of immune cells in the TME and has proven prognostic signifi-
cance in many cancers [5,8,9]. However, increasing evidence suggests that immune cells are 
not randomly scattered throughout the TME but are instead arranged in patterns that likely 
reflect their biological function and interactions with numerous cell types, including tumor 
cells, stromal cells, and other immune cells [20,28]. Identification and quantification of these 
patterns may therefore provide additional information about the significance and function of 
immune cells in a tumor beyond density measurements.

To address this need, we developed a novel computational algorithm TIPC. Application of 
TIPC to multiplex immunofluorescence data derived from a large cohort of CRC demonstrated 
that discrete patterns of immune cell infiltration exist within the center regions of CRC. These 
patterns can be distinguished based on the relative enrichment of immune cells in stromal 
versus epithelial regions and the degree of clustering versus dispersion of immune cells in the 
TME. Of the six TIPC subtypes identified by CD3+ cell analysis, only the “hot and disperse” 
subtype could have been identified solely using CD3+ cell density. Evaluation of the prognostic 
significance of TIPC subtypes defined by CD3+ cells revealed that three TIPC subtypes exhib-
ited better CRC-specific survival when compared to the “cold, tumor-rich” subtype. Within 
these three subtypes associated with better outcomes, CD3+ cell densities differed more than 
3.5-fold, indicating that immune spatial configuration and not just density harbors prognos-
tic significance. While the prognostic significance of TIPC subtypes was partially attenuated 
when CD3+ density itself was included in a multivariable Cox regression analysis, two subtypes 
remained significant. Comparison of TIPC to other approaches showed that TIPC achieves 
equal or superior prognostic power. Furthermore, by representing the immune cell localization 
patterns of each tumor as a six-element vector rather than compressing this information into a 
single aggregate value, as done by other algorithms, TIPC can capture and convey more infor-
mation about any given immune cell distribution. Finally, since TIPC does not rely upon direct 
distance measurements between tumor and immune cells, it is likely to be less confounded by 
differences in tumor morphology. In contrast, SPPA functions such as G-cross and L-cross 
treat every tumor cell as an isolated entity without recognizing that tumor cells themselves are 
non-randomly distributed and often exist in clustered glandular units [29,30].

Beyond harboring prognostic significance, TIPC subtypes were associated with numerous 
histologic and molecular features. Strong, yet heterogeneous associations with the four quali-
tative lymphocytic reaction patterns as judged by H&E-based whole-slide analysis support the 
notion that lymphocyte distribution at the tumor-wide level is linked to smaller-scale lympho-
cyte distribution as assessed by TIPC. While several TIPC subtypes were significantly associ-
ated with MSI status, no individual subtype was associated with neoantigen load. Given that 
high level microsatellite instability and high neoantigen loads are both associated with higher 
T-cell density, the relatively modest overall associations we observe with TIPC subtypes sug-
gest that immune cell spatial distributions are shaped by factors beyond mutations in tumor 
cells. In support of this concept, markers of multiple biologic processes known to be central 
to CRC biology, including cell adhesion (CDH1), WNT signaling (CTNNB1), prostaglandin 
signaling (PTGER2), and autophagy (SQSTM1), were more strongly associated with TIPC 
subtypes. Beyond tumor cell-intrinsic markers, we found that expression of PDCD1 (PD-1) 
by non-tumor cells was highly associated with multiple TIPC subtypes, hinting at regulation 
of immune cell spatial distributions by CD274 (PD-L1)/ PDCD1 (PD-1) immune checkpoint 
signaling between different immune cell populations.
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Our study further establishes that TIPC is effective in revealing significant distribution 
relationships in different tumor types. Despite the limited size of our HCC cohort, TIPC 
successfully identified key spatial interactions, thereby validating the anticipated importance 
of the CXCL9-CXCR3 axis in HCC patient responses to the combined treatment of Y90-
radioembolization and nivolumab. This confirmation stems from the observed cell density 
correlations of CXCL9+CD68+ and CXCR3+CD68+, analyzed individually [27]. Moreover, it 
highlighted the importance of the presence of CXCL9+CD68+ throughout tumor regions and 
their proximity to CD8+ T cells. These insights not only elucidate the mechanisms underly-
ing the anti-tumor immune response but also help to clarify previous findings regarding the 
seemingly minimal involvement of T cells in this HCC treatment approach, which may have 
been previously underappreciated due to analyses focusing solely on cell density without con-
sidering cellular interactions [27].

Many different immune cell populations are present in the TME and can be detected 
using morphology, immunohistochemistry or multiplex immunofluorescence. We therefore 
designed TIPC to function independently of immune cell identification method and con-
firmed prognostically informative application of TIPC to datasets comprising T lymphocytes 
detected by a single marker (CD3), cytotoxic memory T cells detected by a triple marker 
combination (CD3+CD8+CD45RO+) and neutrophils and eosinophils detected by morphology 
alone. Importantly, the prognostic significance of TIPC subtypes identified in our cohorts 
can be recapitulated in an independent TCGA CRC cohort with prognostic value. Addition-
ally, the data requirements to run TIPC are modest and encompass only the locations of the 
tumor cells and an immune cell type of interest in a format that is readily generated by many 
digital image analysis software systems. TIPC can also be used to jointly analyze a cohort of 
cases to identify subtypes with shared patterns of immune infiltration or it can be run at the 
single-case level to generate interpretable spatial immune characteristics. This combination 
of requirements, along with low computational overhead, position TIPC as an algorithm that 
could be readily implemented as part of a routine H&E-based digital workflow in a clinical 
surgical pathology environment. Finally, TIPC incorporates methods that enable investigation 
of the stability and robustness of solutions relating to subregion tessellation size and cluster 
number for cohort analyses, thereby facilitating the identification of optimal parameters. Our 
data showed that subregion sizes in the range of 35–45 μm with at least 6 initial clusters would 
be optimal for CRC study.

Our study has several limitations. First, due to the unavailability of treatment informa-
tion, we are unable to account for potential confounding in outcome analyses. However, it is 
unlikely that treatment decisions were influenced by immune cell positional configuration, as 
tumor-immune spatial organization information was most likely unavailable to oncologists 
at the time of treatment decision-making and do not play any current role in therapeutic 
decision making. Second, the unsupervised hierarchical clustering in TIPC, like other clus-
tering methods, requires a sufficiently large sample size to robustly identify spatial subtypes 
with prognostic and biological relevance. Despite this, TIPC successfully identified spatial 
subtypes linked to treatment response in a 27-sample HCC cohort. Thirdly, although the 
CXCL9-CXCR3 axis is known to play a role in recruiting immune cells, specifically cytotoxic 
T lymphocytes and macrophages [31], the current multiplexed panel design for the HCC 
cohort includes CD68 but lacks additional confirmatory macrophage markers. Therefore, 
we cannot formally exclude the possibility that some non-macrophage CD68+ cells contrib-
ute to the observed spatial relationships. Fourthly, selecting the two parameters—subregion 
tessellation size and cluster number—in TIPC analysis requires human interpretation and 
decision-making, guided by downstream association analyses such as survival and treat-
ment response associations. To support this, the TIPC R package offers comprehensive 



PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012707  February 18, 2025 18 / 32

PLOS Computational Biology Unsupervised identification of tumor-immune patterns in microenvironments

visualization tools, including CDF, tracking, trend plots, and heatmaps. Additionally, heu-
ristic approaches are available in the package to further simplify analysis and minimize user 
intervention.

Moreover, while we acknowledge that TIPC is more computationally intensive than 
conventional algorithms, we note that it provides more granular immune cell organiza-
tion metrics and also enables users to readily examine a broad parameter space to uncover 
nuanced spatial patterns. Specifically, for the NHS/HPFS CRC cohort (N=931) with CD3+ T 
cells, on a local computer [Intel Core i7-10610U CPU (1.80 GHz base, 2.30 GHz max) with 
16 GB of RAM], the M-H analysis took 0.12 hours across four tested grid sizes, while G-cross 
and L-cross each took 0.1 hours. In contrast, applying TIPC to the same CD3+ T cell dataset 
required approximately 5.6 hours on the local computer and 6 hours on the TIPC web server 
[Intel Xeon E5-2620 v4 processor (2.10 GHz) with 32 GB of RAM]. For the smaller HCC 
cohort (N=27), the analysis took about 0.75 hours locally and 0.5 hours on the web server 
over subregion sizes of 60 to 120 µm. Further improvements to TIPC’s efficiency, such as 
implementing multi-thread processing, would be beneficial. Additionally, TIPC is currently 
limited to analysis of three immune cell types at a time. TIPC is designed for flexible, robust 
microgeometric analysis, tailored to low/targeted-plex multispectral immunofluorescence 
assays found in clinical settings. It complements more intricate methods demanding extensive 
staining of lineage, cell state, and structural markers, as demonstrated by Schürch et al. [20]. 
Finally, our study was limited to tumor regions selected from the centers of CRCs, preclud-
ing evaluation of the prognostic significance and clinicopathologic correlates of immune cell 
spatial configuration at the invasive margin [12]. Further validation of TIPC using different 
cancer types and tissue sampling strategies is needed.

In conclusion, TIPC provides a novel approach for measuring immune cell localization 
configuration in the tumor immune microenvironment in a manner that is compatible with 
any tissue image data source that provides single-cell-level positional information. TIPC is 
specifically designed to measure immune cell partitioning and clustering, two features that are 
prognostically significant and biologically relevant, yet cannot be inferred from immune cell 
density alone. Additionally, this approach facilitates the exploration of associations between 
the organization features and treatment response, offering a deeper understanding of ther-
apy efficacy. We therefore anticipate that application of TIPC to clinically available H&E, 
conventional immunohistochemistry, or multiplex immunofluorescence digital images will 
enable comprehensive characterization of the tumor-immune interactions that govern the 
anti-tumor immune response, ultimately leading to improvements in patient care driven by 
an improved understanding of tumor immunobiology and more refined patient stratification.

In summary, our TIPC algorithm represents a significant advancement in the microgeo-
metric analysis of the tumor immune microenvironment. By leaping much beyond traditional 
proximity measurements to assess immune cell spatial configuration, TIPC enables a more 
nuanced understanding of tumor-immune cellular interplay. The application of TIPC to CRC 
has unveiled distinct positional patterns of immune cell infiltration, revealing that immune 
cell organizational arrangement is not only a marker of tumor phenotype but also a prognos-
tic indicator. This approach, which correlates organization features with clinical outcomes, 
paves the way for more precise and personalized therapeutic strategies. The adaptability of 
TIPC to various imaging modalities, from H&E to advanced multiplex immunofluorescence, 
further enhances its clinical relevance, offering a practical tool for routine use in pathology 
laboratories. By providing deeper insights into the molecular mechanisms governing immune 
responses in cancer, TIPC holds the promise of refining therapeutic interventions and 
improving patient management, thereby contributing to the evolution of precision oncology 
towards more tailored and effective solutions.
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Methods

Ethics Statement
The NHS/HPFS study protocol was approved by the institutional review boards of the 
Brigham and Women’s Hospital and Harvard T.H. Chan School of Public Health, under IRB 
reference number 2019P003588, and those of participating registries as required. Informed 
written consent was obtained from all of the subjects.The HCC study involves human partic-
ipants and was approved by SingHealth Centralised Institutional Review Board (CIRB) under 
CIRB Reference Number 2018/3046. Participants gave informed written consent to participate 
in the study before taking part.

Study design
We collect data from two prospective cohort studies in the U.S., the Nurses’ Health Study 
(NHS, 121,701 women aged 30–55 years followed since 1976) and the Health Professionals 
Follow-up Study (HPFS, 51,529 men aged 40–75 years followed since 1986) [32]. Every two 
years, study participants have been followed with questionnaires to collect information on life-
style factors and medical history including CRC [24,25]. The National Death Index was used 
to ascertain deaths of study participants and identify unreported lethal CRC cases. Participat-
ing physicians reviewed medical records to confirm diagnoses of CRC, and to record data on 
tumor characteristics including anatomic location and disease stage based on the American 
Joint Committee on Cancer TNM (Tumor, Node, Metastasis) classification. Formalin-fixed 
paraffin-embedded tissue blocks were collected from hospitals where participants diagnosed 
with CRC had undergone tumor resection and used to invent the prospective cohort incident 
tumor biobank method (PCIBM) [21,22]. We included 931 patients with available CRC tissue 
microarray data diagnosed up to 2008 within the PCIBM. Our tissue microarrays included 
up to four cores from CRC and up to two cores from normal tissue blocks, as described 
previously [33]. We included both colon and rectal carcinomas, on the basis of the colorectal 
continuum model [34]. This study was approved by the institutional review boards at Har-
vard T.H. Chan School of Public Health and Brigham and Women’s Hospital (Boston, MA), 
and participating registries as required. Our main hypothesis is that spatial organization of 
immune cells in TME, as captured by TIPC, represent anti-tumor immune responses with 
varying degrees of effectiveness and may therefore harbor prognostic significance.

To validate TIPC-identified spatial subtypes and their prognostic utility, we included an 
independent cohort which is TCGA colorectal adenocarcinoma study [35]. We obtained 
the clinical elements and survival outcome data (including overall survival; disease-specific 
survival; progression-free intervals,) from the integrated TCGA Pan-Cancer Clinical Data 
Resource [36]. Among 616 cases with digitized H&E-stained histologic slides available in 
TCGA data portal, we excluded cases with unrepresentative images (image scanned below 
20×magnification; image not showing primary CRC; image out of focus or obscured by slide 
markings), or cases with no follow-up data, resulting in 570 patients in the final analyses.

To explore the generalizability of TIPC on a different tumor type, we also included a 
small HCC cohort from a single-arm, single-center, two-stage phase 2 trial (CA 209-678). 
The trial was aimed at evaluating the efficacy and safety of Y90-radioembolization followed 
by nivolumab. A total of 36 patients with advanced HCC and Child-Pugh A cirrhosis were 
recruited at National Cancer Centre Singapore/ Singapore General Hospital, Singapore. Out 
of these, 27 patients who had pre-treatment biopsy tissues available were included in our 
study; among them, 20 were classified as non-responders and 7 as responders (including 4 
progressors and 3 super responders), according to RECIST criteria [26]. Participants provided 
written informed consent [26].
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CRC T-cell multiplex immunofluorescence staining
Deparaffinized 4 µm sections from tissue microarray blocks were incubated with the primary 
antibody, then treated with anti-mouse/rabbit horseradish peroxidase conjugated (HRP) 
secondary antibody (Opal Polymer; PerkinElmer, Hopkinton, MA), and finally incubated 
with the fluorophore amplification reagent (PerkinElmer) for tyramide signal amplification. 
The slides were sequentially stained using the following antibodies/fluorescent dyes, in order: 
anti-CD3 antibody (clone F7.2.38; Dako; Agilent Technologies, Carpenteria, CA)/Opal-520, 
anti-FOXP3 (clone 206D, Biolegend, San Diego, CA)/Opal-540, anti-CD45RO (one isoform 
of PTPRC gene products) (clone UCHL1, Dako)/Opal-650, anti-CD8 (clone C8/144B, Dako)/
Opal-570, anti-CD4 (clone 4B12, Dako)/Opal-690, anti-KRT (keratin, pan-cytokeratin) 
(clone AE1/AE3, Dako) in combination with anti-KRT (clone C11, Cell signaling, Danvers, 
MA)/Opal-620. Each slide was then treated with a nuclear counterstain 14’,6-diamidino-2-
phenylindole (DAPI) (FP1490, PerkinElmer) [37].

Digital images were acquired using a Vectra 3.0 quantitative pathology imaging system 
(PerkinElmer) equipped with a 20× objective. Large areas with necrosis, artefact, or excessive 
tissue folding were excluded from analysis. Demultiplexed images of each tumor first underwent 
tissue segmentation to identify regions of tumor epithelium and peritumoral stroma based on 
cytokeratin expression using CRC-specific supervised machine learning algorithm executed 
within inForm 2.4.1 (PerkinElmer). Following tissue segmentation, cell enumeration was 
performed using the DAPI signal to define nuclei. Each cell was further segmented into nuclear, 
cytoplasmic, and membranous compartments. A separate supervised machine learning algo-
rithm was used to identify T cells based upon a combination of cytomorphology and subcellular 
T-cell marker expression patterns. These single-cell data were then used to calculate T-cell sub-
population densities within separate regions. Aggregate tumor-level densities were then deter-
mined by calculating the average density for each T-cell subset across all cores from each tumor.

HCC immune activity multiplex immunofluorescence staining
The multiplex immunofluorescence was conducted by following a similar Opal method as 
detailed above and previously described [27]. Briefly, deparaffinized/rehydrated formalin-fixed, 
paraffin-embedded tissue sections were treated with heat for epitope retrieval, followed by block-
ing of peroxidase activity. They were then incubated with primary antibodies targeting CD8 
(clone 4B11, Leica), CD38 (clone SPC32(38C03), Leica), CD45 (PTPRC; clone 2B11+PD7/26), 
Agilent-Dako), CD68 (clone PG-M1, Agilent-Dako), CXCR3 (clone #49801, R&E Systems), 
and CXCL9 (clone 11H1L14, Invitrogen), followed by the application of polymeric horseradish 
peroxidase-conjugated secondary antibodies (Leica Biosystems, Newcastle-upon-Tyne, UK) and 
Opal tyramide signal amplification (TSA) reagents (Akoya Biosciences). After TSA deposition, 
the slides underwent heat-induced antibody stripping, with the labeling cycle repeated for each 
of the six markers before a final counterstain with spectral DAPI (Akoya Biosciences). Imaging 
was performed using the Vectra 3 pathology imaging system (Akoya Biosciences), and a pathol-
ogist (JY) examined the slides to identify multiple ROIs that exhibited high-quality staining and 
contained viable tumor cells. These ROIs were captured at 20 × magnification for subsequent 
analysis and scoring by the pathologist using inForm software (V.2.4.2; Akoya Biosciences) 
alongside HALO (Indica Lab, Albuquerque, New Mexico, USA).

H&E-based eosinophil and neutrophil phenotyping
We used QuPath (v0.1.2), an open source software platform for whole-slide image analysis, 
to identify tumor cells, eosinophils and neutrophils in images of H&E-stained CRC tissue 
[38]. The H&E-stained sections were scanned using the brightfield mode of a Vectra 3.0 
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quantitative pathology imaging system (PerkinElmer) equipped with a 20× objective. The fol-
lowing image analysis steps were performed in a sequential fashion across all images: (1) esti-
mate stain vectors to extract the H&E stain vectors and background values from the images; 
(2) simple tissue detection to discriminate the tissue region from the white background; (3) 
cell detection to detect cells based on the size, shape, and optical density of nuclei in the hema-
toxylin layer and to calculate features of the cells including nuclear area and circularity; (4) 
add smoothed features to calculate Gaussian-weighted means of the cell measurements in the 
neighboring cells; and (5) create detection classifier to train a random forests classifier using a 
150 image subset to identify the cell types of interest.

TIPC analytical approach
TIPC is a computational method that utilizes hexagonal tessellation and a classifier that 
evaluates multiple spatial parameters against a tumor region-specific null model represent-
ing a state of neutral tumor-immune cell interactions. Fig 2 depicts the key components of a 
TIPC analysis using an example multiplex immunofluorescence image. The TIPC R package is 
freely available on the web https://github.com/SIgN-CI/TIPC; the TIPC algorithm’s web appli-
cation can be accessed at https://mspc.bii.a-star.edu.sg/minhn/tipc.html.

In a ROI, the locations of individual tumor cells, stromal cells and an immune cell type 
of interest need to be represented using Cartesian coordinates. As demonstrated in HCC 
analysis, a second immune cell type may replace stromal cells in analyses of immune cell-to-
immune cell spatial associations. Using these input data, TIPC divides the ROI into a hex-
agonal grid of subregions (spatstat R package (v1.62-2) [39]) of the specified subregion size, 
and calculates two global ratios, i.e., total number of immune-to-total number of tumor cells 
and total number of immune-to-total number of stromal cells, together representing a state of 
neutral tumor-immune cell interactions which is the null model. The subregions are subse-
quently classified into six different categories, namely tumor-only, immune-to-tumor low (I:T 
low), immune-to-tumor high (I:T high), stroma-only, immune-to-stroma low (I:S low), and 
immune-to-stroma high (I:S high), based on comparing the immune, tumor and stromal cell 
content of each subregion to the global I:T and I:S ratios (S2 Table). If a subregion contains 
only tumor cells, it is categorized as tumor-only, whereas if any immune cells are found in 
that subregion is classified as I:T high or I:T low depending upon whether the I:T ratio of the 
subregion is greater or less than the global I:T ratio. The three stromal categories are defined 
in a similar way. The number of subregions in each category is then normalized using the total 
number of subregions containing cells of any type. The resultant six-element numerical vector 
(hereafter called TIPC spatial parameters) encodes the tumor-immune spatial organization of 
the TME for an ROI.

As a rule of thumb, an optimal subregion size balances the degree of resolution for 
immune cell partitioning between tumor epithelial and stromal areas against the probability 
of generating an excess of uninformative subregions that do not contain immune cells. For 
instance, an undersized subregion overlooks important cell interactions with an under-
representation of immune-containing subregion categories including I:T low and high, and 
I:S low and high. In contrast, an oversized subregion generates spurious and noisy cell inter-
actions with an over-representation of I:T low and I:S low subregion categories. To examine 
the effect of subregion size on positional measures, the TIPC R package incorporates three 
auxiliary functions. The multiple_hexLen_tessellation and multiple_hexLen_count_TIPC_cat 
functions perform hexagonal tessellation of the Cartesian space and calculate the six-element 
numerical vector at a range of subregion sizes (default: 30 to 45 μmat 5-μm intervals), respec-
tively. The trend_plot_hexLen function generates a trend plot of the six TIPC positional 
measures as a function of subregion size. To further test the robustness and stability of TIPC 

https://github.com/SIgN-CI/TIPC
https://mspc.bii.a-star.edu.sg/minhn/tipc.html
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solutions, the multiple_hexLen_tessellation and multiple_hexLen_count_TIPC_cat functions 
also measure five sets of the six-element TIPC spatial parameters by slightly shifting the hex-
agonal grid from the center (default) to the left, right, upper, and lower directions at a dis-
tance equal to half of the hexagon length. A trend plot of the size TIPC positional measures 
as a function of shifting direction can be generated by trend_plot_shiftDirection. Accessing 
multiple subregion sizes and involving shifted hexagonal grids helps address the effect of 
incompletely filled hexagonal subregions at the tissue border. While careful consideration 
should be given to selecting the optimal subregion size—informed by prior knowledge about 
the cohort and tumor type under study—the optimal_hexLen function in the TIPC package 
facilitates broader adoption. This function determines the optimal subregion size by min-
imizing the variance of the six TIPC spatial parameters to ensure informativeness, and by 
minimizing variance across the five directional shifts within each TIPC parameter to ensure 
robustness.

The six-element numerical vectors of multiple tumors can be readily compared, for 
instance using a Pearson correlation distance, enabling arrangement pattern discovery across 
a cohort. TIPC employs an unsupervised hierarchical clustering algorithm (consensus_clus-
tering function from ConsensusClusterPlus R package) to group tumors with similar immune 
spatial organization as encoded by TIPC measures into unique subtypes. consensus_clustering 
involves several clustering parameters, (1) the distance function (default: Pearson’s correla-
tion); (2) number of clusters k (default: 2 to 6); (3) number of repeated clustering for achiev-
ing a consensus grouping (default: 50); and (4) proportion of randomly selected cases to be 
included in each repeat (default: 80%). Specifically, a consensus clustering solution is obtained 
by repeating the clustering process for a specified number of times (default: 50) based on 
which a cumulative consensus matrix is determined. The cumulative consensus matrix is an 
n-by-n matrix (n: number of tumors) wherein the element ij represents the number of times 
tumor i is assigned to the same cluster as tumor j. The final clustering assignment is deter-
mined through applying a hierarchical agglomerative clustering with complete linkage to the 
cumulative consensus matrix. The clustering results are presented as a heatmap to facilitate 
inspection of clustering quality (for instance, identification of noisy patterns) as well as inter-
pretation of tumor-immune spatial patterns (See S6 Table).

To identify stable and robust distribution patterns from a cohort of tumors, an optimal 
cluster number needs to be determined. TIPC employs an empiric approach that jointly tests 
cluster numbers and subregion size to minimize selection bias and provide information about 
the robustness of any given TIPC clustering solution. Based on the consensus CDF delta curve 
generated by consensus_clustering, the minimal number of clusters corresponding to a robust 
clustering solution occurs at the k value beyond which there is no additional significant gain 
in clustering consensus (i.e., the relative change in the area under the CDF curve is close to 0). 
A companion tracking plot also generated by consensus_clustering allows for further examina-
tion and identification of larger cluster numbers that yield stable cluster assignments. While 
the selection of cluster number also depends on data characteristics, such as heterogeneity, the 
optimal_k function in the TIPC package supports broader adoption by minimizing user inter-
vention. This function identifies the optimal cluster number by first determining the smallest 
k value to ensure stability (i.e., the shoulder point of the CDF delta curve) and then selecting 
the largest k in the tracking plot (i.e., the point where normalized mutual information consis-
tently remains high) to ensure granularity.

Small clusters (hereafter called outlier clusters) can be produced because of a subop-
timal choice of subregion size and number of clusters, or in the presence of rare distri-
bution patterns generated from technical artefact or true yet rare biologic processes. An 
outlier cluster may be underpowered for downstream analysis. Survival analysis based on 
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postTIPC_SurvivalAnalysis excludes clusters containing less than 30 tumors in this study, 
although it is likely that this number needs to be modified for other studies with different 
cohort sizes. Overall, an optimal choice of subregion size and number of clusters depends on 
the cancer types and immune cell of interest under study.

Extrapolation of TIPC identified spatial patterns in The Cancer Genome 
Atlas
Using the subregion size of 35 μm as determined in the TIPC analysis of NHS/HPFS CRC 
cohorts [24,25], we first computed the six-element TIPC spatial parameters using eosinophils 
identified morphologically in H&E images of 571 tumors obtained from TCGA CRC cohort. 
We then assigned each of these tumors to the most similar TIPC spatial pattern as determined 
in NHS/HPFS cohorts, based on kNN algorithm by considering 10 nearest neighbors (class 
R package). Of note, due to the variable quality of H&E images in the TCGA dataset—likely 
stemming from differences in tissue processing, staining, and legacy scanning methods—we 
focused only on eosinophils in this study. Eosinophils can be identified with high confidence 
based on their distinctive eosinophilic granules, which are less impacted by image quality 
variability compared to other cell types, such as neutrophils and plasma cells.

Statistical analysis
All analyses were conducted using the R software environment (version 3.6.1). Statistical 
significance was judged using the two-sided α level of 0.005 and p values between 0.005 and 
0.05 were interpreted as suggestive evidence. Box plots of immune cell densities were defined 
by the 25th percentile (lower box boundary) and 75th percentile (upper box boundary) with 
lower and upper whiskers marking the minimum (lower) and maximum densities (upper); 
jittered dots represent individual case values. In forest plots of CRC-specific survival for 
tumor subtypes, whiskers depict the magnitude of the confidence interval: lower 95% (left) 
and upper 95% (right).

Prognostic analysis was performed based on 10-year CRC-specific survival outcome using 
either Kaplan-Meier estimates with a log-rank test (survminer R package), or a univariable or 
multivariable Cox proportional hazards regression model (survival R package). The NND or 
immune density quartiles and tumor spatial subtypes were analyzed as categorical covariates 
in these models, where the 1st quartile of NND or immune density and the spatial subtype with 
the lowest average immune cell density were used as references, respectively, with an excep-
tion that “cold, stroma-rich” subtype was used as the reference in eosinophil and neutrophil 
analyses as this subtype showed significantly worse CRC-specific prognosis than “cold, tumor-
rich” subtype despite of its higher cell density. Note that in these analyses of CRC-specific 
mortality, deaths resulting from other causes were censored.

In the multivariable Cox regression analyses, covariates assessed as potential confound-
ing factors included sex (female vs. male), age at diagnosis (continuous), year of diagnosis 
(continuous), family history of CRC in any first-degree relative (present vs. absent), tumor 
location (proximal colon vs. distal colon vs. rectum), tumor differentiation (well to moderate 
vs. poor), disease stage (I/II vs. III/IV), MSI status (MSI-high vs. non-MSI-high), CpG island 
methylator phenotype (CIMP) status (high vs. low/negative), long-interspersed nucleotide 
element-1 (LINE-1) methylation level (continuous), KRAS mutation (mutant vs. wild-type), 
BRAF mutation (mutant vs. wild-type), and PIK3CA mutation (mutant vs. wild-type). Cases 
with missing data were included in the majority category of a given categorical covariate to 
limit the degrees of freedom: family history of CRC in a first-degree relative (0.4%), tumor 
location (0.4%), tumor differentiation (0.1%), disease stage (7.2%), MSI (2.9%), CIMP (7.1%), 
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KRAS (2.9%), BRAF (2.0%), and PIK3CA (8.7%). For the cases with missing LINE-1 methyla-
tion data (2.8%), we substituted the mean value and assigned a separate indicator variable for 
missing cases. To confirm appropriate covariate selection, we also performed feature selection 
for confounding factors by fitting a generalized linear model (using Cox regression model as 
the link function) with Lasso regularization (glmnet R package), whereby the optimal regular-
ization parameter lambda was selected from a 5-fold cross validation test. Our data showed 
that similar p-values and hazard ratio central estimates were obtained as that of a multivari-
able Cox regression model without selection.

We employed the Cochran-Armitage trend test to examine associations between TIPC 
spatial subtypes (categorical variable) and clinicopathologic and molecular features (ordinal 
variables), including 5-year CRC-specific survival, microsatellite instability (MSI) status, CpG 
island methylator phenotype (CIMP) status, lymphocytic reaction patterns [13], neoantigen 
load, [40] and immunohistochemistry-based protein expression of CD274 (PD-L1), CDH1, 
CTNNB1, PDCD1LG2 (PD-L2), PTGER2, SQSTM1, and YAP1. Considering the limited size 
of HCC cohort, we employed the non-parametric Kruskal Wallis test to examine the relation-
ship between TIPC spatial subtypes (a categorical variable) and patient response outcomes. 
The patient responses were categorized as ordinal variables, arranged sequentially from 
non-responders, to progressors, and with super responders representing the highest category 
of response.

Supporting information
S1 Fig.   Evaluation of effect of subregion size on TIPC spatial parameter value distribution, 
using CD3+ T-cells. Two representative regions of interest demonstrating different subre-
gion sizes in (a) a stromal region and (b) a tumor region predominating colorectal cancer 
tissue sections. (c) Distribution of TIPC spatial parameter values (in normalized counts) 
across a range of subregion sizes, i.e., 20–55 μm. Subregion sizes smaller than 30 μm demon-
strated an underrepresented I:T low measure. Abbreviations: I:T, immune-to-tumor, I:S, 
immune-to-stroma.
(PDF)

S2 Fig.   Determination of optimal subregion size and input cluster number (k) for TIPC anal-
ysis using CD3+ T cells. At individual subregion sizes of (a-c) 30, (d-f) 35, and (g-i) 40 μm, 
(a,d,g) cumulative distribution function (CDF) delta plots were first used to determine the 
minimum k for stable clustering (colored in red); (b,e,h) tracking plots revealed the relation-
ship between granularity (high k yields high granularity) and cluster size (optimal k, marked 
by black boxes, were selected manually for ensuring a balance between granularity and statis-
tical power). After excluding clusters comprising less than 30 tumors, (c,f,i) the major clusters 
with their spatial patterns represented by the six TIPC parameters were shown in the heat 
maps. Subregion sizes 30 and 35 μm yielded six largely similar patterns whereas the HC clus-
ter was missing from subregion size of 40 μm. Abbreviations, CSR = cold, stroma-rich, CTR = 
cold, tumor-rich, HD = hot and disperse, HTCC = hot, tumor-centric clustering, HSCC = hot, 
stroma-centric clustering, HC = hot and clustered.
(PDF)

S3 Fig.   Cox proportional hazards regression analysis based on TIPC spatial subtypes identi-
fied using CD3+ T-cells at subregion = 35 μm and input k = 9. Forest plots depicting hazard 
ratios and 95% confidence intervals of univariable and multivariable models which were 
adjusted for (a) clinicopathologic features, or (b) both clinicopathologic features and cell den-
sity. Abbreviations, CSR = cold, stroma-rich, CTR = cold, tumor-rich, HD = hot and disperse, 
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HTCC = hot, tumor-centric clustering, HSCC = hot, stroma-centric clustering, HC = hot and 
clustered. Symbols *** p < 0.001, ** p < 0.01, * p < 0.05, not significant (ns) p > 0.05.
(PDF)

S4 Fig.   Survival analysis based on cell density and nearest neighbor distance (NND), using 
CD3+, CD3+CD8+CD45RO+, eosinophils, and neutrophils, in Nurses’ Health Study/Health 
Professionals Follow-up Study cohorts. Tumors were either grouped into quartiles based on 
(a) their overall cell densities (using a univariable Cox regression model) or (b) nearest neigh-
bor distance (NND) to the nearest tumor cells (using both univariable and multivariable Cox 
regression models by adjusting for either only cell density or cell density with clinicopatholog-
ical features). Symbols *** p < 0.001, ** p < 0.01, * p < 0.05, not significant (ns) p > 0.05.
(PDF)

S5 Fig.   Morisita-Horn (M-H) analysis using CD3+ T cells. M-H index was first computed 
using 4.5-by-4.5, 5-by-5, 5.5-by-5.5, and 6-by-6 μm rectangular grids, measuring the degree 
of co-localization between CD3+ T cells with (left panel) tumor or (right panel) stromal 
cells. The tumors were then assigned to M-H low or high groups using the percentile cut-
offs (represented by horizontal axis). Univariate Cox PH regression models were used to test 
for prognostic significance associated with tumors showing high versus low co-localization. 
Vertical axis indicates logarithmic transformed false discovery rate (FDR) values adjusted for 
the 13 cut-offs. The red dotted lines mark FDR = 0.05. Two combinations harbored signifi-
cant associations (FDR ≤ 0.05) with colorectal cancer-specific survival for both discovery and 
validation subsets and are highlighted in red boxes with hazard ratios (HRs) and confidence 
intervals (CIs) labeled on top. ns for not significant, i.e., p > 0.05.
(PDF)

S6 Fig.   Prognostic performance evaluation of M-H subtypes derived from CD3+ T cells. At 
the two optimal grid sizes (5-by-5 and 6-by-6 μm, see S5 Fig for full details), both using a cut-
off = 0.8 for dichotomizing tumors into low and high subtypes, both M-H solutions showed 
(a) confounding effects of overall CD3+ T-cell densities and (b) significant prognostic associa-
tions based on Kaplan-Meier estimates and log-rank test where P-values < 0.05.
(PDF)

S7 Fig.   Performance evaluation of G-cross subtypes identified using CD3+ T cells. G-cross 
area under the curve (AUC), based (left panel) overall tissue regions and (right panel) stromal 
regions, was measured at r ≤ 20 μm and tumors were grouped into quartile categories of AUC. 
(a) Both analyses showed a significant confounding effect for overall CD3+ T cell density. (b) 
Only subtypes identified using CD3+ T cells in the overall tissue region showed prognostic 
significance value based on Kaplan-Meier estimates and the log-rank test.
(PDF)

S8 Fig.   Performance evaluation of L-cross subtypes identified using CD3+ T cell. L-cross 
area under the curve (AUC), based (left panel) overall tissue regions and (right panel) stromal 
regions, was measured at r ≤ 20 μm and tumors were grouped into quartile categories. (a) Both 
of these subtypes showed modest confounding due to overall CD3+ T cell densities and (b) no 
significant prognostic utility as assessed by Kaplan-Meier estimates and the log-rank test.
(PDF)

S9 Fig.   Heat-map summarizes the association between molecular and pathologic features and 
TIPC spatial subtypes derived using CD3+ T cells. Extended Cochran–Armitage method was 
used to test the association significance between molecular and pathologic features (ordered 
variables) and TIPC spatial subtypes (unordered variable). Horizontal axis indicates cluster 
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names: cold, stroma-rich (CSR), cold, tumor-rich (CTR), hot, tumor-centric clustering (HTCC), 
hot and disperse (HD), hot, stroma-centric clustering (HTCC), and hot and clustered (HC).
(PDF)

S10 Fig.   Survival analysis of TIPC subtypes derived from three different immune cell types, 
cytotoxic memory T cells (CD3+CD8+CD45RO+), eosinophils, and neutrophils in Nurses’ 
Health Study/Health Professionals Follow-up Study CRC datasets [24,25]. Kaplan-Meier and 
log-rank test show that the TIPC spatial subtypes of, (a) cytotoxic memory T cells (CD3+C-
D8+CD45RO+), (b) eosinophils, and (c) neutrophils, were significantly associated with 
colorectal cancer-specific survival. Abbreviations, CSR = cold, stroma-rich, CTR = cold, 
tumor-rich, HD = hot and disperse, HTCC = hot, tumor-centric clustering, HSCC = hot, 
stroma-centric clustering, HC = hot and clustered, HCTR = hot and clustered, tumor-rich, 
and HCSR = hot and clustered, stroma-rich.
(PDF)

S11 Fig.   Cox proportional hazards regression analysis based on TIPC spatial subtypes 
derived from cytotoxic memory T cells (CD3+CD8+CD45RO+), eosinophils, and neutro-
phils in NHS/ HPFS CRC datasets[24,25]; multivariable Cox Nurses’ Health Study/Health 
Professionals Follow-up Study adjusted for clinicopathologic features. Forest plots associated 
with the subtypes of, (a) cytotoxic memory T cells (CD3+CD8+CD45RO+), (b) eosinophils, 
and (c) neutrophils, depicting hazard ratios and 95% confidence intervals for both univari-
able and multivariable (adjusted for clinicopathologic features). Abbreviations, CSR = cold, 
stroma-rich, CTR = cold, tumor-rich, HD = hot and disperse, HTCC = hot, tumor-centric 
clustering, HSCC = hot, stroma-centric clustering, HC = hot and clustered, HCTR = hot and 
clustered, tumor-rich, and HCSR = hot and clustered, stroma-rich. Symbols *** p < 0.001, 
** p < 0.01, * p < 0.05, not significant (ns) p > 0.05.
(PDF)

S12 Fig.   Cox proportional hazards regression analysis based on TIPC spatial subtypes 
derived from cytotoxic memory T cells (CD3+CD8+CD45RO+), eosinophils, and neutro-
phils in NHS/ HPFS; multivariable Cox proportional hazards adjusted for clinicopathologic 
features and cell densities. Forest plots associated with the subtypes of, (a) cytotoxic mem-
ory T cells (CD3+CD8+CD45RO+), (b) eosinophils, and (c) neutrophils, depicting hazard 
ratios and 95% confidence intervals for both univariable and multivariable (adjusted for both 
clinicopathologic features and cell density). Abbreviations, CSR = cold, stroma-rich, CTR = 
cold, tumor-rich, HD = hot and disperse, HTCC = hot, tumor-centric clustering, HSCC = hot, 
stroma-centric clustering, HC = hot and clustered, HCTR = hot and clustered, tumor-rich, 
and HCSR = hot and clustered, stroma-rich. Symbols *** p < 0.001, ** p < 0.01, * p < 0.05, not 
significant (ns) p > 0.05.
(PDF)

S13 Fig.   Evaluation of effect of subregion size on TIPC spatial parameter value distri-
bution, using eosinophils. Distribution of TIPC spatial parameter values (in normalized 
counts) across a range of subregion sizes, i.e., 20-55 μm. I:T low and I:S low were generally 
under-represented, and a subregion size of 35 μm reached a plateau for Tumor-only an under-
represented I:T low measure. Abbreviations: I:T, immune-to-tumor, I:S, immune-to-stroma.
(PDF)

S14 Fig.   Determination of optimal subregion size and input cluster number (k) for TIPC 
analysis using eosinophils. At individual subregion sizes of (a-c) 30, (d-f) 35, and (g-i) 40 
μm, (a,d,g) cumulative distribution function (CDF) delta plots were first used to determine 
the minimum k for stable clustering (colored in red); (b,e,h) tracking plots revealed the 
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relationship between granularity (high k yields high granularity) and cluster size (optimal k, 
marked by black boxes, were selected manually for ensuring a balance between granularity 
and statistical power). After excluding clusters comprising less than 30 tumors, (c,f,i) the 
major clusters with their spatial patterns represented by the six TIPC parameters were shown 
in the heat maps. The three TIPC solutions yielded similar spatial subtypes except that instead 
of HSCC subtype detected at sizes 25 and 30 μm, HC subtype was found at 35 μm, as (c,f) the 
former showed a relatively less coherent spatial profile, TIPC solution determined at 35 μm 
was used for downstream association analysis. Abbreviations: CSR = Cold, stroma-rich; CTR 
= Cold, tumor-rich; HD = Host and disperse; HSCC = Hot, stroma-centric clustering; HCTR 
= Host and clustered, tumor-rich.
(PDF)

S15 Fig.   Evaluation of effect of subregion size on TIPC spatial parameter value distri-
bution, using neutrophils. Distribution of TIPC spatial parameter values (in normalized 
counts) across a range of subregion sizes, i.e., 20-55 μm. Subregion size ≥ 40 μm ensures 
minimal detection of I:S low and I:T low. Abbreviations: I:T, immune-to-tumor, I:S, 
immune-to-stroma.
(PDF)

S16 Fig.   Determination of optimal subregion size and input cluster number (k) for TIPC 
analysis using neutrophils. At individual subregion sizes of (a-c) 35, (d-f) 40, and (g-i) 50 μm, 
(a,d,g) cumulative distribution function (CDF) delta plots were first used to determine the 
minimum k for stable clustering (colored in red); (b,e,h) tracking plots revealed the relation-
ship between granularity (high k yields high granularity) and cluster size (optimal k, marked 
by black boxes, were selected manually for ensuring a balance between granularity and statis-
tical power). After excluding clusters comprising less than 30 tumors, (c,f,i) the major clusters 
with their spatial patterns represented by the six TIPC parameters were shown in the heat 
maps. Similar spatial subtypes were obtained using subregion size across 35-50 μm, except 
that instead of HCSR subtype detected at both sizes 35 and 50 μm (more robust), HSCC 
subtype was found at 40 μm, hence, TIPC solution determined at 35 μm (alternatively, 50 μ m 
could also be used) was used for downstream association analysis. Abbreviations: CSR = Cold, 
stroma-rich; CTR = Cold, tumor-rich; HD = Host and disperse; HSCC = Hot, stroma-centric 
clustering; HCTR = Host and clustered, tumor-rich.
(PDF)

S17 Fig.   Performance evaluation on the effect of subregion sizes and input cluster number 
(k) on spatial subtype identification and prognostic significance, using CD3+ T cells. TIPC 
analysis was performed using subregion sizes in the range of 30-50 μm, at each of these sub-
region sizes, input cluster numbers in the range of 4-10 were tested whereby univariate Cox 
regression model was used to test the association significance of the resulting TIPC subtypes 
with colorectal cancer-specific survival; subtypes comprising <30 tumors were excluded. Ver-
tical axis indicates CD3+ T cell density (cells/mm2) for TIPC subtype. Subtypes were ordered 
based on their mean CD3+ T cell density, from the lowest (reference cluster) on the left to 
highest on the right; symbol size reflects the relative cluster size. Abbreviations: CSR = Cold, 
stroma-rich; CTR = Cold, tumor-rich; HTCC = Hot, tumor-centric clustering; HD = Host and 
disperse; HSCC = Hot, stroma-centric clustering; HC = Hot and clustered; HR = hazard ratio.
(PDF)

S18 Fig.   Performance evaluation on the effect of subregion sizes and input cluster number 
(k) on spatial subtype identification and prognostic significance, using neutrophils. TIPC 
analysis was performed using subregion sizes in the range of 35-55 μm, at each of these 
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subregion sizes, input cluster numbers in the range of 4-10 were tested whereby univariate 
Cox regression model was used to test the association significance of the resulting TIPC 
subtypes with CRC-specific survival (reference cluster: CSR); subtypes comprising <30 tumors 
were excluded. Vertical axis indicates neutrophils density (cells/mm2) for TIPC subtype. 
Subtypes were ordered based on their mean neutrophil density, from the lowest on the left to 
highest on the right; symbol size reflects the relative cluster size. Abbreviations: CTR = Cold, 
tumor-rich; HTCC = Hot, tumor-centric clustering; HD = Host and disperse; HSCC = Hot, 
stroma-centric clustering; HCTR = Host and clustered, tumor-rich; HR = hazard ratio.
(PDF)

S19 Fig.   Determination of optimal subregion size and cluster number (k) and the clustering 
results using TIPC package functions optimal_hexLen and optimal_k. Using (a-c) cytotoxic mem-
ory T cells, (d-f) eosinophils, and (g-i) neutrophils in CRC (NHS/HPFS), optimal_hexLen iden-
tified 70, 80, and 80 as the optimal subregion sizes, respectively. Then, optimal_k identified the 
shoulder points as the smallest cluster numbers—(a) 4, (d) 4, and (g) 4, respectively—to ensure 
stability, followed by selecting the largest stable k values—(b) 9, (e) 10, and (h) 10, respectively—
to ensure granularity. After removing outlier clusters containing fewer than 30 samples, the 
resulting clusters were (c) 7, (f) 5, and (i) 5 spatial clusters, closely matching those generated by 
manual selection. Abbreviations: CSR = Cold, stroma-rich; CTR = Cold, tumor-rich; HD = Host 
and disperse; HC = hot and clustered; HTCC = hot, tumor-centric; HSCC = Hot, stroma-centric 
clustering; HCTR = Host and clustered, tumor-rich; HCSR = hot and clustered, stroma-rich.
(PDF)

S20 Fig.   Validation of the prognostic significance of TIPC subtypes which were first deter-
mined in Nurses’ Health Study/Health Professionals Follow-up Study (NHS/HPFS) CRC 
cohort[24,25] and later recapitulated in TCGA cohort, using eosinophils identified morpho-
logically in H&E images. Among the five major TIPC subtypes determined in NHS/ HPFS 
cohort, three comprised of >30 tumors (i.e., CTR, HD, HCTR; see Fig 8). (a-b) Kaplan-Meier 
estimates associated with these TIPC subtypes of eosinophil subtypes harbored significant 
association with (a) disease-specific survival (DSS) and (b) progression-free intervals (PFI); (c) 
forest plot summarizes Cox regression analysis of tumor subtypes determined using cell den-
sity or nearest neighbor distance (NND) (see Fig 8 for the associations with overall survival). 
Symbols *** p < 0.001, ** p < 0.01, * p < 0.05, not significant (ns) p > 0.05. Abbreviations: 
CTR = Cold, tumor-rich; HD = Host and disperse; HCTR = Host and clustered, tumor-rich.
(PDF)

S21 Fig.   Morisita-Horn (M-H) analysis using eosinophils identified in Nurses’ Health Study/
Health Professionals Follow-up Study CRC cohorts [24,25]. M-H index was first computed 
using rectangular grid sizes of 4.5-by-4.5, 5-by-5, 5.5-by-5.5, and 6-by-6 μm, measuring the 
co-localization between eosinophils with stromal (left panel) or tumor cells (right panel). The 
tumors were then assigned to M-H low or high groups using the percentile cut-offs (repre-
sented by horizontal axis). Univariate Cox proportional hazards regression models were used 
to test for prognostic significance associated with tumors showing high (M-H high group) ver-
sus low (M-H low group) co-localization. Vertical axis indicates logarithmic transformed false 
discovery rate (FDR) values adjusted for the 13 cut-offs. The red dotted lines mark FDR = 0.05. 
Combinations harbored significant associations (FDR ≤ 0.05) with colorectal cancer-specific 
survival for both discovery and validation subsets and were highlighted in red boxes.
(PDF)

S22 Fig.   Comparison of the number of tumors in Morisita-Horn (M-H) low and high groups 
in Nurses’ Health Study/Health Professionals Follow-up Study (NHS/ HPFS) [24,25] and The 
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Cancer Genome Atlas (TCGA) cohorts. M-H index was computed using rectangular grid sizes 
of 4.5-by-4.5, 5-by-5, 5.5-by-5.5, and 6-by-6 μm, measuring the co-localization between eosin-
ophils with stromal (left panel) or tumor cells (right panel), in (a) NHS/HPFS and (b) TCGA 
cohorts, individually. Based on the percentiles (represented by horizontal axis) determined in 
(a) NHS/ HPFS cohorts, (b) TCGA cohort were divided into M-H low and high groups, where 
TCGA cohort showed an extremely skewed distribution with very few tumors assigned to the 
M-H low group across all the combinations of grid sizes and cut-offs.
(PDF)

S1 Table.   Definition of ‘spatial’ terminology.
(PDF)

S2 Table.   Definition of the six TIPC spatial parameters.
(PDF)

S3 Table.   Evaluation of the confounding effect of CD3+ T-cell density on tumor subtypes 
derived by existing spatial analysis methods. Multivariable Cox proportional hazards model 
included both the tumor subtypes identified by (a-b) the Morisita-Horn (M-H) index, (c) 
G-cross, and (d) L-cross functions and overall CD3+ T cell density (quartiles). M-H subtypes 
were generated using (a) 5-by-5 and (b) 6-by-6 μm grid sizes based on the validation dataset 
(see S5 Fig for details). HR, hazard ratio; CI, confidence interval.
(PDF)

S4 Table.   Comparison of prognostic significance between tumor subtypes derived by TIPC and 
other existing methods. Multivariable Cox proportional hazards model included both the tumor 
subtypes identified by TIPC and (a) CD3+ T cell density quartiles, (b) Morisita-Horntumor: 
CD3+T cell index quartiles (using a 5-by-5 μm grid and 80th percentile dichotomization cut-off), 
(c) G-crosstumor:CD3+T cell (in stroma) AUC quartiles (r < 20 μm), and (d) L-crosstumor: 
CD3+T cell (in stroma) AUC quartiles (r < 20 μm). Abbreviations: CSR = Cold, stroma-rich; CTR 
= Cold, tumor-rich; HTCC = Hot, tumor-centric clustering; HD = Host and disperse; HSCC = 
Hot, stroma-centric clustering; HC = Hot and clustered; HCTR = Host and clustered, tumor-rich; 
HCSR = Hot and clustered, stroma-rich.; HR = hazard ratio; CI = confidence interval.
(PDF)

S5 Table.   Evaluation of the confounding effect of immune cell density on TIPC subtypes. 
Multivariable Cox proportional hazards model included TIPC subtypes of (a) cytotoxic mem-
ory T cells, (b) eosinophils, and (c) neutrophils, and the corresponding overall cell density 
(quartiles). Abbreviations: CSR = Cold, stroma-rich; CTR = Cold, tumor-rich; HTCC = Hot, 
tumor-centric clustering; HD = Host and disperse; HSCC = Hot, stroma-centric clustering; 
HC = Hot and clustered; HCTR = Host and clustered, tumor-rich; HCSR = Hot and clustered, 
stroma-rich; HR = hazard ratio; CI = confidence interval.
(PDF)

S6 Table.   Qualitative descriptions for distinct tumor-immune spatial patterns identified 
using TIPC.
(PDF)
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