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Abstract—The growing data volume and complexity of Deep
Neural Networks (DNN) require new architectures to surpass the
limitation of the von-Neumann bottleneck, with Computing-in-
memory (CIM) as a promising direction for implementing energy-
efficient neural networks. However, CIM’s peripheral sensing
circuits are usually power and area hungry components. We
propose a time-multiplexing Computing-in-Memory architecture
(TM-CIM) based on memristive analog computing to share the
peripheral circuits and process one column at a time. The
memristor array is arranged in a column-wise manner that
avoids wasting power/energy on unselected columns. In addition,
DAC (digital-to-analog converter) power and energy efficiency,
which turns out to be an even greater overhead than ADC
(analog-to-digital converter), can be fine-tuned in TM-CIM for
significant improvement. For a 256*256 crossbar array with
a typical setting, TM-CIM saves 18.4× in energy with 0.136
pJ/MAC efficiency, and 19.9× area for 1T1R case and 15.9×
for 2T2R case. Performance estimation on VGG-16 indicates
that TM-CIM can save over 16× area. A trade-off between
the chip area, peak power, and latency is also presented, with
a proposed scheme to further reduce the latency on VGG-16,
without significantly increasing chip area and peak power.

Index Terms—Time Multiplexing, Column-wise array,
Computing-in-Memory, Neuromorphic Computing, Memristive
Analog Computing, Edge Intelligence.

I. INTRODUCTION

DEEP Neural Networks (DNNs) have been widely im-
plemented in various fields with unprecedented success,

such as autopilot, aerospace, wearables, security, etc [1].
With the ever-increasing complexity of DNNs, the modern
computing systems have to cope with massive parameters and
operations. Due to the physical separation between the pro-
cessing units and memory units, conventional Von-Neumann
architectures suffer from the limited on-chip memory size and
memory bandwidth, resulting in the “Von-Neumann Bottle-
neck” [2]. What’s more, conventional processors for DNNs
such as GPUs require ultra-high power consumption, which is
not suitable for some applications such as edge intelligence.

Computing-in-Memory (CIM) is considered as a promising
candidate to surpass the “Von-Neumman bottleneck” with
much lower power consumption and much higher energy ef-
ficiency. CIM performs in-situ computing within the memory,
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significantly reducing data movement and thus facilitating
high energy efficiency. Emerging Non-Volatile memristors
such as Phase Change Memory (PCM), Spin-Torque-Transfer
memory (STT-MRAM), and resistive random-access memory
(RRAM) [3]–[5] have been widely explored as fundamental
building blocks of CIM schemes. Fig.1 shows the diagram of
conventional CIM schemes, the input circuit for each row is
usually composed of a digital-to-analog converter (DAC) with
an operational amplifier (OP-AMP) based voltage follower
output stage [6]. The memristors are usually arranged as a
crossbar array. The conductance of the memristors behaves
like a synaptic weight, and according to Kirchhoff’s law,
the combined bit-line current of each column corresponds
linearly to the weighted sum of the respective neuron. This
arrangement of the array corresponds to the matrix in a layer
of a neural network, and implements what is referred to as a
cross-bar in neural network hardware implementation.
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Fig. 1. The Diagram of Computing-in-Memory Scheme.

In conventional CIM schemes, each input circuit is required
to drive multiple devices (e.g. 256), which means the DAC will
become area and power hungry [6]. Some research works use
digital input signals to avoid such overhead [7]–[9]. However,
it requires multiple cycles to compute a high-precision activa-
tion, which will increase its total energy consumption. What’s
more, the shift & add operation for different input bits will
accumulate the quantization errors if each cycle requires an
ADC conversion, leading to a reduction in the robustness of
this architecture. Moreover, in above two architectures, each
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column has its dedicated peripheral circuits, including CIM
neuron and ADC. However, both the CIM neuron and ADC
are power-hungry components and have significant chip area.
In [8], the trans-impedance amplifier (TIA) neuron consumes
more than 95% power in the scheme. In [9], the analog-
to-digital converter (ADC) consumes more than 92% energy
and 75% area in the system. Since edge intelligence prefers
compact and energy-efficient DNN chips over those with high
computing throughput, one way to reduce the area overhead
of peripheral circuits is to share them via Time-Multiplexing
(TM). However, for conventional memristor array, forcing
simple TM would lead to significant leakage currents on
unselected columns, which will be discussed in detail in
Section II.

In light of above limitations, we proposed a novel Time-
Multiplexing Computing-in-Memory (TM-CIM) architecture
to save area without incurring additional power consumption.
In addition, since TM-CIM computes one column at a time,
the input circuit only needs to drive one device (at a time).
Therefore, the area and power consumption of input circuits
can be significantly reduced. The major contributions of this
paper are summarized as follows:

1) The Time-Multiplexing architecture shares the TIA and
ADC with multiple columns to reduce the area overhead
of the peripheral circuits. In a typical setting, the area
can be saved 19.9× for a 256*256 1T1R array and
16.9× for a 256*256 2T2R array at a latency of 5140 ns,
vs 210 ns without time-multiplexing.

2) The memristor array is arranged in column-wise form
rather than row-wise form. The cells on the same column
are controlled with a column-wise signal. In this way,
unselected columns will be completely turned off, thus
avoiding leakage currents.

3) TM-CIM is flexible and efficient at implementing com-
plex DNNs. Compared with conventional architectures
with analog input, the area saving is 16×, and energy
saving is 30× on VGG-16 [10]. Compared with conven-
tional architecture with digital input, the area and energy
saving is 14.2× and 5.9×, respectively.

4) A trade-off analysis between chip area, peak power, and
system latency gives the best time-multiplexing strategy
for different DNNs. Under similar setting as in previous
points, TM-CIM can implement VGG-16 with an area
of 118.09 mm2, peak power of 0.797 W, and energy
consumption of 1.968 pJ/image at a latency of 16.056
ms.

The rest of the paper is organized as follows: Section
II introduces the background and related works. Section
III discusses the detailed design of the proposed TM-CIM
architecture. Section IV provides performance evaluation of
the proposed architecture. Finally the conclusion is drawn in
Section V.

II. BACKGROUND AND RELATED WORKS

In a CIM crossbar array, typically each memristor is con-
nected with a select transistor to form a 1T1R cell. As
shown in Fig. 2 (a), each Word-Line controls the gate of

each 1T1R cell on a row, generally the Bit-Line of each
1T1R cell on a row is fed by the same corresponding voltage
(Acti) which corresponds to the input activation xi in a DNN,
and all columns are computed and sensed in parallel. Based
on Kirchhoff’s law, Each column’s current is therefore the
weighted sum of products of input activations and weights on
the corresponding neuron

∑
i xiwij . The conventional 1T1R

array is widely used in recent research [7], [9], [11], with some
researchers using Source-Line to represent the activations and
Bit-Line current to represent the weighted sum [12], [13].

As shown in Fig. 2 (b), 2T2R cells have been proposed to
represent signed weights [14], [15]. In a 2T2R cell, the first
memristor represents the positive portion of a weight and the
second represents the negative portion. So if the weight is
positive, the second memristor will generally be programmed
with high(est) resistance state (HRS) possible so that it rep-
resents a weight of zero. Similar converse arrangement is
made if the weight is negative. If the input activation xi is
positive, then it will be represented by the voltage Acti,p,
and Acti,n will be zero (with respect to ground seen at SLi,
which could either true ground or virtual ground depending
on the implementation). Conversely, if xi is negative, then
voltage Acti,n will be negative, and Acti,p be zero (again w.r.t.
ground seen at SLi). With this arrangement, the difference
of the pair of memristors’ currents would represent xiwij .
These architectures all have per-column peripheral circuits
including CIM neurons and ADCs, which will lead to high
power consumption and area overhead.
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Fig. 2. Diagram of conventional (a) 1T1R array and (b) 2T2R array. The
2T2R array is used to represent signed weights.

One promising way to reduce the power consumption and
area overhead of the peripheral circuits is to share them
via time multiplexing. [9] shares each ADC with 4 columns
to reduce the area overhead. However, it still requires per-
column sample & hold (S&H) circuits which also implies
per-column TIAs, and the ADCs still consume most of the
energy and area. [12] uses 32-to-1 multiplexers to share a 4-
bit ADC with 32 columns. Nevertheless, the ADC precision
is so low that it requires additional shift & add circuits to
achieve high precision. However, the effective number of
bits (ENOB) of the weighted sum is limited by the ADC
resolution, rendering the shift & add unuseful in practical
sense. In addition, its binary input mode requires multiple
cycles to implement n-bit activations. In this paper, a novel
time-multiplexing architecture is proposed with analog input
and high precision ADC output, which will be discussed in
Section III.
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III. TIME-MULTIPLEXING CIM ARCHITECTURE

TM-CIM is designed to reduce the peripheral circuit area
overhead of CIM architectures as well as to avoid additional
power/energy overhead. Fig. 3 shows the top view of proposed
TM-CIM. For simplicity of illustration, the column-wise array
is composed of 1T1R cells, which can be replaced by 2T2R
cells to represent signed weights. The neuron is shared with
multiple columns to reduce the area overhead. The details of
each block will be introduced in the rest of this section.
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Fig. 3. The top view of proposed TM-CIM architecture based on 1T1R array.

A. Column-wise Array

Memristor array is the key component for CIM architecture.
On a conventional CIM memristor array (e.g. 1T1R or 2T2R),
because during inference Word Line i would turn on all
transistors in row i, if we force time-multiplexing when one
column is selected for processing, the unselected columns will
continue to draw current and hence waste power and energy.
In TM-CIM, not only the array is selected and computed on a
column by column basis, but the array is also designed to be
column-wise to avoid wasting energy on unselected columns.
As shown in Fig. 4, the activation voltages (Acti) are sent into
the array by rows, the cells on the same column are controlled
with a column-wise signal (SELj), and the weighted sum is
computed by the Multiply-and-Accumulate (MAC) operations,
which can be represented as

ISL,j =
∑
i

ActiGi,j (1)

where Vi is corresponding voltage of the input activations,
Gi,j is the corresponding conductance of the cell representing
the ith weight of neuron j.

To program the cells, SELj is set to an on-voltage to turn
on the gates of the 1T1R cells of the selected column j, and for
the selected row i, for SET operations, the input (Acti) is set
to a high voltage (such as Vprog) and the Source Line (SLj) is
set to a low voltage (such as 0V); and for RESET operations,
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Fig. 4. Proposed 1T1R column-wise array that avoids wasting energy on
unselected columns.
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Fig. 5. (a) Proposed 2T2R column-wise array and (b) 2T2R cell.

SLj is set to Vprog and Acti is set to 0V. Vprog may take
on different values depending on the target state (i.e. target
conductance value). If there is need to program multiple cells
on the same column, each row can be a corresponding selected
row with its corresponding suitable Acti. For the unselected
rows, the input activation lines are set to floating so as not
to alter states of these unselected cells. For the unselected
columns, SLs can be set to any voltage that does not alter
states of these unselected cells. During inference, all input
activation lines are fed with voltages that correspond to input
activations from a DNN.

The scheme of the 2T2R cell is proposed by [14], which
is shown in Fig. 5 (a). For positive weights, the weight
value is stored as Gp, with Gn = conductance of HRS. For
negative weights, the weight value is stored in Gn, with Gp =
conductance of HRS. Therefore, the weight can be represented
as the difference of Gp and Gn. The gates of two transistors
are connected with the selected signal (SELj). Vp and Vn are
connected to the input activations. Then the output current can
be expressed as

ISL = (VActi,p − VSL) ∗Gp − (VSL − VActi,n)Gn (2)

For positive activations, VSL − VActi,n = 0, and for negative
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activations, VActi,p − VSL = 0. Therefore, the current on jth
SL can be represented as

ISL,j =
∑
i

Vi(Gpi,j −Gni,j) (3)

where Gi,j is the corresponding conductance of the signed
weights, and

Vi =

{
VActi,p − VSL, activationi ≥ 0

VSL − VActi,n , activationi < 0
(4)

Fig. 5(b) shows the proposed column-wise 2T2R array
which is used to represent signed weights. Programming cells
in the proposed column-wise 2T2R array is similar to that
of the proposed column-wise 1T1R array, with specialization
for 2T2R. When programming a positive weight for SET,
Acti,p should be Vprog while Acti,n should be either equal
to SLj (which is preferably 0V) or floating, so as to not
SET the negative portion of the weight. Conversely, when
programming a negative weight for SET, Acti,n should be
Vprog while Acti,p should be either equal to SLj (which is
preferably 0V) or floating. Similarly, for RESET, the activation
line of the selected polarity should be 0V while that of the
unselected polarity should be either Vprog or floating, and
selected column’s SLj should Vprog.

Note that in the proposed column-wise array structure,
whether for 1T1R or 2T2R, if there is a verification procedure
after programming (often referred to as write-verify), since all
cells in a column will be turned on, to avoid unselected rows
from this column to contribute unwanted read current, their
activation lines should be set to floating, to guard against the
case where supposed 0V activations on unselected rows have
systematic offset voltages.

B. Energy-Efficient Time-Multiplexing Neuron
The proposed time-multiplexing neuron consists of a series

of switches, a TIA, and an ADC such as high-precision
Successive-approximation (SAR) type [16]. As shown in
Fig. 3, the source lines are connected to the TIA via a series
of switches (SW) acting as a MUX. The switch on the jth

column (SWi) is controled by the signal SELj , which is also
the select signal of the array. TIA converts the source line
current to voltage and sends it into the ADC. Finally, the ADC
latches the TIA’s output and converts it into a digital signal.

Fig. 6 shows the work flow of the proposed time-
multiplexing neuron. In the first phase (P0), SEL0 is turned
on, and the first (0th) column generates the results as a current
signal, which is passed by SW0 to the TIA for converting
the current to voltage. At end of P0, the ADC latches TIA’s
output voltage to start A/D conversion. In the second phase
(P1), the ADC converts the output of 0th column to digital
signal, while SEL1 gets turned on and the TIA converts SL1’s
current to voltage. At the end of P1, the ADC completes
the conversion and then latches the TIA’s output voltage to
start A/D conversion, and so forth. We are assuming that
memristor column current stabilization and TIA output voltage
stabilization are happening within the same phase. Therefore,
if an array shares a ADC with m columns, the latency of each
phase is tp, the latency of this array would be (m+ 1)× tp.
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Fig. 6. Work flow of the proposed time-multiplexing neuron.

C. Network Implementation

When implementing a DNN, such as a Convolutional Neural
Network (CNN) with TM-CIM, typically each column of the
array stores the synaptic weights of a Conv neuron, and each
row corresponds to an input activation of current convolution
window. As illustrated in Fig. 7 (a), each neuron has N ×
k × k synapses, where N is the input feature maps, and there
are M neurons for M output feature maps. For a practical
CNN, the first convolution layer is usually small and is able
to fit on a single array. For the later layers, the number of
inputs can be much bigger than the number of rows in a array.
Therefore, as shown in Fig. 7 (b), multiple arrays are required
to map a layer, and the partial weighted sums of each array
can be summed together in digital domain and in synchronized
time-multiplexing across these cores/arrays to obtain the final
weighted sum with negligible extra latency.
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Fig. 7. The Diagram of implementing a DNN with the proposed TM-CIM.
(a) Convolution within an array, (b) mapping the DNN with multiple array.

IV. PERFORMANCE EVALUATION

In this section, the energy and area of the proposed TM-CIM
are evaluated both on a 256 × 256 core and on the VGG-16
CNN. The evaluation is based on known parameters in 65nm
technology. What’s more, a trade-off strategy between the area
overhead, peak power, and system latency is also illustrated.

A. Core-level Evaluation

Here we assume 4-bit input is sufficient for quantization-
aware trained DNNs like VGG-16, hence core level evaluation
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is based on 4-bit input and 256*256 crossbar 1T1R/2T2R cells.
The area, peak power, and latency of each 1T1R cell is 0.169
µm2, 1 µW , and 10 ns, respectively [17]1. By definition, the
area of the 2T2R cell is twice that of the 1T1R, but the power
and latency remain the same, because only one out of the two
RRAM devices in a 2T2R cell is turned on at a time. 6-bit
DAC is used to represent 4-bit inputs. The 6-bit DAC speed is
100MS/s, driving 256 devices, consumes 390.6 µm2 in area
and 60 mW in power by scaling and deriving from Fig. 7 of
[6]. In contrast, the input circuit driving 1 device is assumed to
only consume 50 µm2 and 0.001 mW for DAC, and 10 µm2

and 0.005 mW for OP-AMP [6].To reduce the area overhead
of ADC, [17] uses Single-Slope (S/S) ADC to complete the
data conversion, whose area and power consumption are 3000
µm2 and 0.2mW . However, its latency is as long as 200 ns.
In the proposed TM-CIM, a 9-bit 100MS/s SAR ADC whose
area and power consumption are 13000 µm2 and 1.2 mW
(on 65nm) is assumed per [16]. A TIA with 2000 µm2 and
0.5 mW is assumed to be used to provide input to the ADC,
and the latency of the TIA is 10 ns. We further assume that
both the DAC’s and the TIA’s output stabilization times can
be overlapped and merged as 10 ns.

TABLE I
ENERGY&AREA ESTIMATION COMPARISON BETWEEN CONVENTIONAL

CIM AND PROPOSED TM-CIM ON A 256× 256 ARRAY WITH 4-BIT INPUT

Component Quantity Area Peak Power Latency Energy/MAC
(mm2) (mW ) (ns) (pJ)

Conventional

Array 1T1R 256*256 0.011 65.536 10 0.010
2T2R 256*256 0.022 65.536 10 0.010

DAC+OP-AMP∗ 256 0.100 15360 10 2.343
S/S ADC 256 0.768 51.200 200 0.156

Total

Analog 1T1R - 0.879 15476.736 210 2.509
Input 2T2R - 0.890 15476.736 210 2.509
Digital 1T1R - 0.779 116.736 840∗∗ 0.665∗∗
Input 2T2R - 0.790 116.736 840∗∗ 0.665∗∗

Time-

Array 1T1R 256*256 0.011 0.256 2560 0.010
2T2R 256*256 0.022 0.256 2560 0.010

DAC∗ 256 0.013 0.256 10 0.010
OP-AMP∗ 256 0.003 1.280 10 0.050

SW 1 0.003 - - -
Multiplexing TIA 1 0.002 0.500 2560 0.019

SAR ADC 1 0.013 1.200 2560 0.047

Total

Digital 1T1R - 0.029 1.956 10280∗∗ 0.308∗∗
Input 2T2R - 0.040 1.956 10280∗∗ 0.308∗∗

Proposed 1T1R - 0.045 3.492 5140 0.136
2T2R - 0.056 3.492 5140 0.136

∗ The DAC and OP-AMP are only used in analog-input architecture.
∗∗The latency and energy are increased due to multiple computing cycles in digital-input architecture.

Table. I gives the energy and area comparison between
conventional CIM, digital-input CIM, and the proposed TM-
CIM architecture. Since conventional architecture computes
all columns simultaneously, the analog input circuits would
consume huge power (15360 mW ) and energy (2.343 pJ per
MAC), which is extremely unfriendly for edge intelligence
implementations. In contrast, the circuit of proposed TM-
CIM array only consumes 3.492 mW and 0.136 pJ (per
MAC). Digital-input architecture removes the DACs to avoid
the substantial power consumption of the input circuits, but
multiple cycles are required to implement high-precision in-
puts, incurring additional energy consumption and latency.
Furthermore, digital input’s latency is much higher than TM-
CIM’s. Therefore, the proposed TM-CIM shows best energy
efficiency in contrast with other architectures.

1 [17] assumes 0.9µW on 65nm RRAM process, whereas we assume 1
µW for ease of illustration.

The 256*256 1T1R array consumes 0.011 mm2, while the
2T2R array would consume 0.022 mm2. For conventional-
analog architecture, the input circuits would consume 0.100
mm2, and ADC would consume 768 mm2. There are more
than 98.7% and 97.5% area consumed by the peripheral
circuits, which will lead to overall a huge chip yet with
incompetitive capacity. The digital-input architecture removes
the input circuits to reduce area overhead. However, the TIAs
and ADCs for each column still consume considerable area.
In time-multiplexing architecture, the area consumed by TIAs
and ADCs can be saved significantly by sharing them with
multiple columns. Nevertheless, the digital-input architecture
incurs extra energy consumption and latency increase as the
input resolution increases. In the proposed TM-CIM, the DAC
and OP-AMP can be designed with low power and small area
since only one column is computed at a time. Moreover, if
every 256 columns share one ADC, the area consumed by
peripheral circuits can be saved significantly even though a
single SAR ADC will consume more area. In TM-CIM, 1T1R
architecture has a total area of only 0.045 mm2, saving around
19.53 times compared to conventional analog-input scheme.
The total area of 2T2R architecture is 0.056 mm2, which
is 15.89 times less than that of conventional analog-input
scheme.

TABLE II
CORE-LEVEL COMPARISON BETWEEN CONVENTIONAL ARCHITECTURES

AND PROPOSED TM-CIM WITH 1T1R CELLS

Throughput Peak Power Area Efficiency Density
(GMACs) (mW) (mm2) (TMACs/W) (GMACs/mm2)

Conventional Analog-In 312.076 15476.736 8.879 0.399 35.148
Digital-In 78.019 116.736 0.779 1.504 100.153

Time- Digital-in 6.375 1.956 0.029 3.246 219.828
Multiplexing Proposed 12.750 3.492 0.045 7.352 283.333

*The thoughput estimation is based on 4-bit inputs.
**At the network level, TM-CIM can achieve a throughput comparable to conventional CIM by
simply increasing the number of ADCs in the early layers.

Because the DAC and op-amp in TM-CIM are tuned for
driving 1 device only at 100MS/s (i.e. 10ns), and yet during
row initialization (before column time-multiplexing starts)
they will see parasitic capacitance of a whole row of (i.e. 256)
transistors, we further conservatively assume that the initializa-
tion will take as long as multiplexing all 256 columns, which
is 2570ns. Hence, the latency of TM-CIM is 2570*2 = 5140
ns, which is reasonable for edge intelligence since the latency
is mostly determined by the slowest layer in the network level
Table. II gives the core-level comparison between conventional
CIM and the proposed TM-CIM. The proposed TM-CIM
shows the best energy efficiency and density, even though with
a lower throughput. Moreover, at the network level, TM-CIM
can achieve a throughput comparable to conventional CIM by
simply increasing the number of ADCs in the early layers, and
the trade-off strategy will be illustrated in Section IV-C.

Table. III gives the comparison between the proposed TM-
CIM and other ADC-shared architectures. [9] shares each
ADC with 4 columns to reduce the area overhead. [12] uses
32-to-1 multiplexers to share a 4-bit ADC with 32 columns.
However, these architectures still require per-column S&H
circuits which also implies per-column TIAs, and the ADCs
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TABLE III
PERFORMANCE COMPARISON BETWEEN TM-CIM AND OTHER

ADC-SHARED ARCHITECTURES

[9] [12] TM-CIM
Technology (nm) 130 40 65

Size 128*128 256*256 256*256
MUX 4-to-1 32-to-1 256-to-1

Latency (ns) 400 - 5140
Area (mm2) 0.0704 0.437 0.056

Energy/MAC (pJ) 371.89 1158.49 0.136

still consume most of the energy and area. Therefore, the
proposed TM-CIM still consumes the lowest area and energy.

B. Network-level Evaluation

The network-level energy estimation is based on VGG-
16 using ImageNet dataset, and the accuracy estimation is
based on VGG-11 using CIFAR-10 dataset. Multiple 256*256
2T2R crossbars are required to implement signed weights
in each layer of the network. Fig. 8(a) shows the required
number of crossbars for each layer of VGG-16, and the
total number of required crossbars is 2121. The accuracy
simulation is performed in PyTorch platform using the DoReFa
quantization-aware training framework [18] and core-size limi-
tation. As shown in Fig. 8(b), the accuracy drops slightly when
activations and weights are quantized to 8-bit, and is suitable
for implementation on the proposed TM-CIM.

Note that in this evaluation we focus on the aggregation of
power/energy consumption of CIM cores, and the aggregate
latency seen by the application. Hence in this study we do
not include energy overhead for data traffic in the chip, nor
for input control blocks that manage and fetch the input data
for each convolutional layer, as their estimations would vary
significantly depending on the choice of implementation of
Network-on-Chip routers and input control blocks.
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Fig. 8. (a)Required Number of Crossbars for each layer of VGG-16 and
ImageNet dataset, and (b)accuracy estimation of the proposed TM-CIM with
different precision of activations and weights on VGG-11 and Cifar-10 dataset.

Table. IV gives the performance estimation of implementing
VGG-16 with 256*256 2T2R arrays and 8-bit ADC, and Table.
V gives the performance comparison between the proposed
TM-CIM and other architectures. It is assumed that the arrays
used to implement the same convolution layers can be com-
puted in parallel. For conventional analog-input architecture,
the total area is 1887.997 mm2, while the array area is only
46.983 mm2. The chip area is huge and most of which
is consumed by the peripheral circuits. In fact, due to size

TABLE IV
PERFORMANCE ESTIMATION FOR IMPLEMENTING VGG-16 WITH

PROPOSED ARCHITECTURE

Component Quantity Area Peak Power Latency Energy/Img
(mm2) (W ) (ms) (mJ)

2T2R Array 2121 46.983 0.042 32.113 0.154
DAC 542976 27.149 0.042 32.113 0.155

OP-AMP 542976 5.430 0.208 32.113 0.774
MUX 2121 6.363 - - -
TIA 2121 4.242 0.133 32.113 0.068

SAR-ADC 2121 27.573 0.318 32.113 0.817
Total - 117.739 0.742 64.225 1.968

TABLE V
PERFORMANCE ESTIMATION COMPARISON ON VGG-16 BETWEEN THE

PROPOSED ARCHITECTURE AND THE OTHERS

Architecture Area Peak Power Latency Energy/Img
(mm2) (W ) (ms) (mJ)

Conventional Analog Input 1887.997 2527.996 10.537 59.256
Digital Input 1675.911 30.376 20.070 11.517

Time-multiplexing Digital Input 85.161 0.492 128.451 4.159
Proposed 117.739 0.742 64.225 1.968

constraints of photomasks, a chip even if occupying the entire
mask is usually limited to around 800 mm2 (exemplified by
some of the biggest GPU dies). For conventional digital-input
architecture, the total area is reduced to 1675.911 mm2, most
of which is consumed by per-column TIAs and ADCs. The
time-multiplexing digital-input architecture has the minimum
area of 85.161 mm2. However, its total energy consumption
and latency is still higher than the proposed TM-CIM, after
considering the number of computing cycles. In TM-CIM, if
every 256 columns share one ADC, the area consumed by
peripheral circuits can be reduced significantly to 70.757 mm2

even though a single faster ADC will consume more area,
the 2T2R array consumes 46.983 mm2, and the total area is
117.739 mm2. Compared with the conventional analog-input
architecture, the area saving is more than 16 times.

In conventional architecture, up to 256 columns in each
array will compute at a time. Therefore, the peak power will
be particularly high, especially for the analog-input circuits.
This is evidenced in Table. V, where total peak power is as
high as 2527.996 W which is in fact impractical. Note that this
estimation is already significantly reduced by considering that
the Fully Connected (FC) layers can be calculated gradually
instead of all at once. The key reason is that the DACs here
are too power-hungry despite scaling down their resolution
following the benchmark in [6]. The digital-input architecture
reduces the peak power significantly, but it requires more
computing cycles which also increases energy consumption,
and for our evaluation on VGG-16 the proposed TM-CIM is
still the most energy efficient.

In TM-CIM, only one column will be turned on in each
array, thus the peak power can be efficiently reduced. Since the
unselected columns can be totally turned off, TM-CIM would
not consume extra energy. Contrasted with conventional anlog-
input architecture, the energy consumption per image can be
saved by 7.67 times . The latency in proposed TM-CIM is
acceptable since in this illustrative example we adopt an SAR
ADC with higher speed by sacrificing area moderately.
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TABLE VI
AREA, PEAK POWER AND LATENCY FOR MINIMIZING THE LATENCY OF VGG-16 WITH MULTIPLE ADCS IN EARLIER CONVOLUTIONAL LAYERS.

Layer # of operations Effective columns in array # of array # of ADC in each array/layer Area Peak Power Latency
(mm2 (W) (ms)

Conv3-64 224*224 64 1 32/32 0.600 0.060 2.007
Conv3-64 3 32/96 1.800 0.274 2.007
Conv3-128 112*112 128 3 16/48 0.957 0.137 2.007
Conv3-128 5 16/80 1.595 0.248 2.007
Conv3-256

56*56 256
5 8/40 0.892 0.124 2.007

Conv3-256 9 8/72 1.606 0.235 2.007
Conv3-256 9 8/72 1.606 0.235 2.007
Conv3-512

28*28 256
18 2/36 1.315 0.091 2.007

Conv3-512 36 2/72 2.631 0.182 2.007
Conv3-512 36 2/72 2.631 0.182 2.007
Conv3-512

14*14 256
36 1/36 1.998 0.093 1.004

Conv3-512 36 1/36 1.998 0.093 1.004
Conv3-512 36 1/36 1.998 0.093 1.004
FC-4096 (512*7*7)*4096 256 1568 1/1568 87.042 0.112 0.253
FC-4096 4096*4096 256 256 1/256 14.211 0.112 0.253
FC-1000 4096*1000 256 64 1/64 3.553 0.112 0.253

Total - - 2121 -/2616 126.431 2.162 2.007

C. Area, Power, and Latency trade-off

The latency can be further reduced by increasing the number
of ADC in some arrays. In VGG-16, the latency is mainly
determined by the first two convolutional layers. Therefore,
two ADCs can be adopted in the four arrays which implement
the first two layers. In this way, these arrays will compute two
columns simultaneously, and the latency will be reduced in
half with minimal area increase.

As shown in Table. VI, to minimize the latency of VGG-
16, 32 ADCs are adopted in the first two convolution layers,
and in the later layers, the number of TIAs and ADCs can be
scaled down. The minimum latency is 2.007 ms with the area
consumption of 1276.431 mm2.
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Fig. 9. The effect of increasing the number of ADCs on the (a) area and (b)
power of different component, and the trade-off between the latency and (c)
area overhead, (d) peak power.

However, it is not efficient to push to the minimal latency,

because increasing the number of ADCs in each array requires
the input circuits to drive more devices, which results in a
significant increase in peak power and area. Fig. 9(a), 9(b)
shows the effect of increasing the number of ADCs on the
area and power of different components. The number of TIAs
and ADCs has increased, resulting in more area and power
consumption. The number of OP-AMPs remains the same, but
the area and power consumption have been increased to drive
more columns at the same time. Therefore, there is a trade-
off between the area, peak power, and latency. As shown in
Fig. 9(c), the latency can be reduced to 16.056 ms (1/4 of
not using TIA&ADC overhead) by only increasing the area of
0.297 mm2 (0.25%) and peak power of 0.055 W (7.41%) on
VGG-16. In contrast, the area and peak power will increase
considerably if much smaller latency is sought.

V. CONCLUSION

In this paper, an energy-efficient time-multiplexing mem-
ristive analog computing architecture is proposed. A column-
wise memory array is designed to reduce the peak power
and area consumption as well as avoiding wasting energy on
unselected columns. The time-multiplexing neuron is designed
to take full advantage of the ADC performance. The core-
level evaluation on 256*256 crossbar has shown that the
proposed TM-CIM has a small energy consumption of 0.136
pJ/MAC, and the area is only 0.044 mm2 for 1T1R array
and 0.055 mm2 for 2T2R array. When implementing complex
DNNs such as VGG-16, TM-CIM can save area and energy
consumption significantly. The trade-off strategy between the
area, power and latency is used to find the best way to
implement a DNN like VGG-16. The proposed TM-CIM has
low energy consumption, small area overhead, and acceptable
latency, which is well-suited to edge intelligence applications.

Because the DAC and op-amp only need to drive 1 device in
TM-CIM, their power and energy is much improved compared
to the case where they need to drive an entire row (of 256)
devices. However, more optimizations should be possible for
the input circuit, which we expect to investigate as future work.
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