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Abstract: Through the lens of organocatalysis and phase transfer catalysis, we will examine the key 

components to calculate or predict catalysis-performance metrics, such as turnover frequency and 

measurement of stereoselectivity, via computational chemistry. The state-of-the-art tools available 

to calculate potential energy and, consequently, free energy, together with their caveats, will be dis-

cussed via examples from the literature. Through various examples from organocatalysis and phase 

transfer catalysis, we will highlight the challenges related to the mechanism, transition state theory, 

and solvation involved in translating calculated barriers to the turnover frequency or a metric of 

stereoselectivity. Examples in the literature that validated their theoretical models will be show-

cased. Lastly, the relevance and opportunity afforded by machine learning will be discussed. 
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1. Introduction 

Organocatalysis’s contribution to modern society has been recognized by one of the 

pinnacle scientific awards—the Nobel Prize. Tremendous advancement in catalyst design 

and activation mode has been achieved since its inception [1,2]. Phase transfer catalysis 

(PTC) usually involves using a lipophilic organocatalyst to facilitate the movement of re-

active ions into an organic phase where the reactants are in high concentration [3]. Its 

merits include the potential to use extremely low catalyst loading and to provide access 

to the reactivity of otherwise insoluble ions. The centerpiece of asymmetric PTC is tight 

ion-pairing. Cationic chiral catalysts such as quaternary ammonium-based [4,5], guani-

dinium-related [6], and phosphonium-related [7] salts have been extensively reported. 

Gouverneur and co-workers reported the use of neutral urea or thiourea as PTC in the 

activation of inorganic fluorides [8]. Phosphate anions enable reversed-polarity phase 

transfer catalysis where the chirality originates from the anionic component of the catalyst 

[9]. PTC adds another dimension of complexity to understanding the reaction mechanism 

and in silico prediction, as the reactions could occur at the interface (liquid/liquid or 

solid/liquid) [10]. 

Various reviews on or with emphasis on computational organocatalysis include the 

works from the group of Duarte [11], Krenske [12], and Trujillo [13,14]. Modeling with 

computational chemistry provides microscopic insight at a level that cannot be otherwise 

obtained experimentally. With continued advancement in hardware and computational 

chemistry software, increasingly more realistic and accurate simulations can be per-

formed. For instance, the time taken to compute the energy of a molecule with a given 

size in the 2008 commentary of Houk and Cheong has substantially reduced due to these 

advances [15]. From an organocatalysis or PTC developmental point of view, a balance 
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between accuracy and time required is of paramount importance. Most modern organo-

catalytic and phase transfer (PT) catalytic systems have sufficient complexity (in terms of 

mechanism and conformational degree of freedoms) that often render in silico prediction 

of catalytic performance (e.g., turnover frequency: TOF and level of stereoselectivity 

[16,17]) impractical relative to empirical or domain expertise-driven experimentation. 

Practical is a relative term that depends on the computational resources available to the 

research group. However, it is reasonable to assume that most research groups would not 

have exclusive access to computing resources equivalent to the one used to generate the 

open-catalyst project data [18,19]. As such, continued synergetic development in hard-

ware and software is still required to reach a practical in silico catalyst design accessible 

to the average research group. Pertinent to this point, readers are encouraged to refer to 

the excellent outlooks on the future of computational chemistry in the perspectives of 

Grimme and Schreiner [20], Houk and Liu [21], and Sunoj [22]. 

In this review, we will elaborate on the main points in the succinct overview by Har-

very et al. [23], and Funes-Ardoiz and Schoenebeck [24], but in the context of organoca-

talysis and PTC. We will highlight the challenges and opportunities in computational or-

ganocatalysis and PTC from both the reactivity and the selectivity perspective. While we 

will prioritize more recent work (2018 and beyond), classic examples that are representa-

tive of a particular key aspect of computational organocatalysis or PTC will be discussed 

even if it predates our arbitrary definition of recent. Our approach will be balanced—we 

will provide examples demonstrating notable advances and caveats based on the litera-

ture. Proof-of-concept calculations will be included in this review if they reinforce essen-

tial concepts. 

1.1. Overview 

The flow of this review will follow a typical workflow to study a reaction via the 

location of key stationary points on the potential energy surface or PES (Figure 1); this is 

currently the dominant workflow for computational organocatalysis or PTC, as the alter-

native—to study each elementary step via molecular dynamics (coupled with enhanced 

sampling) is currently not practical or even intractable in a realistic model. The numbering 

in Figure 1 corresponds to the sequence in which the mentioned topic will appear in this 

review. The readers can refer to the next Section 1.2 Content for the general structure of 

this review. 

 

Figure 1. Summary of this review. Workflow to calculate a reaction performance metric from key 

stationary points on the potential energy surface. Numbers in orange corresponds to the sequence 

in which the mentioned topics will appear in this review. 
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1.2. Content 

Section 2.1.1. Geometry Optimization: The location of key stationary points requires 

at least the capability to calculate the energy and gradient (first derivative of energy with 

respect to coordinates) of a given structure; therefore, we will first discuss the choice of 

method to obtain these quantities, and its impact on quality based on theoretical bench-

marks (1 in Figure 1). Density functional theory (DFT) has emerged as the method of 

choice to obtain these key stationary points (equilibrium geometries and transition state 

structures) on the PES. 

Section 2.1.2. Compound Method or “Double-Barreling”: Upon obtaining these key 

stationary points, it is a common practice to calculate the electronic energy at a different 

level of theory (2 in Figure 1). Extensive theoretical benchmarks of density functional ap-

proximation (DFA) are based on this concept. We will provide the recommended DFA 

obtained from a selection of gas-phase benchmark studies. Works that explore the limit of 

current theoretical methods will be highlighted as they are important for theoretical de-

velopment. In addition, they caution the applied computational chemists to potential pit-

falls. The compound method provides the opportunity to include the influence of solvent 

via an implicit solvation model. However, due to the challenges associated with modeling 

the solvent, we will defer a more detailed discussion to a later section. 

Section 2.2. Thermochemical Corrections: Standard statistical thermodynamics equa-

tions are usually employed to obtain key experimental observables such as Gibbs free en-

ergy (3 in Figure 1). Theoretically, the PES surface is not an experimental observable; a 

physically accurate comparison requires calculating the free energy.  

Section 2.3. Conformational Sampling: With the capability to calculate the free energy 

of a given molecular structure, conformation sampling is discussed with emphasis on its 

importance and the software available to achieve automated sampling (4 in Figure 1).  

Section 2.4. Translating from Calculated Barrier to Rate Constant and 2.5. Extending 

to Catalysis—Turnover Frequency: Once all the relevant stationary points and their re-

spectively thermally accessible conformers are obtained, translation from the energy rep-

resentation to the rate representation will be required (5 in Figure 1). Transition state the-

ory (TST) bridges the theoretically derived barrier and experimental rate and, conse-

quently, reaction performance metrics such as selectivity and turnover frequency (TOF).  

Section 2.6. The Computational Challenge—Mechanism: We will highlight some 

challenges associated with investigating key stationary points on the PES. For instance, 

the role of essential additives or reagents may not be obvious, and the potential of aggre-

gation of catalysts (Section 2.6.1 Non-linear Effect in Asymmetric Catalysis) further com-

plicates the matter. Theoretical considerations will be examined here, such as the assump-

tion of one TS structure leading to multiple products due to dynamic effect (Section 2.6.2 

Bifurcating potential energy surface). 

Section 2.7. Modeling Solvation: Solvents are central to organocatalysts and PTC. 

Their influence on the reaction outcome could be potentially game-changing (6 in Figure 

1). This section considers the various theoretical approaches to model the solvent’s influ-

ence. Examples from the literature with emphasis on solvation will be discussed in Section 

2.7.1 Examples related to Solvation. 

Section 2.8. Validation of Calculations: With the challenges and background discus-

sion set, the audience would have realized the numerous assumptions in obtaining key 

stationary points of the catalytic reaction. We will showcase some examples where the 

models (combination of stationary points and level of theory) are validated by their capa-

bility to predict several experimental data points (e.g., kinetic isotope effect and enantio-

meric excess). 

Section 2.9. Understanding/Interpretation: An analysis to propose the origin of selec-

tivity or reactivity is appealing to experimental chemists, as it could help augment their 

domain expertise and inspire the development of new catalysts based on an updated 

chemist’s perspective toward the reaction in question. 
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Section 2.10. Machine Learning and its Relevance to the Field: With the advent of 

artificial intelligence and machine learning, many opportunities have arisen to tackle the 

challenge of in silico catalyst design differently. We will highlight examples that map de-

scriptors derived from molecular structures to various performance metrics (section 

2.10.1. Supervised Learning) and 3D structures to potential energy and forces (section 

2.10.2. Machine Learning Potential). 

2. Discussion 

2.1. Choice of Methods 

The method of choice for most computational studies that involve organocatalysis or 

PTC is density functional theory (DFT). The researcher is immediately faced with choos-

ing which density functional approximation (DFA) to use. Benchmark studies in the liter-

ature offer valuable guidance on the performance of various DFA on geometry optimiza-

tion, reaction barriers, and non-covalent interactions. It should be noted that these bench-

marks are usually for calculations in the gas phase. Extrapolation and application to the 

condensed phase, where organocatalysis and PTC generally occur, requires careful vali-

dation by the computational chemist. 

2.1.1. Geometry Optimization 

Obtaining a reasonable geometry is the prerequisite for calculating many properties 

of interest to a chemist. A geometry optimization involves searching the potential energy 

surface (PES) to find a stationary point. Analysis of the Hessian matrix reveals whether 

this stationary point corresponds to an equilibrium geometry (no imaginary frequency, 

reactant molecules, stable intermediate, or complexes in a reaction) or a transition state 

structure (one imaginary frequency). It forms the basis for studying a reaction mechanism 

via the location of stationary points on the PES. 

Within the single reference wavefunction limit, coupled-cluster singles, doubles, and 

perturbative triples or CCSD(T) [25] at complete basis set (CBS) is generally accepted as 

the “gold standard” which can achieve an error of less than 1 kcal/mol (for chemical reac-

tion calculation). However, geometry optimized at this level of theory is rare. Vermeeren 

et al. optimized key stationary points of five pericyclic reactions at CCSD(T)/cc-pVTZ [26]. 

They benchmarked the BP86 gradient corrected functional with basis sets of various sizes 

and the use of empirical dispersion correction. They found that BP86 with a double zeta 

basis set gave the smallest transitional and rotational projected Root-Mean-Square Devia-

tion (RMSD). A larger basis set worsens the RMSD relative to the CCSD(T) reference, and 

dispersion correction improvement is inconsistent amongst all the stationary points 

tested. In the benchmark study of various ionic liquid clusters by Seeger and Izgorodina, 

ωB97X-D/aVDZ and M06-2X were recommended by the authors based on FMO3-SRS-

MP2/cc-pVTZ geometries [27]. However, they emphasized that empirical dispersion cor-

rection is crucial. 

The location of TS structures is usually the costliest part of a computational mecha-

nistic investigation via the location of stationary points. Multiple exact Hessian calcula-

tions are typically needed for the optimization to be successful. DFT is usually the method 

of choice due to its computational cost and the availability of analytical Hessian, which 

may be essential in the successful location of TS structures. For relatively large systems 

such as modern organocatalysts and PTC, the choice of DFA and basis set available is 

limited. The use of a relatively less expensive generalized gradient approximation (GGA) 

functional such as PBE, BP86, and B97-D is common. Theoretical benchmark against struc-

ture from a higher level of theory is generally infeasible. Instead, the quality is usually 

assessed by whether experimental results can be reproduced. A non-exhaustive list of 

DFA/basis set combinations reported in the literature to optimize TS structures for various 

classes of asymmetric organocatalysts (we included one example of cooperative catalysis 

by Sunoj and co-workers [28]) is given in Figure 2. The Minnesota functionals and B3LYP 
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appear to be the DFA of choice for different groups. For a very fast elementary step (bar-

riers of a few kcal/mol), the choice of DFT and basis set can profoundly impact whether 

the TS could be located. For instance, Paton, Gouverneur, and co-workers found that the 

fluoride ion must be described with a sufficiently large and diffuse basis set, or a TS struc-

ture could not be located [29]. 

 

Figure 2. Selected examples of organocatalysts TS structures and their level of theory for geometry 

optimization. Yellow Dash line: hydrogen bond. Blue Dash line: key bonds in TS. Three-dimensional 

representations are generated from coordinates given in the cited references: Paton 2018 [29]; Houk 

and Xue 2019 [30]; Goodman 2020 [31]; Kee and Wong 2020 [32]; Richmond 2020 [33]; Wheeler 2020 

[34]; Papai 2020 [35]; Wong and Yang 2021 [36]; Sunoj 2022 [28]; Bistoni 2022 [37]; Champagne 2022 

[38]; Knowles and Sigman 2022 [39]. 

Bistoni and co-workers evaluated the impact of changing the DFA, basis set, and the 

inclusion of solvent on the RMSD of one of their TS structures (calculated at PBE-D3/def2-

SVP) [40]. They found that with the def2-SVP basis set, the TPSSh-D3 and PBE-D3 gave 

an RMSD of 0.071 (hybrid vs. GGA DFA). The impact of increasing the basis set size—

from def2-SVP to def2-TZVP(-f)—is more significant, giving an RMSD of 0.439. At the 

same time, the inclusion of solvent via the CPCM model only provides an RMSD of 0.043. 

The impact of these deviations in the predictive capability remained to be determined. 

Geometric counterpoise correction by Grimme and co-workers includes an empirical 

correction to account for the effect of a finite basis set on geometry and vibrational fre-

quencies. For DFT, PBEh-3c [41], R2SCAN-3c [42], and B97-3c [43] are available for 
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different needs. Head-Cordon and co-workers proposed the DFT-C scheme to correct the 

basis set superposition error for the def2-SVPD basis set [44]. These corrections can be 

applied to a large system where geometry optimization and Hessian calculations with a 

larger basis set would be computationally too demanding. 

The hybrid QMQM or the ONIOM [45] method can substantially speed up the loca-

tion of key stationary points. However, their performance has not been extensively bench-

marked or validated and may likely be system-dependent, although they could serve as 

starting points for further filtering or refinement of a large ensemble of conformers. 

2.1.2. Compound Method or “Double-Barreling” 

It is a common practice to perform an additional single-point calculation on the opti-

mized structure with a larger basis set or with an altogether different method, also known 

as “double-barrelling” or a compound method. The motivation can be to use a larger basis 

set with the hope of obtaining more accurate electronic energy, to include the solvent ef-

fect via an implicit solvation model, or to use a linear-scaling CCSD(T) in the hope of ap-

proaching chemical accuracy (<1 kcal/mol). 

Various comprehensive benchmark studies based on this concept have provided val-

uable information on popular density functional approximation (DFA) performance in 

predicting different properties. Goerigk and co-workers performed extensive DFA bench-

marks on the GMTKN55 dataset [46] (a collection of high-quality references for main-

group thermochemistry, kinetics, and noncovalent interactions) [47–49]. The comprehen-

sive benchmark by Mardirossian and Head-Gordon is an authoritative reference for the 

performances of over 200 DFA over a wide range of scenarios (noncovalent interaction, 

thermochemical data, barrier heights) [50]. 

Jacob’s ladder analogy [51] is used to classify DFA according to improvement from 

the lowest ladder rung (LDA: local density approximation). In LDA, the electron density 

is assumed to be uniform throughout space. Its uses in organocatalysis or PTC are ex-

pected to be limited. The addition of information on the electron density gradient (gradi-

ent Laplacian) brings us to the second rung—generalized gradient approximation (GGA). 

The non-separable gradient approximation (NGA), in which the exact and correlation are 

combined, proposed by Peverati and Truhlar, is classified under the second rung [52]. 

Meta-GGA/NGA at the third rung includes the kinetic energy density on top of the elec-

tron density and the density gradient. It represents the highest rung for semi-local DFA 

and provides good accuracy for equilibrium geometries [53]. The fourth rung is where 

computational organocatalysis work is generally utilized (see Figure 2). At the fourth 

rung, Hybrid GGA/ meta-GGA DFA replaces a specific degree of exchange in semi-local 

DFT with Fock exchange (occupied orbitals information). Finally, virtual orbital infor-

mation is included at the fifth rung to form the double-hybrid DFA. The high cost of dou-

ble-hybrid DFA restricts its use in organocatalysis or PTC to mainly single-point calcula-

tions. 

We compiled a recommendation in Table 1 based on the cited references. The basis 

set is not listed, but they are generally at least triple-zeta quality. The reader should refer 

to the original literature for detailed technical information. The emphasis will be on DFAs 

and their performance in calculating barrier heights. However, the reader should note that 

accurate reaction thermodynamics is essential to predict metrics such as TOF. A lower 

value in Table 1 indicates better performance (within the benchmark dataset used). 

The more computationally economical GGA generally produces a considerable error 

in calculating gas-phase barrier height (BH). In general, hybrid DFA has been consistently 

found to be the best performer in BH, except for B3LYP, which is a piece of common 

knowledge in the literature. The range-separated hybrid meta-GGA ω97M-V is generally 

recommended by various studies, as indicated in Table 1. Ho and co-workers’ benchmark 

on ionic SN2 reaction against canonical CCSD(T)/CBS demonstrates that its performance 

is impressive even with a small ma-def2-SVP basis set [54]. For the set of three reactions, 

they found that DSD-PBEP86-D3(BJ) tends to overestimate the barriers while ω97X-V 
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tends to underestimate them. Their results indicate that the conclusion is reasonably in-

dependent of basis set sizes. 

Table 1. Selected compilation of recommended DFAs at various rungs of the DFA Jacob’s ladder 

and their associated deviations in gas phase benchmark for barrier heights and noncovalent inter-

actions. 

Rung on 

the Jacob 

Ladder 

DFA 

Correction 

(Recommende

d by the Ref) 
[a] 

Barrier Heights GMTKN55 

RMSD 
[b] 

WTMAD-2 
[c] 

BH9 RMSD [d] 

(MAE [e]) 
WTMAD-2 

2: GGA/ 

NGA 

B97 
D3(BJ) [46] 8.32 13.15 11.27 8.55 [46] 

D3(0) [50] 8.65 NA NA NA 

revPBE 
D3(BJ) [46] 8.30 15.79 11.24 8.27 [46] 

D3(0) [50] 8.26 NA NA NA 

BLYP 
D3(0) [27,50] 10.13 NA NA NA 

D3(BJ) [46] 9.91 NA 12.10 9.51 

3: Meta-

GGA/ 

NGA 

SCAN D3(BJ) [46] 7.83 14.94 NA 7.86 [46] 

r2SCAN 

None NA NA 7.90 NA 

D3BJ NA NA 9.25 NA 

3c [42] NA NA NA 7.5 [42] 

revTPSS D3(BJ) [46] NA 15.78 NA 8.50 [46] 

M06L D3(0) [46,50] 6.84 7.56 NA 8.61 [46] 

B97M V [48,50] 4.35 7.53 6.70 (4.14) 5.46 [48] 

4: Hybrid 

GGA/Met

a-GGA 

ωB97M V [48,50,54–56] 1.68 3.40[f] (2.08) 3.53 [48] 

ωB97X 
V [46,50,56] 2.44 4.21[f] (3.20) 3.98 [46] 

D3(0) [46,50] 2.28 4.67 NA 4.61 [46] 

M06-2X 
None [56] NA NA (2.27) NA 

D3(0) [26,50] 2.60 5.60 NA 4.94 [46] 

B3LYP-D3 
D3(0) 5.92 NA NA NA 

D3BJ NA NA 6.77 6.42 [46] 

5: Double-

Hybrid 

DSD-

PBEP86 

D3(BJ) [46] NA 3.52 4.04 3.14 [46] 

NL [48] NA 3.25 NA 2.84 [48] 

revDSD-

PBEP86 
D3(BJ) [26,55] NA NA 2.96 2.42 [55] 

ωB97X-2 D3(BJ) [48] NA 3.25 NA 2.97 [48] 

ωB97M(2) None [55] NA NA NA 2.19 [55] 

DSD-BLYP 
D3(BJ) [46] NA 3.04 NA 3.08 [46] 

NL [48] NA 2.86 NA 3.05 [48] 

B2GPPLYP D3(BJ) [46] NA 3.24 NA 3.26 [46] 

NA: Not Available. [a] Empirical correction (mostly dispersion). References that recommend this 

DFA + correction combination are indicated by the citation(s). [b] RMSD: Root Mean Squared Devi-

ation in kcal/mol from ref [50]. [c] WTMAD-2: Weighted Total Mean Absolute Deviation 2 in 

kcal/mol. See ref [46] for the definition. [d] RMSD based on the entire BH9 dataset [56,57]. Values in 

kcal/mol from ref [58]. [e] Mean Absolute Error of the entire BH9 dataset. Values in kcal/mol from 

ref [56]. [f] post-SCF version of non-local correction. 

Double hybrid functional, which currently represents the highest rung of the DFT 

Jacob’s ladder, is generally the most reliable from gas phase benchmark results. Goergik 

and coworkers reported a double hybrid benchmark of the GMTKN55 dataset [59]. The 

group of Martin has performed extensive work on double hybrid DFA [55,60,61]. They 

have reported the impact of basis set size for double-hybrid DFA and the use of F12 
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explicit correlation to accelerate basis set convergence [62]. For double-hybrid DFA, a non-

local post-SCF correction was beneficial to both barrier heights and the overall noncova-

lent interaction dataset in the GMTKN55 benchmark [48]. 

The domain-based local pair natural orbital (DLPNO [63,64]) and the localized mo-

lecular orbital (LMO [65,66]) approximations, implemented in ORCA [67] and MRCC [68], 

respectively, have enabled single-point calculation to be performed on a molecule with 

around up to a few thousand atoms (or tens of thousands of basis functions) [66,69]. These 

generally approximate the canonical CCSD(T) result for large molecules in the benchmark 

dataset described above. Bistoni and co-workers have reported the DLPNO-

CCSD(T)/def2-TZVP single-point calculations for two computational studies on organo-

catalysis [37,40]. 

The accuracy of DLPNO and LNO approximations are benchmarked against a small 

system where the corresponding canonical CCSD(T) calculation is tractable. For DLPNO-

CCSD(T), its accuracy is dictated by three main cutoffs to determine the molecular orbital 

space that will be included. For the recommendation of cutoff choice and its impact, the 

reader is referred to the work of Neese and co-workers [70] and Seeger and Izgorodina 

(on ionic liquids) [71]. In their ionic SN2 computational study, Ho and co-workers pre-

sented a comparison of canonical and DLPNO CCSD(T) with various basis set sizes [54]. 

For related considerations, and different schemes that utilized DLPNO to approximate 

the canonical result, the readers are encouraged to refer to the references cited in this par-

agraph and the references cited within them. 

Brandenburg, Tkatchenko, and co-workers reported that for large molecules (up to 

132 atoms), the disagreement between LNO-CCSD(T)/CBS and the quantum diffusion 

Monte Carlo (DMC)-calculated interaction energy can be of the order of 7.6 kcal/mol (Fig-

ure 3) [72].  

 

Figure 3. All values are in kcal/mol. LNO-CCSD(T) and FN-DMC values are taken from ref [72]. 

Values below the dotted line are calculated with ORCA 5.0.3 [67] using the following keywords: 

“DFA/def2-TZVPP autoaux verytightscf rijcosx” with the geometry supplied by ref [72]. DF-RPA is 

calculated with MRCC [68]. Blue arrows are the displacement vectors of the imaginary frequency at 

B3LYP/6-31G(d). [a] Interaction energy at the same level of theory as the geometry optimization, i.e., 

at B3LYP/6-31G(d). 

Based on the structures provided by Brandenburg, Tkatchenko, and co-workers, we 

evaluated the interaction energies from a selection of recommended DFA, as given in Ta-

ble 1. It is reasonable to assume that dispersion interaction will dominate the interaction 

between C60 and 6-CPPA. The significance of dispersion is especially evident in the 

B3LYP/def2-TZVPP calculations in Figure 3. Without any empirical dispersion correction, 

the interaction between C60 and 6-CPPA is repulsive. The choice of dispersion correction 

will significantly determine if the result is closer to the LNO-CCSD(T) or the FN-DMC 

values. M06-2X, ωB97X-V, and DF-RPA are the closest to the LNO-CCSD(T) values. In the 

following paragraph, we emphasize that it is not an exhaustive study but a quick demon-

stration that may have significance in the double-barreling discussion. The problem of 
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approximate solution to CCSD(T) of a large system where dispersion dominated the sys-

tem (which is very well described) has been pointed out by the studies of Herbert and co-

workers [73] and Patel and Wilson [74]. Lastly, Hobza and co-workers pointed out that 

CCSD[T] is superior to CCSD(T) in describing noncovalent interaction [75]. 

The caveat on double-barrelling has been discussed by Kevin, where he analyzed the 

error introduced in double-barrelling by varying the bond lengths of small molecules 

about their equilibrium positions [76]. The C60 and 6-CPPA host–guest complex will be 

used to illustrate this point further. With B3LYP/6-31G(d) optimized geometry, the com-

plex is a transition state (TS) structure which corresponds to the expulsion of C60 from the 

complex (ref to the blue arrows in Figure 3). Single-point calculations with empirical dis-

persion correction indicate that their interaction is attractive, which contradicts it being a 

TS that expels C60 from 6-CPPA. 

Pertinent to organocatalysis, Chin and Krenske highlighted a similar problem of dou-

ble-barrelling in their highly detailed computational study of chiral phosphoric acid 

(CPA)-catalyzed asymmetric Nazarov reaction. The calculated % ee varies from -24% to 

+94% with various modern DFA, basis set, and implicit solvation models [77]. Despite this 

and the challenges highlighted before, we wish to emphasize that a successful prediction 

of experimental enantioselectivity is unlikely not to have an element of error cancellation 

to various and often unknown extents. This brings us to testing the computational meth-

odology against diverse experiment data points to increase confidence in the calculated 

results (see 2.8 Validation of Calculations). 

2.2. Thermochemical Corrections 

Under most organocatalytic reaction conditions, the most relevant quantity to predict 

reaction rates (consequently yield) and selectivity (enantio- or diastereo-) is Gibbs free 

energy, as most reactions are performed under constant pressure (usually atmospheric).  

The statistical thermodynamics approach is then used to calculate the correction for 

Gibbs free energy, which is then added to the electronic energy to obtain the Gibbs free 

energy of a molecule. The assumptions in deriving the equations apply—ideal gas, rigid 

rotor, and standard pressure. The impact of approximating low vibrational frequencies as 

a rigid rotor is well documented. Various corrections are available to handle the correction 

of these low vibrational frequencies [78–80]. The open-source PYTHON code GoodVibes 

from Paton’s group allows different schemes of correction to the rigid rotor to be applied 

as a post-processing step [81,82]. 

Plata and Singleton highlighted the importance of various important but widely ig-

nored corrections to the entropy calculated with standard statistical thermodynamic equa-

tions [83]. These include residual entropy due to symmetry and entropy of mixing. 

Thermochemical correction when solvation is involved is an area of extensive debate. 

The controversy lies in how to handle translational and rotational entropy. The approxi-

mation implemented in most electronic structure packages is the ideal gas/rigid rotor/har-

monic oscillator (RRHO) approach. Some authors have shown that the RRHO can be used 

without correction in selected cases [84–87]. In contrast, others recommend various cor-

rections (the reader is referred to the work of Besora et al. [88] for details of all these cor-

rections). These corrections are evaluated by Besora et al. by comparing values derived 

from umbrella sampling with explicit solvation (molecules of solvation are fully repre-

sented at the atomic level) [88]. Jacobsen and co-workers tested RRHO and two quasi-

RRHO schemes based on calculated levels of enantioselectivity vs. experimental ones (for 

more detail, please refer to 2.8 Validation of Calculations) [89]. 

2.3. Conformational Sampling 

Except in the extreme cases where the molecules or catalysts have minimal flexibility 

(or rotatable bonds), a low-quality ensemble of conformers can result in biased results. In 

calculating the contribution of competing pathways (Blue vs. Red in Figure 4), the Curtin–

Hammett principle is usually assumed to be valid—the relative free energies of the 
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appropriate ensembles of TS structures can be used for prediction contribution from each 

competing pathway. With this assumption fulfilled, one can utilize the Boltzmann distri-

bution to calculate a selectivity metric. Selectivity, in this case, can be relative product 

distribution, diastereoselectivity, or enantioselectivity. For enantioselectivity, the tutorial 

review by Paton and co-workers provides the relevant details and equations to perform 

this calculation [16]; the same concept can be used for other forms of selectivity listed. 

 

Figure 4. Hypothetical scenario (A) The lowest-lying TSblue conformer is omitted. The opposite se-

lectivity is thus predicted. (B) Many conformers with significant populations at the reaction temper-

ature and pressure. An ensemble is required to obtain a more accurate calculated value of selectivity. 

Figure 4A shows a hypothetical situation where only one TS structure for each path-

way was located. This is an extreme case, in which for each pathway, it is sufficient to 

consider only one TS as the other conformations’ contribution is negligible due to their 

high energies. However, in this scenario, the lowest energy TSblue is not located. Therefore, 

Pred is predicted to be the primary product. There is a possibility that a lack of confor-

mation sampling can lead to a fortuitous agreement with the experimental result. How-

ever, extensive validation with multiple experimental outcomes is expected to allude to 

this deficiency. In Figure 4B, an ensemble of TS structures must be considered for each 

pathway, as many conformations contribute significantly to product formation. The 

standard procedure is to calculate the product selectivity based on a Boltzmann popula-

tion derived from the relative energies of the two combined ensembles. 

As discussed above, critical conformations (those with significant Boltzmann popu-

lations at the reaction temperature and pressure) must be located. This step is usually 

done automatically by using conformational sampling software. The conformational 

space search algorithm and the accuracy of the Hamiltonian employed to evaluate the 

energies during the search are two critical aspects for a successful conformation sampling. 

However, many structures are usually generated during the search, and each must be 

optimized. Therefore, DFT-based methods are generally infeasible. The use of classical 

force field is common but risky, as they are usually not trained on the system of interest; 

it risks missing key conformations if an energy-based cut-off is employed. As a compro-

mise, semi-empirical methods or potential Machine Learning Potential (vide infra) can be 

used. The open-source CREST, coupled with the GFN2-XTB tight-binding Hamiltonian, 

is a readily available and powerful tool for this purpose [90]. Its non-covalent interaction 

sampling mode is particularly suited for sampling TS structures, as key internal coordi-

nates of the TS can be restrained during the sampling. 
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For an evaluation of various conformational sampling methods in quaternary ammo-

nium-based PTC and the application of unsupervised machine learning techniques for 

analysis of the results, the reader is referred to the work of Iribarren and Trujillo [91]. 

2.4. Translating from Calculated Barrier to Rate Constant 

In a chemical reaction with one elementary step, such as cycloaddition, and nucleo-

philic substitution, the rate constant and the concentration(s) of the reactant, at any point 

in time, determines the rate of product formation. If a pre-equilibrium kinetic model is 

assumed—an equilibrium exists between the reactive conformation (or RC: reactant com-

plex) and the reactant(s) in their most stable state—then the effective rate constant (kKpre-

equi) can be obtained from the free energies of the TS and reactants. Our work in the in 

silico design of halogen bond-based catalysts uses this model to compare with the pre-

dicted TOF of our proposed catalysts [92]. 

The conventional transition state theory (TST) links theoretical activation energy 

(ΔG‡ in Figure 5) and the experimental rate constant. A more sophisticated form of the 

TST, such as the variational TST, is expected to improve the accuracy of the rate constants 

[93]. However, their required computational costs are generally intractable for system 

sizes found in most organocatalysis. 

 

Figure 5. The reaction profile of a [4 + 2] cycloaddition. RC: Reactant Complex. PC: Product Com-

plex. G is the free energy of the species labeled in the subscript. Reprinted with permission from ref 

[92]. Copyright 2016 American Chemical Society. 

Tunneling, a quantum mechanical phenomenon, can result in a larger rate constant 

than predicted from the barrier height. The semiclassical Wigner correction provides a 

simple means to determine the importance of tunneling (Equation (1)) [94]. However, 

Truhlar and co-workers recommended using this correction if κ(T) does not exceed 1.2 

due to the various approximations involved [95]. The open-source pyQuiver can calculate 

tunneling correction via the Wigner and Bell inverted parabola from a cartesian Hessian 

matrix [96]. 

𝜅(𝑇) = 1 +
1

24
|
ℎ𝜔‡

2𝜋𝑘𝐵𝑇
|

2

 (1) 

Experimentally, the involvement of quantum tunneling effect has been reported in 

the seminal work of Schreiner and co-workers where they introduced the concept of a 

tunneling-controlled reaction [97], in addition to the commonly used kinetic- and thermo-

dynamic-controlled reaction [98]. More sophisticated tunneling correction exists, but so-

phistication generally comes with an increasing computational cost [99]. 
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Diffusion-controlled rate constant approximation, such as the equilibrium between 

reactant(s) and RC, can be calculated with Equation (2). rA and rB are radii of the reactant 

A and B, respectively, which can be estimated from an intrinsic solvation model calcula-

tion. The procedure to calculate W, DA, and DB is detailed in the work of Pliego and co-

workers [100]. 

𝑘𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 =
4𝜋(𝑟𝐴 + 𝑟𝐵)(𝐷𝐴 + 𝐷𝐵)𝑊

𝑒𝑊 − 1
 (2) 

2.5. Extending to Catalysis—Turnover Frequency 

In catalysis with a multi-elementary steps cycle with potential non-productive 

branches, turnover frequency (TOF) is frequently employed to measure the efficiency and 

stability of a catalyst. A decreasing TOF over time indicates catalyst deactivation as the 

reaction progresses. The prediction of TOF will be more challenging as the structure dif-

ference between the transition state and reactant(s) would translate to vastly different 

electronic structures and correspondingly less favorable error cancellation. Bearing in 

mind the exponential relationship between rate constants and barrier height, a 1 kcal/mol 

difference (upper bound of chemical accuracy) may translate to up to an order of magni-

tude difference in TOF (Table 2). For catalyst design, however, one might be more con-

cerned with relative TOF between different catalysts than the absolute TOF of a single 

catalyst. 

Table 2. Energetic span and TOF at 223.15K and 298.15K. 

Temperature. Energetic Span (kcal/mol)* TOF (h−1)* 

298.15 

20 49 

21 9.1 

22 1.67 

223.15 

15 34 

16 3.58 

17 0.38 

* Calculated with AUTOF_Excel_v09_1 [101]. 

A catalytic cycle is a sequence of interconnecting elemental steps described by a set 

of coupled ordinary differential equations (ODE). Obtaining an analytical expression is 

usually not possible for complicated catalytic cycles. These ODE can be solved numeri-

cally to high precision with various ODE solvers (Figure 6). However, when the rate con-

stants are vastly different in magnitudes, the time step for the numerical integration must 

be sufficiently small to ensure the stability of the simulation. As a result, the time scale 

that can be transverse could be in the picosecond region or less. This is highlighted and 

tackled in the rate constants matrix contraction method developed by Sumiya and Maeda 

[102]. The energetic span model by Kozuch and Shaik uses the steady-state approximation 

to simplify the situation. A recent extension (gTOFfee) by Garay-Ruiz and Bo enables the 

energetic span to be calculated for a reaction network [103]. 
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Figure 6. Solving a system of coupled ODE to obtain the concentration of all species over time (only 

selected equations are shown). The dotted line represented omitted equations. 

An illustration of the various methods to translate a reaction with two interconnected 

cycles (commonly occurring for asymmetric organocatalysis) with the work of Wong and 

co-workers is given in Figure 7 [104]. The authors used Kozuch and Shaik’s energetic span 

model (ESM) to calculate the TOF separately for the major R- and S-pathway and pro-

posed, based on the TOF, that the S-pathway is favored. We note here that the model by 

Kozuch and Shaik does not consider coupled reaction pathways, as depicted in Figure 7. 

Both pathways share a common intermediate; thus, they will complete with the shared 

pool of CAT-HSPh. The impact of each competing elementary step captured by solving 

the system of ordinary coupled differential equations (ODE) numerically is similar to that 

derived by calculating the TOF for each pathway separately. 

 

Figure 7. Reprinted with permission from ref [104]. Copyright 2012 American Chemical Society. 

TOF is calculated with AutoTOF from values supplied by the cited reference. Numerical ODE val-

ues are generated with DifferentialEquations.jl [105] and Arbnumerics modules in Julia [106]. The 

product formation is assumed to be irreversible. A pre-equilibrium kinetic model is used to obtain 

the rate constants from CAT−HSPh.  
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Translating computed quantities from the potential energy surface to experimental 

observables can be challenging and may lead to erroneous conclusions. This is especially 

important in cases where the solvent molecules are considered part of the reactive species 

and in PTC where insoluble solids are involved. Some examples will be highlighted be-

low. 

In the neutral hydrolysis of ester, Wang and Cao proposed the involvement of six 

water molecules (excluding the reactive water, a total of seven altogether) to lower the 

barrier of methyl formate hydrolysis [107]. Pliego and co-workers pointed out that the 

barrier is computed with the RC as the reference (a rigid cluster of methyl formate and 

seven water molecules, see Figure 5 for an explanation of RC) [100]. This neglected the 

penalty incurred from preorganization (Figure 5). However, in bulk water, water mole-

cules are expected to be present as hydrogen-bonded oligomers [108]; therefore, taking 

the reference point as seven isolated water monomers, as proposed by Pliego and co-

workers, may not be the most accurate representation. More discussion on this point will 

be presented in the “2.7.1. Examples Related to Solvation” section. 

One of the challenges in computing a realistic reaction profile involves obtaining the 

free energies of the reactants (such as GA and GB in Figure 5). The starting points (reactants, 

reagents, and catalysts) are the reference from which the relative free energies of all critical 

intermediates and TS are calculated. Thus, it is essential to compute key metrics such as 

TOF or experimental rate constants. 

In PTC, inorganic salts (fluoride, carbonates, hydroxides of group 1 and 2 metals) are 

frequently employed. The energy calculated for an isolated molecule of these inorganic 

salts is unlikely to be representative of the bulk. As such, some groups have reported a 

hybrid approach where experimental data for these inorganic salts are combined with 

calculations in a thermodynamic cycle.  

Pliego and Riveros corrected their crown ether-catalyzed nucleophilic substitution of 

alkyl bromide with KF with experimental standard free energies of formation for KF and 

KBr [109]. In their reaction profile, the initial steps are omitted (complexation of KF to 18-

crown-6); instead, the reaction profile begins with the exchange of the crown ether com-

plex of KBr (18-C-6-KBr) with 18-C-6-KF (Figure 8).  
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Figure 8. Use of thermodynamic cycle in 18-crown-6-catalyzed fluorination of alkyl bromide. All 

values are obtained from the work of Pliego Jr and Riveros in ref [109]. Fluoride is colored red to 

facilitate identification. (sol) refers to solution. (s) refers to solid. 

Another example by Carvalho and Pliego Jr is the nucleophilic fluorination under 

PTC with crown ether, where they considered the solvation of KF and KBr in toluene 

[110]. Gouverneur, Paton, and co-workers applied the same concept to obtain a more re-

alistic reaction profile in their asymmetric nucleophilic fluorination under PTC. However, 

CsF and CsBr are used instead of KF and KBr [29]. 

Theoretical calculations of solid-state-related quantities will add another dimension 

of challenge to modeling PTC via computational chemistry. Using such a thermodynamic 

cycle is practical when the relevant experimental data is available. However, for many 

salts in PTC, such information is often absent.  
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2.6. The Computational Challenge—Mechanism 

Prediction of experimental performance metrics such as TOF or selectivity for a com-

plicated reaction is immensely challenging. Both the significant productive (leading to de-

sired product) and non-productive (leading to side-products) pathways must be included. 

Hints from experiments (product distribution, kinetics, and spectroscopy) are frequently 

employed to reduce the number of possibilities and render computation more tractable.  

Nevertheless, strictly in silico catalyst design would require no input from experi-

ments except for the final testing of the de novo designed catalyst. Algorithms are availa-

ble to explore various reaction pathways automatically [111–115]. However, their wide-

spread application in organocatalysis and PTC is still impeded by the availability of suf-

ficiently accurate methods to calculate reaction barriers for realistic systems within a prac-

tical timeframe (see Table 3 for an estimate of the relative computational time for selected 

DFA), unless, of course, one has access to a tremendous amount of computing resources. 

Table 3. The relative computational cost of selected DFA from Table 1. 

DFA 
Relative Cost of  

Energy Calculation [a]* 

Relative Cost of  

Gradient Calculation* 

revPBE 1.0 1.0 

r2SCAN 1.1 1.0 

M06-2X 5.5 4.5 

ωB97M-V 3.3 3.0 [b] 

revDSD-PBEP86 360 [c] 510 [c] 

TS_SS_2 from ref [32] is used. * All calculations are performed with ORCA 5.0.3 [67]. Variation is 

expected depending on system size and hardware setup. The following simple keywords: “def2-

TZVPP autoaux verytightscf” are used. [a] Relative cost is estimated from the total SCF time reported 

by ORCA 5.0.3 for the SCF cycle part and divided by the number of iterations taken to converge the 

SCF calculation. This is normalized with the DFA with the minimum time taken—revPBE. [b] In-

cluding the time taken to calculate the non-local dispersion correction gradient. [c] Including 

DLPNO-MP2 calculation time. 

For asymmetric organocatalysis or PTC, the species involved in the critical enanti-

oselectivity determining step must be known. Before any prediction of the level of enan-

tioselectivity, the elementary step in which the chiral centers are formed must be known. 

In some cases, this might not be obvious. For instance, enantioselectivity is often improved 

using additives whose role is not immediately apparent. Nonetheless, it affects the level 

of enantioselectivity strongly suggests its involvement in the stereo-determining TS struc-

tures. 

In PTC, the counter-cation of the bases or reagents, in some cases, has a profound 

influence on the reactivity, enantioselectivity, or both. For instance, in the bis-guanidium 

(BG) catalyzed enantioselective oxidation of sulfide, the counter-cation (Na, K, NH4, or 

Ag) can have a profound effect on the sulfoxide yield and ee (Figure 9) [116]. This strongly 

suggests the involvement of the cation in the stereo-center forming TS structures. The 

loading of the NaH2PO4 was found to affect both the yield and ee. The authors proposed 

that two H2PO4 anions coordinate to a peroxo-tungstate species. This is supported by com-

paring the computed key vibration modes of the purposed species with the measured 

Raman spectrum. The roles of the cations in the critical TS structures and their interplay 

with H2PO4 remain to be elucidated. 
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Figure 9. Enantioselective oxidation of sulfide reported by Tan and co-workers [116]. All values are 

obtained from the mentioned reference. 

Gouverneur, Claridge, and co-workers reported a detailed nuclear magnetic reso-

nance (NMR) study on fluoride binding to their BINAM-derived bis-urea catalysts [117]. 

In their work, they unravel the interaction between fluoride and the catalyst. Under con-

ditions closer to the reaction setting (CsF in CD2Cl2), they proposed two fluoride com-

plexes mainly from 19F chemical shifts, T1 relaxation, and proton diffusion experiments. 

The major species, which is a 1:1 fluoride bis-urea complex ([bis-ureaCsF]), is proposed to 

be in rapid equilibrium relative to the NMR time scale with minor 1:2 fluoride bis-urea 

complex ([(bis-urea)2CsF]). The mixture of these two species at equilibrium proved com-

petent in producing the same enantioenriched product when the substrate is added. The 

molecular structures and the role these two species may play in the reaction provide fur-

ther opportunities for computational work. 

In another highly detailed mechanistic study from the same group, Wong et al. re-

ported their work on azidation via hydrogen bonding PTC (Figure 10B) [118]. Kinetic 

modeling with in situ infrared measurement of the product concentration was performed. 

Two parallel pathways were proposed based on the measured data—a racemic uncata-

lyzed pathway and an enantioselective catalyzed one. Relevant constants related to the 

rate of these two pathways were obtained. The catalytic cycle involves the exchange of 

ions between different species. Solid NaCl was proposed to be an intricate part of the cat-

alytic cycle, where it plays an inhibitory role. DFT calculations, together with extensive 

conformational sampling with bis-urea and azide, gave a calculated % ee of 32, which is in 

qualitative agreement with the experimental value (62% ee). 

Three potential complications can arise in studying PES via the location of key sta-

tionary points and subsequently deriving related kinetic properties from it.  

1. Active species involved in catalysis: Aggregation of catalysts is well-documented, 

and the non-linear effect is closely associated with such a phenomenon. 

2. Validity of the transition state theory: 

3. Solvation: Extensive discussion on the choice of theoretical methods based on high-

quality benchmarks is restricted to gas-phase modeling. Organocatalysis and PTC 

inevitably are solution-based chemistry. Therefore, the influence of solvents, which 

can be game-changing at times, often needs to be addressed.  

Further elaboration on these three points will be provided in the following subsec-

tions. 
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Figure 10. (A) Complexation of CsF and bis-urea catalyst as observed via NMR and proposed by 

Gouverneur, Claridge, and co-workers [117]. (B) Reaction pathways of bis-urea-catalyzed azidation 

were reported by Wong et al. [118]. 

2.6.1. Non-linear Effect in Asymmetric Catalysis 

A non-linear relationship between the catalyst % ee and the product % ee, known as 

the non-linear effect (NLE) [119,120], signals the aggregation of catalyst molecules. How-

ever, one should note that the observation of NLE does not guarantee the involvement of 

catalyst aggregation [121,122]. Various classic examples are given in the review of Kagan 

[123]. Some recent examples in organocatalysis where NLE is observed will be discussed 

below. 

Zhao and co-workers reported the observation of a negative NLE in their difunction-

alization of allylic sulfonamides via iodination [124]. Together with observing a fractional 

reaction order with respect to the catalyst, the authors proposed the involvement of cata-

lyst aggregation in the resting state (Figure 11A). However, the exact size of the aggregate 

is not known. Sun, Huang, and co-workers observed a positive NLE in their chiral phos-

phoric acid-catalyzed synthesis of α-amino esters [125]. They attributed the NLE to the 

catalyst’s heterochiral aggregates, which have low solubility at the reaction temperature. 

Jørgensen and co-workers reported a positive NLE in a proline-catalyzed [12 + 2] cycload-

dition [126]. They proposed that two proline molecules are involved in the stepwise con-

jugate addition-carbonyl addition sequence (Figure 11B). DFT calculations supported 

their proposal. However, Burés, Blackmond, and co-workers performed kinetic simula-

tion on an alternative mechanistic scenario. They concluded that the observed NLE in this 

[10 + 2] stepwise cyclization could occur due to a complex network of reversible steps 

instead of involving more than one catalyst molecule [127]. 
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Figure 11. Examples of recent work with proposed NLE. (A) Difunctionalization of allylic sulfona-

mides via iodination as reported by Zhao and co-workers [124]. (B) Proline derivative-catalyzed 

[12+2] cycloaddition as reported by Jørgensen and co-workers [126]. 

In general, the aggregation of catalyst molecules could present a significant challenge 

to calculating key reaction performance metrics such as TOF or ee/er from investigating a 

PES for the following reasons. 1) Solubility of the aggregate generally cannot be readily 

obtained from the study of PES. 2) The degree of aggregate is usually not known. 3) Ag-

gregation would render the location of TS structures or equilibrium geometries computa-

tionally impractical for large catalyst molecules. However, the calculated energy profile 

of a proposed mechanistic network coupled with kinetic modeling can determine the ex-

tent of NLE and, when compared with experimentally measured NLE, provide strong 

evidence to corroborate the proposed mechanism. 

2.6.2. Bifurcating Potential Energy Surface 

The TST is the cornerstone to in silico prediction of TOF and stereoselectivity, as dis-

cussed in the preceding relevant sections. The TS structure or an index-one saddle point 

has one imaginary frequency. The intrinsic reaction coordinate (IRC) is used to follow this 

imaginary frequency to determine the two equilibrium geometries (commonly referred to 

as the reactant/pre-TS complex and the product/post-TS complex) joined by the obtained 

TS structure. It is assumed that one TS structure will lead to one product via the minimum 

energy path (MEP) obtained from an IRC calculation. However, it has been extensively 

documented that many organic reactions exhibit post-TS bifurcation.[128–131] The TS 

structure exhibiting such behavior is called an ambimodal TS structure. Bifurcation at the 

“valley-ridge inflection” point allows more than one product to be accessed via one TS 

structure. An example of such a PES, generated from the model potential reported by Col-

lins et al. [132], is given in Figure 12. 
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Figure 12. Bifurcation in PES. The PES is generated from the model potential provided by Collins et 

al. [132]. 

One of the key assumptions in the TST is that the redistribution of excess internal 

energy amongst the vibrations and internal rotation is much faster than a reactive elemen-

tary step—an assumption that may not always hold. In post-TS bifurcation, a valley-ridge 

point exists as one traverses the energetic landscape from the reactive complex through 

the TS to the product. 

An example relevant to organocatalysis and PTC would be the SN2 of alkyl fluoride 

(Figure 13) [133,134]. In the gas phase SN2 of thiolate with methyl halide reported by 

Longo and co-workers [134], with methyl fluoride as the electrophile, the predominant 

trajectory is trA which corresponds to a bifurcation following the IRC path (trC). For me-

thyl bromide, most of the trajectory bypasses the IRC path to form the SN2 product direct 

(trN). The resulting product is HF and methyl thiolate. 

 

Figure 13. Values (in kcal/mol) calculated at MP2/6-311(d,p) are obtained from ref [134]. trC: ap-

proximately IRC path. trA: approximately IRC path followed by a proton transfer. trN: bypass the 

IRC path to form the product directly. trR: recrossing. 
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Prediction of the level of enantioselectivity in asymmetric organocatalysis or PTC in-

evitably relies on the use of the TST. The relative energies of the ensemble of TS determine 

the enantioselectivity. To our knowledge, assessing the importance of bifurcating PES in 

organocatalysis and PTC has not been reported. Determining the level of enantioselectiv-

ity is one potential opportunity to explore post-TS bifurcation further, as the Curtin–Ham-

mett scenario, which is central to selectivity prediction, is rendered invalid—the relative 

free energies of all relevance ensemble of TS structures cannot be used to predict stereose-

lectivity or product distribution. A recent example by Singleton, Larionov, and co-work-

ers on the stereochemistry of a photochemically induced ring contraction is illustrated in 

Figure 14 [135]. While no catalyst is involved in this reaction, it is an example in which the 

stereochemistry cannot be determined by the location of two sets of diastereomeric TS 

structures—the TS bifurcates to form both R and S chiral centers! 

 

Figure 14. Singleton and co-workers reported an example of bifurcation leading to two stereochem-

ical outcomes [135]. MD: selectivity predicted by a series of molecular dynamics simulations (all 

values are obtained from their work). 

Technically, running many MD simulations to obtain a statistical distribution of po-

tential products from a bifurcating PES is very computationally expensive. While, given 

the capability of modern hardware and software, it is not an impossible task, an approxi-

mate method to obtain the same outcome with less computation cost is nonetheless highly 

desirable. To this end, Lee and Goodman ValleyRidge PYTHON script can be used [136]. 

Srnec and co-workers presented the reactive mode compositive vector analysis to deter-

mine the ratio of products that arise from the bifurcation [137]. Other methods to approx-

imate the bifurcation product distribution include the work from the groups of Carpenter 

[138], Houk [139], and Schmittel [140]. The work by Gomez-Bombarelli and workers uti-

lized a neural network potential to perform reactive MD and may potentially be applied 

to the study of bifurcation with reduced computational cost [141]. These tools are expected 

to play an important role in calculating the product distribution where post-TS bifurcation 

is important and can provide a preliminary indication of such behavior before one decides 

to invest in a more expensive MD simulation. 

2.7. Modeling Solvation 

A solvent scan is one of the routines in developing an organocatalyzed or a PTC re-

action, as the solvent can profoundly affect both the reaction yield and selectivity. Three 

possible approaches to model solvation are depicted in Figure 15. The importance of solv-

ation in modeling and its recent advances and present limitation have been highlighted 

in several reviews [142–145]. 
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Figure 15. Various solvation models to apply to a PT catalyst that Tan and co-workers reported 

[146]. (A) Implicit solvation. Grey dots are SAS. (B) Hybrid approach. Solvent molecules (Toluenes) 

are displayed as wire. The green dots are the SAS. (C) Explicit solvation in a 5.6nm cube. The catalyst 

is in the orange oval. 

The implicit solvation model is the most common and computationally economical 

method to account for some of the influence of the solvent. The polarizable continuum 

model (PCM) is the most common and accessible method to incorporate some solvent 

effects. In the PCM, the solvent influence is modeled as an ensemble average at thermal 

equilibrium, interacting with an electric “reaction field” [147]. The surface of the solute 

interacting with this field can be constructed by rolling a probe of fixed radius over the 

solute to generate a solvent-accessible surface (SAS). For the caveats and considerations 

when using a PCM in the study of key points on the PES, the readers are referred to the 

work of Coote and co-workers [78], and Truhlar, Cramer, and co-workers [148]. The defi-

ciency of the continuum solvation model for charged species has been extensively re-

ported. In the current context, this will be important when overall charged species are 

considered (e.g., urea-fluoride complex). 

The popular SMD solvation model of Truhlar and co-workers [149] is parametrized 

against experimental solvation data. Its usage on more exotic structures beyond its train-

ing set, such as those found in TS structures of organocatalytic or PT-catalyzed reaction, 

may pose a problem [150,151]. Nevertheless, many computational studies on organoca-

talysis utilizing this solvation model have successfully reproduced key experimental re-

sults (refer to Figure 2 and section 2.8 Validation of Calculations). 

On the other end of the spectrum is the explicit solvation model, where all solvents 

are included as part of the simulation. It is generally only physically meaningful when 

combined with calculations supporting periodic boundary conditions due to the large 

number of molecules required to model a condensed bulk phase—having many more 

molecules implies that the conformation degree of freedom would pose an often-insur-

mountable computational challenge to obtain key stationary points and subsequent cal-

culation of thermochemical correction via statistical thermodynamics, as much it is com-

mon to use molecular dynamics simulation when explicit molecules of solvent are in-

volved. However, elementary steps corresponding to most chemical reactions are consid-

ered rare events on the MD time scale. As such, enhanced sampling algorithms have to be 

utilized to bias the simulation and enable free energy to be calculated [152]. 

In between the two extremes is a hybrid approach where a few solvent molecules 

could be added to the key region or sufficient solvent molecules are added to form a solv-

ation shell (micro-solvation). A PCM-based solvent model can then be applied to model 

the bulk solvation. The continuum-cluster approach involves adding a cluster of solvent 

molecules and using the PCM model together. The thermodynamic cycle has been used 

extensively to calculate the solvation-free energy of ions in water. Two approaches (Figure 

16) exist to construct the thermodynamic cycle—monomer-based [153,154] or cluster-



Molecules 2023, 28, 1715 23 of 46 
 

 

based [155]. They differ by whether individual molecules of solvent or a cluster of solvent 

molecules are considered. The work of Goddard and co-workers provides a detailed dis-

cussion of the various consideration (especially on the choice of standard state and the 

associated correction) when using such a hybrid approach [156]. The thermodynamic cy-

cle concept was extended to include the solvation energy of the TS structure (which re-

places ion(H2O)n in Figure 16) in a chemical reaction, as exemplified by the work of Ho 

and co-workers. However, their accuracy (on ionic SN2 reactions) was found to be inferior 

to the free energy of reaction directly obtained from umbrella sampling calculations (vide 

infra) [55]. 

 

Figure 16. Thermodynamic cycle. * = standard state of 1M, and ° = standard state of 1atm. Red: 

cluster model. Blue: monomer model. ΔG1atm->1M = RT ln(24.46) is the correction from 1atm of an ideal 

gas to 1M, where R = 0.08206L atm K−1 mol−1 is the universal gas constant, and T is the temperature 

in Kelvin. Eaq is the electronic energy of the species calculated with implicit solvation, and Eg is the 

electronic energy in the gas phase. For assumptions involved in simplification, please refer to Wu 

and Kieffer [157]. 

Constructing a converged micro-solvation shell(s) in a continuum-cluster approach 

is challenging. The quantum cluster growth (QCG) method of Grimme and co-workers 

handles this task in an automated fashion [158]. ABcluster[159] by Zhang and Dolg used 

a bee colony algorithm (for the location of global minimum). Basdogan and Keith have 

used it in their computational study of the Morita–Baylis–Hillman (MBH) reaction (vide 

infra) [160]. 

2.7.1. Examples Related to Solvation 

The number of atoms required in explicit solvation to produce experimentally real-

istic concentration is generally incommensurable with reasonable computational cost. 

Considering the typical concentration of an organocatalytic reaction, a concentration of 

0.01M is a reasonable estimate for the catalyst. At the atomic level, this would require a 

5.5nm cube which can contain tens of thousands of atoms (Table 4). Such a simulation is 

probably in the realm of linear-scaling DFT coupled with massively parallel computing 

resources. Another challenge will be that chemical transformation is generally considered 

a rare event in a molecular dynamics simulation. An enhanced sampling algorithm would 

need to be applied for them to be observed in a practical duration and obtain critical quan-

tities such as free energy. Despite the increased probability of observing rare events, the 

number of MD steps to converge such a simulation is often prohibitively high for a DFA-

based calculation suitable for modeling chemical reactions (e.g., hybrid GGA). 
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Table 4. The volume of a cube to contain one particle at various concentrations and the number of 

water molecules to fill the same cube. 

Reactant Concentration (M) 

Vol. of a Cube to 

Contain One Molecule 

(Å3) [a] 

Number of H2O Molecules in 

the Volume Given on the Left 
[b] 

1M 1660 (11.84) 56 

0.1M 16605 (25.512) 555 

0.01M 166053 (54.965) 5550 
[a] Conversion of M to particle/Å3 = 6.022 × 10−4. The length of the cube in Å is given in parentheses. 
[b] Based on a density of 1g/mL and molar mass of 18g/mol. 

An uncatalyzed reaction at a high concentration (>1M) will be more amenable to an 

explicit solvation study of its reaction. Gunaydin and Houk reported using metadynamics 

simulation to investigate the hydrolysis of methyl formate [161]. The MD simulation with 

BLYP DFA was performed in a 10.1 Å cube with one methyl formate and 30 water mole-

cules ([methyl formate] ≈ 1.6M). In their simulation, the hydrolysis proceeds via an auto-

dissociation of water. The resulting proton activates the ester by coordinating with its car-

bonyl oxygen. The hydroxide attacks the carbonyl carbon to form a diol intermediate. The 

overall ΔG‡ to include the diol intermediate was reported to be 22.8 kcal/mol. We note that 

in a more dilute setting, the probability of a water molecule auto-dissociating near the 

ester would be drastically reduced.  

In the work of Pliego and co-workers discussed earlier on the hybrid approach by 

Wang and Cao to model ester hydrolysis [107], they argued that the reference to calculate 

the barrier should be taken as one methyl formate and seven isolated molecules of water 

(Figure 17) [100]. In their calculations, this translates to a barrier of 77.2 kcal/mol (or 60.5 

kcal/mol after a correction with water concentration by RTln(55.4)). The main contribution 

to this large barrier was mainly from the loss of translational entropy when eight isolated 

molecules became one RC. The translational entropy contribution is converted to the lib-

eration free energy in solution. It is thus unlikely to be as punishing as the authors’ calcu-

lation suggested [88]. In addition, Goddard and co-workers pointed out that the formation 

of a water cluster can be viewed as a rearrangement of liquid water into solvated water 

clusters with no associated change in free energy (ΔG*aq, cluster in Figure 17) [156]. However, 

we note that the extent to which this holds for an aqueous solution of methyl formate 

depends on the solute’s concentration. Preliminary calculations in Figure 17 give a ΔG‡ of 

32.5 kcal/mol with an aqueous cluster of 7 water molecules as a reference. While this is 

lower than the seven isolated water molecules case, it is still significantly higher than the 

reported barrier of 25.9 kcal/mol. 
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Figure 17. All values in the free energy profile are in kcal/mol and computed at CPCM(H2O at PBEh-

3c)/DLPNO-CCSD(T)/CBS//CPCM(H2O)/PBEh-3c. CBS is based on a 2-point extrapolation with the 

def2-TZVPP and def2-QZVPP basis sets. For values in blue, the water cluster is the reference. For 

values in red, isolated water molecules are the reference. For comparison, key values from Pliego 

and co-workers [100] at MP4/TZVPP+diff//CPCM/X2LYP/6-31+G(d): ΔG‡(RC to TS) = 24.5 kcal/mol 

and ΔG(reference to RC) = +52.7 kcal/mol. For Wang and Cao [107] at CPCM/B3LYP/6-

311+G(2df,2p): ΔG‡(RC to TS) = 25.4 kcal/mol. Correction of water concentration is not included. 

One avenue to accelerate the solvation model that includes explicit solvent molecules 

is the QM/MM method. The solvent molecules are described with a molecular mechanics 

(MM) method. At the same time, the catalysts and reactants are modeled at the DFT level. 

This can significantly accelerate the study of organic reactions with explicit solvation. This 

technique has been used for some SN2 reactions with ionic nucleophiles to compare vari-

ous solvent models’ performance [55,162]. Ho and co-workers found that umbrella sam-

pling combined with the ωB97M-V/ma-def2-SVP level of theory as the QM level provides 

superior results relative to thermodynamic cycle-based calculations when validated 

against experimentally reported SN2 reaction in various organic solvents [55]. Keith and 

co-workers reported a study of NaBH4 reduction of CO2 in water with various solvation 

models, including the more sophisticated form of PCM. They found that the PBE DFA 

overestimates the solvation energies when the ion pairs are in proximity. In conclusion, 

they recommended, based on their result, a hybrid approach or the use of a conductor-

like screening model for realistic solvation(COSMO-RS) [163] and reference interaction 

site method (ESM-RISM) [164] to account for specific interactions in ionic species [165]. 

In the context of organocatalysis, the Morita–Baylis–Hillman reaction, with its zwit-

terionic species and strong solvent dependence, remains challenging to model. Following 

the detailed experimental measurement reported by Plata and Singleton [83], ΔG*‡ and 

ΔG* reactions for several elementary steps were obtained. Sunoj and co-workers at-

tempted to reconcile the difference between values calculated from key stationary points 

and the experimentally reported values [87]. They used DLPNO-CCSD(T) values to min-

imize gas phase electronic energy errors. Solvation energies of key stationary points cal-

culated by the free energy perturbation (FEP) method with explicit solvent molecules 

(modeled with classical forcefield) provide an improvement over the implicit solvation 

model in some cases, but stepwise proton transfer to form the enolate remains in disagree-

ment (Figure 18). We emphasize that due to the experimental limitation (e.g., unable to 

observe the change in concentration of all proposed intermediates under realistic experi-

mental conditions), some assumptions need to be made in calculating and assigning val-

ues to each point in the free energy profile. Plata and Singleton pointed this out in their 
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work [83]. Basdogan and Keith, in an extensive study with a diverse set of computational 

techniques for the same reaction, found that with five explicit MeOH molecules, they ob-

tained the best agreement with experimental values [160]. 

 

Figure 18. Partial free energy profile of MBH reaction. Experimental values are obtained from the 

work of Plata and Singleton [83]. Blue calculated values are from the work of Sunoj and co-workers 

[87] at DLPNO-CCSD(T)/CBS/B3LYP-D3/6-31+G(d,p) with solvation via SMD or FEP as indicated 

in parentheses. Red calculated values are from the work of Basdogan and Keith at DLPNO-

CCSD(T)/def2-TZVP/BP86-D3/def2-SVP [160]. Explicit solvent molecules are not shown. 

The inclusion of solvent effects is challenging in PTC, as the key elementary steps 

could occur at the interface where the solvents’ properties differ significantly relative to 

their respective bulk properties. For instance, solvents with very similar dielectric con-

stants (the basic parameters in the PCM solvation model) can vary substantially in % ee in 

asymmetric PTC. The work of Tan and co-workers on the pentanidium-catalyzed conju-

gate addition reveals such a phenomenon (Figure 19) [146]. The product yield and % ee 

decreased when the solvent was switched from toluene to o-xylene. Both solvents are ar-

omatic hydrocarbons that differ only by a methyl group in the ortho position. Single-point 

calculations with the SMD solvation model indicated no significant difference in the rela-

tive energy of the two key TS structures (as reported by us [166]) in toluene and o-xylene. 

Chin and Krenske highlighted the limitation of the implicit solvation model in describing 

ion pairs in their computational study of CPA-catalyzed asymmetric Nazarov cyclization, 

which could be significant in the case presented here [77]. 
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Figure 19. Pentanidium-catalyzed asymmetric conjugate addition. Experimental values are from the 

work of Tan and his co-workers [146]. ωB97X-V/def2-TZVPP and M06-2X/6-31+G(d,p) values in-

cluded SMD solvation calculated with structures from Kee and Wong [166]. 

β-cyclodextrin(CD) is an inverse PTC, as it transfers organic molecules into the aque-

ous layer. Elk and Benjamin studied the phase transfer process of β-CD in a biphasic layer 

of water and 1-bromobutane [167] or 1-bromooctane [168]. Classical forcefields were em-

ployed in these studies. The same group also reported an empirical valence bond (EVB) 

approach to study the β-CD catalyzed SN2 reaction of CH3Cl and chloride via umbrella 

sampling with explicit solvation [169]. Their calculations indicate that the reaction barrier 

with β-CD complexation and in its absence is similar in bulk water. However, at the liq-

uid/liquid interface, β-CD complexation reduces the reaction barrier by 2.4 or 3.4 kcal/mol 

relative to the uncatalyzed reaction. 

2.8. Validation of Calculations 

As in the case of machine learning, validation and testing lend credence to the pre-

dictive capability of computational methodologies employed in organocatalytic calcula-

tions. This is especially important due to the many layers of approximations and assump-

tions involved in arriving at predicted values. 

Validation with experimental TOF is more challenging as most organocatalysis or 

PTC works do not measure the TOF of their reported reaction but only the isolated yield 

at the end of a specific duration. Measurement of TOF experimentally is cumbersome, as 

several points must be sampled accurately and fitted to a function where the gradient at 

the desired point in time can be calculated. For such purposes, the isolated yield after a 

purification process (such as column chromatography) is unlikely to reflect the catalyst 

efficiency accurately due to losses. In situ spectroscopic measurement (to obtain the spec-

troscopic yield) is the preferred method for such a purpose. Calculation of the TOF of a 

product from key stationary points is highly challenging, as it requires the critical produc-

tive and non-productive pathways to be known. In addition, modeling the thermody-

namic and kinetic of phase transfer processes in PTC, which is highly challenging to 

model accurately, will add to the challenge. Advances in automated reaction pathway 

exploration algorithms coupled with a fast and reliable means to evaluate the energy and 

forces of a molecular system will be imperative to systematically obtain all significant 

pathways which the reactants and catalysts can access under a given reaction condition. 

In silico prediction of TOF in organocatalysis and PTC remains a challenge to be sur-

mounted. 

Some examples of detailed kinetic studies in organocatalysis include guanidine and 

its derivatives [170,171], proline [172–174], and thiourea/urea [175]. More recent examples 

in organocatalysis or PTC include the work by Jacobsen and co-workers [89] and Gouver-

neur and co-workers [118]. However, performing a PES study to locate all the required 

stationary points required to reproduce the experimentally measured rate constants is go-

ing to be highly challenging. As such, they are not attempted even in these highly detailed 

studies. In addition, the intrinsic error associated with absolute rate measurement will 

impede its effectiveness in validating against theoretically derived ones. 
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2.8.1. Validation: Heavy-atom Kinetic Isotope Effect 

When judiciously applied, the kinetic isotope effect (KIE) can provide insight into the 

nature of the TS [176]. Coupled with the calculated TS structure, KIE can provide a multi-

point validation for theoretical calculations. The synergy between heavy atom KIE and 

theoretical modeling via the location of TS structures, together with their associated chal-

lenges, are presented in detail by Lloyd-Jones and co-workers [177]. Proline catalysis will 

be a classic example where 13C KIE was utilized in conjunction with the theoretical calcu-

lation [178]. Two selected recent examples in organocatalysis will be highlighted below. 

Kwan, Jacobsen, and co-workers utilized a distortionless enhancement by polariza-

tion transfer (DEPT) technique to measure the 13C/12C KIE in a thiourea-catalyzed glyco-

sylation (Figure 20). Conventionally, an SN1-based mechanism gives rise to an inverse or 

small normal KIE. In contrast, an SN2-based mechanism gives rise to a large normal KIE 

[179]. However, in thiourea-catalyzed glycosylation where an asynchronous SN2, which 

involves the formation of a loose ion pair by dissociation of the leaving group followed 

by a rate-determining nucleophilic addition, can occur [180]. In conjunction with TS struc-

ture calculations, the authors provide evidence for an asynchronous SN2 by comparing 

calculated SN2 KIE at C1 and SN1 equilibrium isotope effect (an approximation to SN1 KIE) 

at C1 with experimentally measured values. 

 

Figure 20. bis-Thiourea catalyzed glycosylation. All values are obtained from the work of Kwan, 

Jacobsen, and co-workers [179]. “Expt” refers to experimental 13C KIE relative to the C2 methoxyl 

group. “Calc SN2” refers to the calculated KIE value at PCM/PBE0-D3(BJ)/6-31G(d) and the Biegel-

eisen–Mayer method [181] adjusted with the Bell infinite parabola tunneling correction. “Calc SN1” 

refers to the equilibrium isotope effect. 

Hirschi, Mukherjee, and co-workers used 13C KIE as evidence to differentiate be-

tween various mechanistic scenarios. Experimental and calculated 13C KIE synergistically 

provide support for an E1cB mechanism [182]. They observed a significant inverse 13C 

KIE, usually associated with increased steric congestion at the carbon center on C2 (Figure 

21). Based on this, they eliminated the C-C bond formation as the first irreversible step. 

Instead, they proposed nitro group elimination as the candidate. The E1 and E2 pathways 

were eliminated by their insurmountable barriers under the reaction condition. The 13C 

KIE work further reinforced this point. 



Molecules 2023, 28, 1715 29 of 46 
 

 

 

Figure 21. Urea-catalyzed desymmetrization [183]. All values are obtained from the work of Hirschi, 

Mukherjee, and co-workers [182]. “Expt” refers to the experimental 13C KIE relative (please refer to 

the cited reference for details. Calc” refers to the calculated 13C KIE at IEFPCM/B3LYP/def2-SVP and 

the Biegeleisen–Mayer method [181]. 

2.8.2. Validation: Enantioselectivity 

Asymmetric organocatalysis provides a testing ground for modern computational 

chemistry. A metric of enantioselectivities such as ee or er can be measured reasonably 

accurately if sufficient care is taken. Theoretical calculation via the stationary point ap-

proaches does not usually require a highly detailed map of the reaction energy profile but 

only the key TS structures of the stereocenter-determining steps. The Curtin–Hammet 

principle is then invoked to determine the level of enantioselectivity by using a Boltzmann 

distribution on the ensemble of TS structures [16,184]. 

Due to the non-linear relationship between % ee or er with ΔΔG‡, an error of 0.5 

kcal/mol can translate to a very different magnitude of error in % ee (Figure 22). For in-

stance, at 253.15K, 0 to 0.5 kcal/mol of ΔΔG‡ corresponds to 0 to 46% ee, but from 2.0 to 2.5 

kcal/mol, the difference in % ee is only 2.3%. This implies that at high % ee, the room for 

error in prediction is more forgiving than at low % ee. Therefore, a computational study 

that successfully predicts high enantioselectivity is often insufficient to showcase its pre-

dictive capabilities. Based on this analysis, we will showcase some selected examples in 

organocatalysis that demonstrate such predictive capabilities.  

 

Figure 22. % ee vs. ΔΔG‡(kcal/mol) at 253K. Two intervals of 0.5 kcal/mol are included to illustrate 

the difference in calculated % ee. 
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Ermanis, Phipps, Goodman, and co-workers amply demonstrated this in their work 

on the chiral phosphoric acid-catalyzed enantioselective Minisci reaction (Figure 23). They 

observed a positive NLE, which is attributed to the formation of the insoluble heteroge-

neous dimer that is not directly involved in the main productive pathway [31]. The au-

thors’ calculations can reproduce the variation in experimental % ee with various sub-

strates. In this case, no dispersion correction is applied in the geometry optimization. 

However, their choice of method is sufficiently accurate to reproduce key experimental 

trends in % ee with selected examples from (70% ee and beyond). 

 

Figure 23. Enantioselective chiral CPA catalyzed Minisci reaction [185]. All values are from the work 

of Goodman and co-workers [31]. % ee are calculated from ΔΔG‡298.15K, 1atm at SMD(1,4-dioxane)/M06-

2X/def2-TZVPD//B3LYP/6-31G(d,p) from the cited reference. 

We have demonstrated in the bicyclic guanidine catalyzed reaction between N-phe-

nylmalemide and anthracen-9(10H)-one that our calculations can reproduce the differ-

ence in % ee between the tert-butyl and phenyl bicyclic guanidine (Figure 24) [32]. Our 

calculated % ee indicates that 4,5-dichloroanthracen-9(10H)-one has a lower level of enan-

tioselectivity than reported by the authors [186]. Upon closer inspection of their support-

ing information, the reported 99% ee is likely overestimated. This highlights the experi-

mental errors associated with high % ee. The minor enantiomer peaks might have signifi-

cant noise from the baseline if the sample used for analysis is too dilute or the integration 

of peaks is done incorrectly. 

 

Figure 24. Bicyclic guanidine catalyzed cycloaddition [186]. Values are from the work of Kee and 

Wong [32]. % ee are calculated from ΔΔG‡ at CPCM(DCM)/DSD-PBE95-D3(BJ)/def2-QZVP//PBEh-

3c as reported by the cited reference. 
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In their study of SPINOL-phosphoric acid (SPA) catalyzed, Wheelers and co-workers 

show that the improvement in the level of enantioselectivity by varying the SPA’s side 

arm can be reproduced by their modeling (Figure 25) [34]. While the difference in % ee 

between calculated and experimental can be 10% or more in magnitude, the reader should 

note that such differences, when translated to ΔΔG‡, can range from a difference of 0.14 

kcal/mol to 1.1 kcal/mol due to the non-linear relationship between % ee and ΔΔG‡ (see 

Figures 22 and 25). Since chemical accuracy is usually defined to be 1 kcal/mol or less, 

good agreement with the experimental % ee is generally observed (near the limit of chem-

ical accuracy, refer to values in parentheses in Figure 25), ranging from the low % ee of the 

2,6-dimethylphenyl group to the drastic improvement in phenyl and 9-anthracyl group. 

 

Figure 25. SPINOL-CPA catalyzed asymmetric synthesis of dihydroquinazolinones [187]. All values 

are obtained from the work of Wheeler and co-workers. % ee are calculated from ΔΔG‡298.15K, 1atm at 

PCM(CHCl3)/B97-D3/def2-TZVP//PCM(CHCl3)/B97-D/def2-TZVP from the cited reference. Num-

bers in parentheses are the corresponding ΔΔG‡ at 298.15K in kcal/mol. 

Jacobsen and co-workers reported a detailed mechanistic study on the ring-opening 

of oxetane with TMSBr (Lewis acid mechanism) or HBr (Brønsted acid mechanism) cata-

lyzed by chiral squaramide (Figure 26). The TS structures for the critical enantioselective 

steps were located at SMD(Et2O)/B97D/def2-SVP [89]. For a set of seven catalysts variation 

for the Lewis acid mechanism, they explored the use of two different quasi-RRHO correc-

tions to low vibrational frequencies and RRHO, where they found that the use of quasi-

RRHO correction is generally beneficial. Some of the enantioselectivity appears to arise 

mainly from vibrational entropy, as they are highly sensitive to the correction used (see 

also the work of Chin and Krenske [77]). The quasi-RRHO correction by Truhlar repro-

duces the low level of enantioselectivity for the 4-fluoro- and 3,5-difluoro-phenyl groups. 

The decrease in % ee from the 9-phenanthryl to 1-naphthyl catalyst cannot be reproduced 

by applying a quasi-rotor correction. 
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Figure 26. Squaramide-catalyzed enantioselective oxetane opening. Values are from the work of 

Jacobsen and co-workers [89]. Only the Lewis acid mechanism result is shown here. % ee are calcu-

lated from the ΔΔG‡195.15K, 1atm calculated at SMD(Et2O)/B97D3/def2-TZVP//SMD(Et2O)/B97D/def2-

SVP as reported by the cited reference. 

These selected, but not exhaustive, examples demonstrate the potential of DFT cal-

culations for in silico design of asymmetric reaction. However, from a practical point of 

view, given current technological limitations and costs, one would still need access to a 

considerable amount of computing power to perform these calculations within a compet-

itive timeframe with experimental screening.  

2.9. Understanding/Interpretation 

The activation strain model (ASM) model decomposes the activation barrier into two 

contributions: 1) the energetic penalty imposed to distort the reactants and catalyst from 

their lowest energy conformers to adopt the reactive conformation and 2) the interaction 

between distorted components [188,189]. The second part requires an energy decomposi-

tion analysis (EDA) which will be described in more detail below. The open-source PyFrag 

2019 code can be used to perform the ASM calculations. Readers are encouraged to refer 

to the work of Hamlin, Bickelhaupt, and co-workers for more detail [190]. ASM can be 

applied to asymmetric catalysis instead of a reaction pathway, where the difference in 

geometrical strain/distortion between the pair of stereo-differentiating TS structures can 

be compared. 

In organocatalysis or PTC, energy decomposition analysis (EDA) allows the interac-

tion energies between the catalyst and substrates in the crucial TS structures to be decom-

posed into different contributions (electrostatic, exchange-repulsion, and dispersion). 

Neese and co-workers developed the local energy decomposition (LED), which uses a su-

per-molecular approach to decompose the DLPNO-CCSD(T) interaction energy [191]. The 

LED decomposes the interaction energy into electronic promotion, electrostatic, exchange, 

dynamic charge polarization, and dispersion contributions. An application of LED is dis-

cussed below. 

List and co-workers’ silyated C-H acid catalyzed enantioselective Diels–Alder [192] 

was studied in detail by Bistoni and co-workers [40]. Both LED and ASM were applied in 

their work. Through LED of DLPNO-CCSD(T) interaction energy, the authors showed 

that dispersion interaction is the primary source of energetic difference between the two 

diastereomeric TS structures (Figure 27). ASM was used to quantify the geometry distor-

tion between the two TS structures.  

The non-covalent interaction Index (NCI) is a convenient way to visualize the non-

covalent interactions between fragments in a molecular system [193]. It is based on the 

dimensionless reduced density gradient (RDG). The sign and magnitude of the RDG can 
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be used to classify the type of interaction ranging from strongly attractive to strongly re-

pulsive. NCI isosurfaces can be generated with NCIplot [194] or Multiwfn [195]. It can be 

used in organocatalysis to illustrate the key noncovalent interactions in critical TS struc-

tures. We will demonstrate this with the work of Bistoni and co-workers, as discussed 

above. The NCI isosurfaces indicate the difference in van der Waals type of interaction be-

tween the TS that leads to the major product—the S, S enantiomer, and that which leads 

to the minor enantiomer. The interaction between the naphthyl group of the catalyst and 

the cyclopentadiene is missing (Figure 27), which is consistent with the LED result. 

 

Figure 27. Geometries optimized at PBE-D3/def2-SVP were taken from Bistoni and co-workers [40]. 

NCI surface was generated by NCIplot with promolecular density. ΔEint is the interaction energy 

between the catalyst and substrates calculated at DLPNO-CCSD(T)/def2-TZVP. ΔEnot-disp and ΔEdisp 

are the non-dispersion and dispersion contributions to the interaction energy, respectively, from 

LED analysis. All values are in kcal/mol and taken from Bistoni and co-workers [40]. 

The independent gradient model (IGM) developed by Hénon and co-workers is 

based on electron density contragradience [196]. The NCI and IGM isosurfaces of C60@6-

CPPA based on DFT densities are shown in Figure 28. Interestingly, despite the repulsive 

interaction between C60 and 6-CPPA at B3LYP/6-31G(d) calculated at +18 kcal/mol, NCI 

and IGM isosurfaces indicate that their interaction is weakly attractive. 

 

Figure 28. (a) IGM isosurface and (b) NCI isosurface generated with densities at B3LYP/6-31G(d). 

Visualization was done with VMD [197]. 
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2.10. Machine Learning and its Relevance to the Field  

Machine learning (ML) is a ubiquitous topic in contemporary research and is cur-

rently a very active area. It is beyond the scope of this review to provide details into the 

multitude of applications that ML has impacted chemistry. Our emphasis will be on as-

pects of ML that can be utilized in in silico prediction of catalysts’ performance (yield, 

TOF, and stereoselectivity). Therefore, unsupervised learning-based works will not be dis-

cussed, although they are of great importance [108,198–200]. Readers are encouraged to 

read authoritative reviews and perspectives on these topics and the references cited to 

better appreciate ML’s depth and impact in chemistry [201–208]. 

2.10.1. Supervised Learning 

As discussed in the preceding section, in silico calculation of reaction efficiency met-

rics such as TOF or TON is challenging. In supervised ML, reactants (including catalyst 

and solvent) can be transformed into features or descriptors which can be mapped to the 

reaction yield via a model. Doyle’s group used results from high-throughput experiments 

of C-N cross-coupling with ML to predict reaction yields [209]. The use of ML to predict 

yields or turnover numbers in synthetic chemistry has been reported for transition metal-

catalyzed asymmetric reactions [210–212], Heck reaction [213], multi-component reactions 

[214], and Michael addition [215]. 

Pertinent to asymmetric organocatalysis, Denmark and co-workers developed the 

average steric occupancy (ASO) descriptor to predict the level of enantioselectivity 

[216,217]. In later work by the same group, the use of random numbers to replace the 

features has pointed to a potential problem of bias in the splitting of dataset training ran-

domly [218]. This problem was reported earlier by Chuang and Keiser, who employed 

two classical tests of generalization to Doyle and co-workers’ data: random number as 

features (straw model) and one-hot vector, which encodes the presence or absence of re-

action components [219]. 

The number of data points required to train a meaningful model is generally incom-

mensurate with organocatalysis methodology development. For instance, 1000 data 

points would be considered a tremendous amount of experimental work. However, from 

an ML perspective, it may be wholly insufficient (depending on the diversity of the data 

points). A methodology-developing chemist (without access to a high-throughput facility) 

would be unlikely to generate this many data points throughout the optimization process. 

The diversity of the data points is crucial for ML. Skewed data points would result in the 

problems discussed previously. In Doyle and co-workers’ reply to Chuang and Keiser, 

they employed domain expertise (knowledge of the roles of reactants) to partition their 

reported dataset and showed that the one-hot vector performance is no longer comparable 

to the chemical-based features model [220]. 

Feature engineering is an intrinsic part of ML. In the quest to develop generally ap-

plicable and computationally economical descriptors for general modeling reaction yield 

and selectivity, Glorius and co-workers engineered features or descriptors from multiple 

molecular fingerprints [221]. Luo, Zhang, and co-workers used an ensemble of structural 

and physical organic chemistry (SPOC) descriptors [222]. 

The features employed in ML reaction studies are continuous or discrete numbers 

derived from either calculated properties or experimental observables. In the case of or-

ganocatalysis/PTC or general homogeneous catalysis, the catalysts have well-defined con-

nectivity between their atoms that will be lost when translated into a scalar descriptor/fea-

ture. These features/descriptors cannot precisely be reversed and mapped to a catalyst’s 

molecular structure, impeding their use to design novel and more efficient catalysts. Ide-

ally, one would use an optimization algorithm to search the features’ space for an im-

proved catalyst version, but this is usually not possible if the features cannot be reverse-

mapped to a valid experimental condition (including catalysts, additives, or reactants). 
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The inverse design of reaction from a supervised learning model based on these features 

remains challenging. 

2.10.2. Machine Learning Potential 

At the heart of an in silico calculation of catalytic performance is the capability to 

calculate the energy and force of a system with various workflows. The ability to compute 

these quantities accurately and in a timely fashion is imperative in driving in silico reac-

tion/catalyst design. In a machine learning potential (MLP), atom-based descriptors are 

mapped to energy, forces, and stress tensors. The model can be kernel-based or neural 

network. It can reproduce the accuracy of the dataset it is trained in a fraction of the time. 

For a more in-depth appreciation of MLP, the reader is referred to the review by Behler 

[223], Muller, Tkatchenko, and co-workers [224], and Pinherio Jr et al. [225]. Nevertheless, 

the “no-free-lunch” principle applies; significant effort has to be invested in generating 

the dataset for training MLP, and the quality of MLP is limited by the dataset on which it 

is trained. 

Several general-purpose MLPs suitable for organocatalysis have been reported in the 

literature, for instance, ANI-2x [226], DimeNet++ [227], GemNet [228], and SchNet [229]. 

The Open Catalyst project also provides state-of-the-art MLPs that can be used out-of-the-

box, although these MLPs are targeted toward heterogeneous and electro-catalysis [18,19]. 

A limited example is provided in Figure 29. We evaluated two MLPs on the relative 

potential energies of three critical TS structures in our work on the guanidine-catalyzed 

cycloaddition of Anthrone [32]. The time required to calculate potential energy with these 

MLPs is insignificant relative to the double hybrid DFA reference. GemNet-T can predict 

TS_SS_2 as the lowest energy TS structure, while ANI-2x predicts that TS_RR should be 

the most stable TS structure. The difference of less than 2 kcal/mol is noteworthy as these 

MLPs have not been trained on these TS structures. We use ANI-2x to perform a con-

strained optimization of TS_SS_2. The RMSD between the PBEh-3c and ANI-2x optimized 

geometries is 0.41, which is similar to that reported by Bistoni and co-workers when going 

from a double-zeta to a triple-zeta basis set as discussed above [40]. 

 

Figure 29. DSD-PBEB95: DSD-PBEB95-D3(BJ)/def2-QZVP. Values are taken from ref [32]. Geome-

tries are generated from coordinates supplied by ref [32]. RMSD calculated by alignment function 

of PYMOL. Constrained optimization is done with ASE. In the constrained optimization, the two C 

atoms involved in the C-C bond formation are fixed (atom constraint). 

Here, we list some examples that could be of relevance to PTC. MD simulations with 

MLP on condensed phases have provided molecular insights into phenomena such as the 

dynamics of proton transfer in NaOH [230], dissolving salts in water [231], permeation of 
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water into nanocapillaries [232], and zeolite hydrolysis [233]. Studies on aqueous hydrox-

ide, commonly used in PTC, can potentially be extended to investigating relevant phase-

transfer catalyzed reactions. 

With NN potential, MD simulation with tens of thousands of atoms is generally 

within reach via a decent Graphic Processing Unit (GPU) accelerator. With sufficient com-

putation resources, GPU accelerated MD simulations with deepMD-kit [234] have al-

lowed the study of ice nucleation for a 300,000 atoms system on a SCAN DFA trained MLP 

[235], thus providing a super slow motion movie of physical phenomena resolved at the 

level of atoms.  

Challenges remain on whether the GGA and meta-GGA DFA typically used to train 

MLP have the appropriate accuracy in modeling the key interactions in organocatalysis 

and PTC. The compilation of DFA in Table 1 shows that computationally economical GGA 

falls short of the standard chemical accuracy requirement. Nevertheless, as the benchmark 

is referenced against calculations in a vacuum, it remains to be seen if such errors will 

translate into the condensed or the interphase. Careful validation with experimental prop-

erties is imperative to ensure that the trained MLP is physically accurate enough for the 

production simulation. Encouraging results from the group of Keith indicate that with 

sufficiently solvated intermediates and TS structures, the difference between GGA DFA, 

hybrid DFA, and DLPNO-CCSD(T) is generally slight [160,236]. 

Despite the shortcoming of GGA and meta-GGA DFA, generating hundreds of thou-

sands of high-quality potential energy and forces with hybrid GGA and beyond will be 

an astronomical task. While there have been reports of MLP built on CCSD(T) [237] or 

DMC data [238], these works represent the exception rather than the norm.  

Technical challenges in generating a dataset for the training of MLP include k-points 

and plane-wave cut-off convergence. The use of empirical dispersion, critical to modeling 

noncovalent interaction, requires careful evaluation of k-points convergence due to the 

long-range nature of these corrections. Training of MLP is generally done with a smaller 

cell, and the resulting MLP is applied to a much larger cell. Care has to be taken to ensure 

that the smaller cell is large enough to contain the phonons or collective vibrations. 

The selection of a representative dataset to train an MLP is challenging. Typically, 

MLP is trained with data generated from an ab initio MD simulation. However, only a 

small percentage of data from the simulation is used. One possible way to reduce the 

number of expensive DFT calculations is to utilize active learning. Active learning deter-

mines on the fly if a reference(usually DFT) calculation should be performed and whether 

this point has to be added to the training set [239–241]. 

Despite the challenges that remain, these works are encouraging, as with more ad-

vances in MLP design and training, scientists can couple these ML to conformational 

search algorithms, reaction path discovery algorithms, and molecular dynamics, thus en-

abling chemists to simulate system size and timescale that are closer to experiments. To 

end our discussion, we referred the reader to the comprehensive roadmap on ML in var-

ious subfields of chemistry for more detail [242]. 

3. Conclusions and Outlook 

As noted by various authors, computational chemistry has advanced over the years 

as applied computational chemists can scale larger systems with improved hardware and 

software. Algorithmic advances in linear approximation to the CCSD(T) have provided 

the computational chemist with an additional method besides DFT to approach the prob-

lem. Nevertheless, the performance of such approximation on larger systems might not 

be equivalent to the smaller system on which they are benchmarked. Despite the advances 

in gas phase calculations, organocatalysis and phase transfer catalysis inevitably occur in 

the condensed phase. Solvation remains a challenge, and this aspect has been extensively 

discussed in this review and the references cited.  

Regarding achieving a practical in silico catalyst design, while algorithms to achieve 

automated exploration or mapping of key points on the PES is available, these remain 
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highly expensive in terms of computational effort, thus impeding their widespread uses. 

Achieving a DFT or even CCSD(T) level of accuracy with forcefield-like computational 

effort will be imperative in driving practical in silico catalyst design. Houk and Liu pre-

dicted that an accurate polarizable force field could be attained by 2040 [21], while 

Grimme and Schreiner predicted that low-cost DFT capable of scaling to 10000 atoms 

would be available by 2043 [20]. Thus, if their prediction comes to fruition, and together 

with continued advanced in hardware, computational chemistry could be an intricate part 

of the methodology-developing chemists. This review ends with a discussion on ML po-

tential, as we expect that MLP could assume the role of accurate polarizable FF or low-

cost DFT.  

Besides the pragmatic aspect of in silico catalyst design, the capability to perform 

molecular dynamics simulation with the number of atoms that approach the macroscopic 

scale will allow chemists access to atomic motions resolved at femtosecond resolution. 

The capability to perform MD simulation at such a scale can potentially provide us with 

the capacity to model solvents explicitly. Thus, obtaining accurate free energy of solvation 

can be used to validate and develop a more advanced implicit solvation model, which can 

drive catalyst development. The challenge of bifurcation PES can also be addressed. To-

gether, they will bring us towards understanding and practical in silico catalyst design. 
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