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Abstract—Human activity recognition can benefit various applications including healthcare services and context awareness. Since
human actions will influence WiFi signals, which can be captured by the channel state information (CSI) of WiFi, WiFi CSI based human
activity recognition has gained more and more attention. Due to the complex relationship between human activities and WiFi CSI
measurements, the accuracies of current recognition systems are far from satisfactory. In this paper, we propose a new deep learning
based approach, i.e., attention based bi-directional long short-term memory (ABLSTM), for passive human activity recognition using
WiFi CSl signals. The BLSTM is employed to learn representative features in two directions from raw sequential CSI measurements.
Since the learned features may have different contributions for final activity recognition, we leverage on an attention mechanism to
assign different weights for all the learned features. Real experiments have been carried out to evaluate the performance of the
proposed ABLSTM for human activity recognition. The experimental results show that our proposed ABLSTM is able to achieve the
best recognition performance for all activities when compared with some benchmark approaches.

Index Terms—Human activity recognition, WiFi, CSI, ABLSTM

1 INTRODUCTION

UMAN activity recognition is of great importance for

many applications, such as healthcare services and
context awareness. To maintain healthy conditions for elders,
the long-term monitoring of their daily activities is compul-
sory [1]. Other possible healthcare applications include the
detection of falls [2] and the recognition of some specific
diseases, such as Parkinson’s [3]. Moreover, the recognition
of human activities in buildings can be exploited for building
control systems to provide a comfortable indoor environment
with high energy efficiency [4].

To recognize various human activities, a number of sensors
have been employed in prior works. Camera-based human
activity recognition systems can be found in [5], [6]. The merit
of camera based systems is the capability of detecting some
tiny movements of the human body. However, these systems
often suffer from some issues, such as the influence of the
illumination condition and privacy concerns. Wearable sen-
sors are also popular for human activity recognition due
to the high recognition accuracy [7]. But the systems based on
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wearable sensors require users to take extra devices for activ-
ity recognition, which is inconvenient and obstructive for
users. Another widely employed sensor for human activity
recognition is the modern smartphone. Since many sensors,
such as accelerator, gyroscope and barometer, are embedded
in smartphones, they can be treated as a power sensing plat-
form for human activity recognition [8]. However, if subjects
forget to take their smartphones, the activity recognition will
terminate. Meanwhile, the running of sensors in smartphones
will influence their battery usage.

Under the principle that human actions between WiFi
transmitters and receivers will influence WiFi signal charac-
teristics, WiFi-based passive human activity recognition can
be feasible [9]. Due to the wide availability of WiFi signals in
indoor environments, human activity recognition using WiFi
is a cheap solution without any additional cost. Moreover,
the passive activity recognition systems based on WiFi do not
require users to take any devices for recognition. Therefore, in
this paper, we focus on human activity recognition using
WiFi signals. The most commonly used signal for WiFi is the
received signal strength (RSS) which has been widely used
for indoor localization [10]. It can also be used for human
activity recognition [11], but with limited performance due
to the noisy and unstable RSS measurements.

Instead of RSS, a more informative characteristic of WiFi
named channel state information (CSI) has attracted more
and more attention due to the abundant and stable informa-
tion in CSI [12]. Due to the high noise ratio, the raw CSI
measure may not be representative enough for different
human activities. A common practice is to manually extract
discriminative features [13]. However, those hand-crafted
features require expert knowledge and the generalization
ability is not guaranteed because the feature extraction and
recognition part are not jointly optimized. Recently, a deep
learning approach, i.e., long short-term memory (LSTM),
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which can automatically learn representative features and
encode the temporal information during feature learning,
has achieved a new state-of-the-art for human activity
recognition using CSI measurements [14].

The conventional LSTM can only process the sequential
CSI measurements in one direction, i.e., the forward direction,
which means that only past CSI information has been consid-
ered for the current hidden state. We argue that the future CSI
information is also of great importance for human activity
recognition. Besides, the learned sequential features by the
conventional LSTM may have different contributions for the
task of human activity recognition. In the conventional LSTM
approach, however, the learned features will have equal
contributions for the final identification of human activities.
In this paper, we propose an attention based bidirectional
long short-term memory (ABLSTM) approach for human
activity recognition using WiFi CSI measurements. The
BLSTM network which consists of forward and backward
LSTM layers can process the sequential CSI measurements
in both forward and backward directions, leading to more
abundant and informative features. And the attention mecha-
nism can assign larger weights for more important features
and time steps, leading to a better generalization performance
for human activity recognition. Real experiments have been
conducted to verify the effectiveness of the proposed
ABLSTM for human activity recognition using WiFi CSI
measurements. The results are compared with some bench-
mark approaches in the literature.

The main contributions of this paper are summarized as
follows:

e We propose a new deep learning framework for
automatic feature learning and selection in the task
of human activity recognition with WiFi CSI meas-
urements. The proposed framework can perform
human activity recognition from scratch, instead of
manual feature extraction which requires expert
knowledge and inevitably loses implicit features.

e We leverage on an advance BLSTM network which
is able to process sequential CSI measurements in
both forward and backward directions for automatic
feature learning and sequential information encod-
ing. The two directional operation can take both past
and future information into consideration when
determining the current hidden state of LSTM, result-
ing more abundant and informative features for
feature learning.

e We present an attention mechanism to learn the
importance of features and time steps for the learned
features by the BLSTM network. More important
features and time steps will be assigned higher
weights for final human activity recognition, leading
to better recognition performance.

e We apply real experiments to demonstrate the supe-
rior performance of the proposed approach for human
activity recognition using WiFi CSI. We also verify the
usefulness of the phase information of CSI which is
not widely used due to the large interference for
human activity recognition.

The remaining of the paper is organized as follows:

Section 2 reviews some advanced works for human activity

recognition using WiFi signals. Section 3 introduces the
attention model and the BLSTM network, followed by the
proposed ABLSTM approach. Section 4 describes the data
for experiments and presents the experimental setup. Then,
the experimental results are presented and discussed in this
section. Finally, Section 5 concludes this work and shows
some potential future works.

2 RELATED WORKS

Since WiFi signals are widely available, many WiFi based
human activity recognition systems have been developed
in the literature. Abdelnasser et al. proposed a gesture
recognition system termed WiGest with WiFi RSS measure-
ments [11]. The WiGest consists of three parts, i.e., primi-
tives extraction, gesture identification and action mapping.
Gu et al. presented a WiFi RSS based human activity
recognition system [15]. They manually extracted some rep-
resentative features from the raw RSS readings. Then, a
fusion algorithm was proposed to identify the simple activi-
ties of empty, sitting, standing and walking.

Due to the multi-path and the fading effect, the RSS meas-
urements are highly unstable and noisy, RSS based activity
recognition systems have limited performance, even for some
simple activities. The more stable and informative CSI in WiFi
has gained more and more attention recently. Zhang et al. the-
oretically analyzed the sensing capability of WiFi signals and
presented a Fresnel zone model for human activity recogni-
tion using WiFi CSI signals [16]. The proposed model
achieved very high accuracy in the detection of centimeter-
scale and decimeter-scale human activities, i.e., respiration
and walking direction, respectively. Wang et al. presented
a location-oriented activity recognition system with CSI read-
ings in WiFi [17]. First, a moving variance thresholding
approach was utilized to separate walking activities and in-
place activities. Then, they proposed two profile matching
classifiers for the recognition of different walking activities
and in-place activities, respectively. Wang et al. proposed
a fall detection and activity recognition system using WiFi
CSI measurements [2]. They developed an anomaly detection
algorithm based on the theoretical analysis of the radio propa-
gation model. Then, a singular value decomposition (SVD)
approach was applied to capture the key features of the CSI
matrix obtained from anomaly detection. Finally, two classifi-
cation algorithms, i.e., support vector machine (SVM) and
random forest (RF), were employed to identify fall and other
activities. In [13], Wang et al. proposed a CSI based human
activity recognition and monitoring system which consists of
two key models, i.e., a CSI-speed model and a CSl-activity
model. The CSI-speed model is able to obtain movement
features for different activities using CSI measurements. And,
the CSl-activity model which was built upon HMM is able to
identify a specific activity using the extracted activity features.

Hand-crafted features in previous works require export
knowledge and may inevitably lose some implicit features,
some other researchers intend to apply deep learning
approaches to automatically learn significant features for
human activity recognition using WiFi CSI. Wang et al. pro-
posed a deep learning approach, i.e., sparse autoencoder
(SAE), for localization and activity recognition using WiFi
CSI signals [18]. The SAE network was applied to learn



discriminative features from CSI signals. Then, the learned
features were fed into a softmax regression algorithm for
final localization and activity recognition. Gao et al. pro-
posed a CSI based localization and activity recognition
system based on radio image features and deep learning
[19]. First, they transferred the CSI measurements from
different channels into radio images where some image
features were extracted. Then, they applied a deep learning
approach of SAE to learn deep features from the extracted
image features. Finally, a machine learning approach of
softmax regression was employed for localization and activ-
ity classification. Another prominent work was presented
in [14]. The authors first performed a comprehensive review
on various human activity recognition systems based on
WiFi CSI. Then, they presented a deep learning approach,
ie., long short-term memory (LSTM), which can take
sequential information in WiFi CSI measurements into
consideration for automatic feature learning. The experi-
mental results showed that the proposed LSTM approach
outperforms the conventional machine learning approaches
with hand-crafted features.

To identify some activities using WiFi CSI measurements,
one may need to carefully design some specific features with
domain knowledge. These features may perform poorly
when applied to identify other activities. Moreover, the hand-
crafted features will inevitably lose some implicit features
which may be crucial for human activity recognition. Deep
learning is a good tool to automatically learn discriminate fea-
tures for human activity recognition. Since the CSI measure-
ments are sequential with temporal information for different
activities, the LSTM which can encode temporal information
is a good candidate for automatic feature learning. Here,
we consider an improved version of LSTM, ie., BLSTM,
which consists of a forward and a backward process for fea-
ture learning. Therefore, the BLSTM is able to take both past
and future information into consideration when determining
the current hidden state of LSTM, leading to more abundant
and informative features. Meanwhile, the learned sequential
features at one time instance may have different contributions
for final human activity recognition. Besides, CSI measure-
ments at different time instance may also have different
importance. Therefore, in this work, we propose an attention
based bi-directional LSTM approach for CSI based human
activity recognition, which will assign higher weights for
more important features and time steps for final recognition.

3 ATTENTION BASED BI-DIRECTIONAL LONG
SHORT-TERM MEMORY

In this section, we first introduce the BLSTM network. Then,
the attention model is illustrated. Finally, we present the pro-
posed ABLSTM approach for human activity recognition
using WiFi CSI measurements.

3.1 Bi-Directional Long Short-Term Memory

Owing to the sequential modeling capability, recurrent neural
network (RNN) has been successfully applied to many chal-
lenging applications, such as language understanding [20]
and video processing [21]. However, conventional RNN often
suffers from the problem of vanishing and exploding of the
gradient when the learning sequence is long [22]. To solve this
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Fig. 1. LSTM network structure.

problem, Hochreiter and Schmidhuber developed a new
structure for RNN, termed LSTM [23]. The LSTM network
attempts to solve the problem of vanishing and exploding
of the gradient by using memory cells with some gates
which can preserve useful information with long-term
dependencies. Since WiFi CSI signals are typical time series
with temporal dependency, the LSTM has achieved a
remarkable performance for WiFI CSI based human activ-
ity recognition in [14].

As illustrated in Fig. 1, LSTM updates itself at time ¢
based on its input x;, h;_;, and C;_; by way of:

f, = o(W/[hy_1,x] +b/)

iy = o(Why_1,x;] +b')

C = tanh(WC[ht,l, x| + bc)
C=£f+C_+i,xC

0; = o(WO[ht—1,x:] + 1)

h; = o; x tanh(Cy),

o))

where {W/, W' W W° b/ b’ b° 1°} are weights and biases.
The functions of o(-) and tanh(-) are sigmoid and hyperbolic
tangent activation functions, respectively. {h,, i, f;, o, C, C}
are hidden state, input gate, forget gate, output gate, input
modulation gate and memory gate, respectively. The mem-
ory cell unit C; is consists of two components, i.e., previous
memory cell unit C;_; modulated by f; and C, which is mod-
eled by the current input and previous hidden state, modu-
lated by the input gate i;. The sigmoidal nature of i; and f;
squashes themselves into a range of [0,1]. They can be
regarded as knobs that LSTM learns to selectively forget its
previous memory or consider its current input. In the same
way, the output gate o; models the transfer from memory
cells to hidden states. Based on these mechanisms, the LSTM
learns complex as well as temporal dynamics that exist in
sequential WiFi CSI measurements, resulting a remarkable
performance for human activity recognition.

The conventional LSTM network can only process the
WiFi CSI measurements in one direction, which means that
the current hidden state only considers the past CSI informa-
tion. However, the future CSI information is also meaningful
for human activity recognition. To achieve this ability that
is able to take both the past and future information into
consideration, an advanced bi-directional long short-term
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Fig. 2. Bi-directional LSTM network structure.

memory (BLSTM) can be utilized. The BLSTM consists of
two layers, i.e., a forward layer and a backward layer, which
are shown in Fig. 2.

According to Equation (1), the hidden states of the
forward and backward layers can be represented as h, and
h, respectively, where — and « denote the forward and
backward processes respectively. Then, the complete
hidden state for the BLSTM at time step ¢, i.e., h!, is a concat-
enation of the hidden states of the forward and backward
layers, shown as follows:

h;=h;® h, (2)

3.2 Attention Model

The attention model was first designed for image recogni-
tion [24]. The idea is inspired by human vision systems
which claim that human always pays attention to a certain
region of an image during recognition, and adjust the focus
over time. With the attention model, the machine is able to
focus on the region of interest and obscure the rest simulta-
neously for a recognition task, which has been shown to be
effective in image recognition [24]. Recently, the attention
model has also been shown to be efficient in natural lan-
guage processing [25]. For example, when using the popu-
lar encoder-decoder model without attention for machine
translation, the input sentence will be encoded into a fix
hidden vector for translation in the entire translation pro-
cess, which means that the words in the input sentence
have equal contributions for the translation at any time
step. This process is ineffective and with poor performance.
When applying the attention mechanism to the encoder-
decoder model, the translation at different time steps will
pay more attention to the words that are more related to
the current translation content. For the task of WiFi CSI
based human activity recognition, since the learned sequen-
tial features by the BLSTM network are of high dimensions,
and different features and time steps may have different
contributions for final activity recognition, we attempt
to leverage on the attention model to automatically learn
the importance of features and time steps, and assign larger
weights to more significant features and time steps to
boost the performance of WiFi CSI based human activity
recognition.

For WiFi CSI based human activity recognition, no prior
information can be used. Therefore, the learned sequential
features by the BLSTM will be employed as the inputs of
the attention model, which is also known as self-attention.
Here, we demonstrate a simple case for this attention
model. Given n feature vectors h;, i = 1,2,...,n which can
be derived from a feature learning network, we design

a score function ®(-) which evaluates the importance of
each feature vector by calculating a score s; as follows:

si=®(W'h; +b), ®)

where W' and b are weight vector and bias respectively.
The score function can be designed as any activation func-
tion in neural networks, such as tanh, relu and linear. After
obtaining the score for each feature vector, we can normal-
ize it using the softmax function, which can be expressed as:

a; = softmax(s;) = _oxp(si) 4)

Zi exp(si) '
The final output feature O of the attention model is the

multiplication of the feature vectors and their normalized
scores, which is shown as follows:

i=1

In this work, this attention model will be used to learn
the importance of features and time steps, and assign larger
weights to more important ones to boost the performance
of WiFi CSI based human activity recognition. Other types
of attention models can be found in [26], [27].

3.3 ABLSTM for CSI Based Human Activity
Recognition

3.3.1 Channel State Information

The CSI describes the channel properties of a wireless
communication link [2]. For WiFi signal propagation, it can be
modeled as a MIMO (multiple inputs multiple outputs) with
the orthogonal frequency division multiplexing (OFDM) tech-
nology. In frequency domain, let x; € R and y, € RV be
transmitted and received signals for subcarrier i where Ny,
and Np, are the number of transmitting and receiving anten-
nas respectively, the communication system can be modeled
asy, = Hix; + v for i =1,2,...,m where H; is the channel
state for subcarrier ¢, v is the noise term and m is the number
of subcarriers. One CSI measurement will contain m CSI
matrices where each has a dimension of N7, x Npg,. The CSI
gives a fine-grained description of the communication link
when compared with the widely used RSS which averages
out the changes over all the channels. Thus, in this work,
we adopt the fine-grained CSI measurements to detect human
activities between a transmitter and a receiver. The CSI
measurements consist of amplitude and phase information.
The phase information is often deteriorated by some sources
such as carrier frequency offset (CFO) and sampling fre-
quency offset (SFO) [14]. The amplitude of CSI is relatively
stable and has been widely used for human activity recogni-
tion [2], [14]. In this work, we also apply the amplitude infor-
mation of CSI for human activity recognition and leaves the
phase information for future exploration.

3.3.2 Rationale

WiFi CSI signals have been shown to be much more effective
for human activity recognition when compared with WiFi
RSS signals [2]. However, the relationship between WiFi
CSI measurements and human activities is nontrivial. To
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Fig. 3. The proposed ABLSTM framework for CSI based human activity
recognition.

achieve better recognition performance, some researchers
attempt to manually extract representative features for
human activity recognition. However, manual feature extrac-
tion requires export knowledge. It is also labor intensive and
time-consuming. Besides, when the activities to be recognized
change, the designed features may be useless. Moreover,
hand-crafted features will inevitably miss some implicit key
features. Recently developed deep learning is a good tool for
automatic feature learning [28]. A SAE has been employed to
automatically learn useful features for human activity recog-
nition in [18], [19]. Human activities is a sequential process
which indicates that the CSI measurements will contain tem-
poral dependencies. However, the SAE cannot take sequential
information into consideration during feature learning, which
degrades its performance for human activity recognition.
The LSTM network which can encode temporal dependencies
for feature learning has been presented in [14] for human
activity recognition. It achieves a new state-of-the-art for
human activity recognition with a cross-validation accuracy
of around 90 percent.

The conventional LSTM can only process the sequential
CSI measurements in one direction, i.e., the forward direc-
tion, which means that only past CSI information has been
considered for the current hidden state. Future information
is also crucial for the determination of an activity. For exam-
ple, the activities of laying and sitting all require to lower
the human body first, but the final positions for the two
activities are different. When learning representative fea-
tures for these similar activities, future information is of
great importance. Thus, we leverage on a BLSTM network
to learn effective features from raw CSI measurements. The

BLSTM network contains two layers, i.e., a forward layer
and a backward layer, which can take both past and future
CSI information into consideration during feature learning.
Specifically, the forward layer encodes the information of
past time steps into the current hidden state, meaning to
consider the past information of a CSI sequence. And the
backward layer encodes the information of future time
steps into the current hidden state, meaning to consider
the future information of a CSI sequence. With the BLSTM
network, both the past and future dependency information
of the CSI sequence are considered to learn the completed
context of the sequence for the identification of human
activities.

Moreover, the learned sequential features from the
conventional LSTM network may have different contri-
butions for the task of human activity recognition. In
the conventional LSTM network, however, the learned
features will have equal weights (contributions) for
the final identification of human activities. To solve this
problem, we develop an attention mechanism which
assigns a weight for each feature and time step. This
mechanism can automatically learn the importance of
each feature and time step. Then, the larger weights will
be assigned to more significant features and time steps
to boost the performance of human activity recognition
using WiFi CSL

3.3.3 Proposed ABLSTM Framework

The proposed ABLSTM framework is shown in Fig. 3. First,
we apply a sliding window of the raw CSI signals which are
fed into a BLSTM network for automatic feature learning in
two directions. Here, the BLSTM network used for feature
learning contains 200 hidden nodes. Since no prior informa-
tion is available for the attention model, it can only use the
learned features from the BLSTM as inputs to derive the
attention matrix which indicates the importance of features
and time steps. Here, the attention model is designed as
a softmax regression layer whose outputs are normalized
weights for each feature and time step. Then, we merge the
learned features with the attention matrix by using element-
wise multiplication, leading to the modified feature matrix
with attention. After that, the feature matrix will be flat-
tened to a feature vector for final classification by the use of
a flattened layer. Finally, a softmax classification layer is
used to identify different activities with the final feature
vector.

3.3.4  Training of the Proposed ABLSTM

The training of the proposed ABLSTM framework is to
determine all the model parameters based on the training
data with true labels. At the beginning, all the parameters
are randomly assigned. Then, the training data is fed into
the ABLSTM to predict the labels. With the predicted labels
and the given true labels, the category cross-entropy errors
are calculated and back-propagated to update model para-
meters using gradient-based optimization methods. We
adopt the ADAM [29] which can effectively compute adap-
tive learning rates for each parameter during optimization.
In details, assume that 0, is the parameter to be optimized,
and g, is the corresponding gradient, the updating of 6,
using ADAM is given as



o =11 + (1 —r)g
B =rafiy + (1 —1)g;

ar=af(1—r) 6)
B = Bi/(1L—r2)
011 =0 + \/,13;74-6%'
t

where «; and g, are the first and second moments of the
gradient respectively, 5 is the learning rate which is set
to be 1 x 10~%, and the parameters r;, rp and € are set to be
0.9, 0.999 and 1 x 10~® respectively. Over-fitting is a com-
mon problem in learning based systems. Here we adopt
the ADAM optimizer which can compute adaptive learning
rates for different parameters to reduce the risk of over-
fitting. Besides, the proposed attention mechanism will only
select some important features and time steps, which will
also lower the probability of over-fitting.

3.3.5 Differences with Some Advanced Works

Our proposed approach is inspired by [14] which presented
a LSTM based human activity recognition using WiFi CSI,
but differentiates from it significantly. The main differences
are: (1) we leverage on a bi-directional structure of LSTM to
consider both past and future CSI information for human
activity recognition; (2) an attention model is developed to
assign larger weights to more important features and time
steps to boost the performance of human activity recogni-
tion. Another advanced work [16] provided a theoretical
analysis of RF signal propagation and developed a Fresnel
zone model for the recognition of respiration and walking
direction. The main differences are: (1) we focus on the rec-
ognition of human daily activities in this work, while [16]
handles the specific recognition of respiration and walking
direction. (2) the Fresnel zone model requires strong
domain knowledge, while our proposed ABLSTM is a data-
driven solution without the strong requirement of domain
knowledge.

4 EXPERIMENT

In this section, we first describe the data for experiments.
Then, we present the experimental setup. After that, the
experimental results are shown and discussed. Finally, we
evaluate the impact of one key hyperparameter and the issues
of unseen activity, as well as the time complexity of the pro-
posed ABLSTM for human activity recognition.

4.1 Data Description

The first dataset for evaluation was collected from an indoor
office area by the authors in [14]. A commercial WiFi router
is used as a transmitter and a laptop with Intel 5300 NIC is
employed as a receiver with a sampling frequency of 1 kHz.
With three antennas and 30 sub-carriers, the raw CSI data
has a dimension of 90. A sliding window with a window
size of 2s is used for data segmentation. The transmitter and
the receiver are placed three meters apart with line-of-sight
(LOS) condition. During data collection, each person per-
forms each activity for a period of 20 seconds. Note that, at
the beginning and the end of an activity, the person remains
stationary. The entire data collection process is recorded by
a camera to label all the data. Totally, six persons are involved
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Fig. 4. The layouts of the two environments for experiments.

for data collection with six common daily activities of “Lie
down, Fall, Walk, Run, Sit down, Stand up”. Each person
performs each activity 20 times, yielding a dataset with the
size of around 17 GB. The dataset can be found in https://
github.com/ermongroup/Wifi_Activity_Recognition.

We also collected our own datasets with varying condi-
tions for comprehensive evaluations. Two different environ-
ments, i.e, an activity room and a meeting room, are
considered. The layouts of the two environments are shown
in Fig. 4. The activity room which contains two table tennis
tables has a size of 8.5 m x 9 m. During data collection, some
subjects regularly move into or out of this room. The meeting
room has a size of 7.2 m x 12 m. Only one subject is present
during data collection in the meeting room scenario. Note
that, in our experiments, we also use a commercial WiFi
router as a transmitter and a laptop with Intel 5300 NIC as
a receiver with a lower sampling rate of 500 Hz which is ade-
quate to capture human activities. A sliding window with
a window size of 4s is used for data segmentation. To make
the category of activities more diverse, we investigate some
different activities of “Empty, Jump, Pick up, Run, Sit down,
Wave hand, Walk” in the experiments. Seven volunteers are
involved, who are asked to perform each activity freely with-
out any restrictions 100 times in each testing environment.

4.2 Experimental Setup

To verify the effectiveness of the proposed approach, we per-
form a comparison with some benchmark approaches for CSI
based human activity recognition. In [14], the RF achieved
a superior performance than SVM, logistic regression (LR)
and decision tree (DT) for CSI based human activity recogni-
tion. The hidden Markov model (HMM) was also shown to be
effective for human activity recognition in [13], [14]. Therefore,
we compare our proposed approach with these two method-
ologies with hand-crafted features. The detailed extraction of
hand-crafted features can be found in [14]. Meanwhile, we
also conduct a comparison with other deep learning based
methods, i.e.,, SAE [18], [19] and conventional LSTM [14],
which are able to learn features automatically. The parameters
of all the approaches are carefully tuned using a validation set
from the training data. A 10 fold cross-validation is performed
for evaluation. Specifically, we randomly divide all the data
into 10 folds. Then, we select one fold of data for testing and
the remaining for training, leading to 10 runs. The final recog-
nition accuracy is an average of all the 10 runs.

4.3 Experimental Results on the First Dataset

The confusion matrices of all the benchmark approaches
and the proposed ABLSTM approach on the first dataset are
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TABLE 1
Confusion Matrices for all the Benchmark Approaches
and the Proposed ABLSTM Approach

(a) RF [14]
Predicted
Lie Fall Walk Run Sit Stand
down down up
Liedown 053 0.03 0.0 0.0 0.23 0.21
Fall 0.15 0.60 0.03 0.07 0.1 0.05
Actual Walk 004 0.05 081 0.07 0.01 0.01
Run 001 0.03 005 0.88 0.01 0.01
Sit down 0.15 0.03 0.02 0.04 049 0.26
Stand up 0.10 0.03 0.02 0.06 0.20 0.57
(b) HMM [14]
Predicted
Lie Fall Walk Run Sit Stand
down down up
Liedown 052 0.08 0.08 0.16 0.12 0.04
Fall 008 072 00 0.0 0.2 0.0
Actual Walk 0.0 004 092 0.04 0.0 0.0
Run 0.0 0.0 0.04 096 0.0 0.0
Sit down 0.0 004 0.0 0.0 0.76 0.20
Stand up 0.16 0.04 00 0.0 0.28 0.52
(c) SAE [18], [19]
Predicted
Lie Fall Walk Run Sit Stand
down down  up
Liedown 084 0.01 0.03 0.03 0.04 0.05
Fall 001 0.84 0.07 0.04 0.01 0.03
Actual Walk 0.01 0.0 095 0.02 0.01 0.01
Run 0.05 0.03 0.07 083 0.00 0.02
Sit down 005 0.01 003 0.03 084 0.04
Stand up 0.03 0.0 0.03 0.02 0.04 0.88
(d) LSTM [14]
Predicted
Lie Fall Walk Run Sit Stand
down down  up
Liedown 095 0.01 0.01 0.01 0.00 0.02
Fall 0.01 094 005 0.00 0.00 0.00
Actual Walk 0.00 0.01 093 0.04 0.01 0.01
Run 0.00 0.00 0.02 097 0.01 0.00
Sit down 0.03 0.01 005 0.02 081 0.07
Stand up 0.01 0.00 003 0.05 0.07 0.83
(e) Proposed ABLSTM
Predicted
Lie Fall Walk Run Sit Stand
down down  up
Liedown  0.96 0.0 0.01 0.0 0.02 0.01
Fall 0.0 0.99 0.0 0.01 0.0 0.0
Actual Walk 0.0 0.0 098 0.02 0.0 0.0
Run 0.0 0.0 0.02 098 0.0 0.0
Sit down 0.01 0.01 0.01 0.0 0.95 0.02
Stand up 0.01 0.0 0.0 0.0 0.01 0.98

shown in Table 1. It can be found that the shallow learning
algorithms, i.e., RF and HMM, with hand-crafted features per-
form the worst. The HMM model slightly outperforms the RF.
The deep learning based approach of SAE has a superior per-
formance when compared with the RF and HMM with hand-
crafted features. This indicates the effectiveness of automatic
feature learning using the SAE approach. Since the LSTM net-
work also considers the temporal dependencies in sequential
data for feature learning, it achieves a better performance
than the SAE approach. Owing to the proposed attention
mechanism and the bi-directional operation, the proposed
ABLSTM approach is able to achieve the best performance
for the recognition of all the six activities. The recognition
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Fig. 5. An example for attention matrix.

accuracies for all the six activities are equal to or higher than
95 percent which is adequate for many other high-level
applications.

The recognition accuracies for different activities have
large difference. The activities with larger body movement,
i.e., “Fall”, “Walk” and “Run”, have better recognition perfor-
mance (see Table 1). This is because these activities will have
larger influence on the characteristics of WiFi CSI signals with
distinct patterns. Another observation is that the activity
of “Sit down” has the lowest recognition accuracy for most of
approaches including the RF, the LSTM and the proposed
ABLSTM. The possible reason is that this activity has similar
impact on CSI characteristics with the activities of “Lie down”
and “Stand up”. Note that, the recognition accuracy is even
lower than 50 percent for the RF approach with hand-crafted
features. For the six activities, the activity of “Fall” is of great
importance, especially for elders [2], [30]. The proposed
ABLSTM approach can achieve a recognition accuracy of
99 percent for the activity of “Fall”, which will benefit many
healthcare applications. One limitation for deep learning
based approaches is the long training time. But this tedious
process only needs to be done once. Note that, the online
testing for the deep learning based approaches is fast enough
for most of real-time applications.

To better interpret the attention mechanism, we present
one attention matrix in Fig. 5. Since we set 200 hidden nodes
for the BLSTM network, it will generate 400 features at each
time step. Note that, a sliding window contains 500 time steps.
For the BLSTM network without the attention mechanism,
all these sequential features (500 x 400) will have equal contri-
bution (weight) for final activity recognition. However,
in most of real situations, it is not realistic. From Fig. 5, we can
find that the sequential features at two time steps, i.e., 155 and
304, are dominant instead of uniformly distributed over all
time steps. Meanwhile, at one time step, the 400 features have
different contributions. Although these sequential features
cannot be explicitly interpreted because they are high-level
features learned by the BLSTM network, we can still concur
that all the features have different contributions for final
activity recognition, which can be achieved by using the atten-
tion mechanism. The superior performance in experiments
indicates the effectiveness of the proposed ABLSTM for WiFi
CSI based human activity recognition.

4.4 Additional Experiments with Different
Environments

The environment for experiment is a crucial factor for

WiFi CSI based applications [31], [32]. In the additional



TABLE 2
The Recognition Accuracies of All the Activities under the Two Testing Environments

Environment Method Empty  Jump  Pickup Run  Sitdown  Wavehand  Walk  Overall
RF [14] 0.99 0.64 0.71 0.88 0.77 0.86 0.89 0.820
HMM [14] 1.00 0.29 0.37 0.93 0.89 0.95 1.00 0.775

Activity Room  SAE [18], [19] 0.87 0.75 0.88 0.87 0.86 0.92 0.86 0.859
LSTM [14] 1.00 0.86 0.87 0.96 0.92 0.93 0.92 0.922
Proposed ABLSTM 1.00 0.94 0.95 0.97 0.97 0.96 0.98 0.967
RF [14] 0.90 0.85 0.92 0.90 0.80 0.79 0.95 0.873
HMM [14] 0.93 0.61 0.89 0.81 0.89 0.81 1.00 0.849

Meeting Room  SAE[18], [19] 0.60 0.87 0.94 0.66 0.95 0.74 0.93 0.813
LSTM [14] 1.00 0.87 0.90 0.94 0.96 0.89 0.91 0.925
Proposed ABLSTM 1.00 0.97 0.99 0.96 0.98 0.94 0.98 0.973

experiments, we consider two distinct environments, i.e.,
an activity room and a meeting room. The recognition accu-
racies for all the seven activities under the two environ-
ments are shown in Table 2. The overall performance in the
meeting room is better than that in the activity room. This
is because the activity room has larger interference from
additional subjects who are moving into or out of the room
regularly. Among all the activities, the activity of “Empty”
which means no subjects are present has the highest recog-
nition accuracy for most of classifiers, due to the distinct
patterns for this simple activity. The activities of “Run” and
“Walk” which are with distinct patterns and large move-
ments also can be easily identified.

In both environments, the LSTM approach which encodes
temporal dependency for sequential WiFi CSI measurements
achieves a superior performance than the approaches of RF,
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Fig. 6. The ROC curves of all the approaches under the two environments.

HMM and SAE. Owing to the efficient bidirectional struc-
ture and the proposed attention mechanism, the proposed
ABLSTM significantly outperforms all these benchmark
approaches. These results are consistent with the results on
the public dataset. The overall accuracies of the ABLSTM in
the activity room and the meeting room are 96.7 percent and
97.3 percent, respectively.

We also demonstrate the receiver operating characteristic
(ROCQ) curves of all the approaches under the two environ-
ments, which is shown in Fig. 6. The results are consistent
with the conclusions from Table 2. The proposed ABLSTM
achieves much better generalization performance than all
the benchmark approaches, due to the merits of the bidirec-
tional structure and the attention mechanism. The results
are consistent with our previous analysis based on Table 2.

In [31], [32], the authors proposed a Doppler spectrum
based method for indoor occupant counting using WiFi CSI.
Cross-environment experiments were performed. Specifi-
cally, they trained their proposed algorithm with the data
from one environment and tested it with the data from
another two unseen environments. Due to different signal
characteristics for different environments, the performance of
the algorithm is limited. Inspired by their works, we attempt
to test the performance of the proposed approach on the
cross-environment scenario. Note that, the cross-environment
scenario is even more challenging for activity recognition,
because activities will have smaller and more complicated
effect on WiFi CSI signals. Here, we train the proposed algo-
rithm using the data from the activity room, and then test
it using the data from the meeting room. As expected, the
overall recognition accuracy greatly degrades to 0.320. This is
because the CSI characteristics are quite different in these two
environments (see Fig. 4) which have very distinct layouts,
facilities and functionality. The cross-domain problem is very
common and challenging in various machine learning and
data mining applications [33]. A potential solution is to use
transfer learning which can transfer the knowledge learned
from one domain to another unseen domain [33]. This
problem requires more efforts and is one of our future works.

For the public dataset and the self-collected datasets, some
activities are the same, such as “Walk”, “Run” and “Sit
down”, and the others are different. We intend to compare
the recognition accuracies of all the activities for the proposed
approach on the three datasets with different environments
and data collection strategies. The results are shown in Table 3.
It can be found that the performances of the three same



TABLE 3
The Recognition Accuracies of All the Activities for the Proposed Approach on the Three Datasets

Dataset Walk  Run  Sitdown  Liedown Fall Standup  Empty  Jump Pickup  Wave hand
Public 0.98 0.98 0.95 0.96 0.99 0.98 - - - -
Activity room 0.98 0.97 0.97 - - - 1.00 0.94 0.95 0.96
Meeting room 0.98 0.96 0.98 - - - 1.00 0.97 0.99 0.94

activities are quite good and comparable across the three data-
sets. Besides, the recognition accuracies of the other activities
are also quite high on different datasets. Thus, we can claim
that the proposed approach performs quite well in different
environments and data collection strategies. Note that, the
proposed approach significantly outperforms the benchmark
approaches on the three datasets with different environments
and data collection strategies.

4.5 Impact of the Number of Hidden Nodes for the
Proposed ABLSTM

The number of hidden nodes is an important parameter for
the proposed ABLSTM. Therefore, we perform an additional
experiment to investigate the impact of this parameter on the
performance of human activity recognition. The experimental
result is shown in Fig. 7. When the number of hidden nodes
is only 50, the recognition accuracies for all the six activities
are very low, especially for these activities with small body
movements, i.e., “Lie down”, “Sit down” and “Stand up”.
With the increase of the number of hidden nodes from 50 to
200, the recognition accuracies for all the activities increase
beyond 95 percent. When further increasing the number
of hidden nodes, we observe that the recognition accuracies of
all the activities become stable. Since more hidden nodes will
lead to longer training time, we choose 200 hidden nodes for
the proposed ABLSTM for human activity recognition.

4.6 Impact of the Phase Information of CSI

In our experiments, we also collected the phase information
of CSI for evaluations. Note that the public dataset [14] did
not contain the phase information. Here, we attempt to
investigate the impact of the phase information on the per-
formance of activity recognition. The recognition accuracies
of the proposed ABLSTM with and without the phased infor-
mation of CSI under the two testing environments are shown
in Fig. 8. It can be observed that the proposed ABLSTM
with the phase information of CSI is able to improve the rec-
ognition accuracies for most of activities. Since the phase
information of CSI contains large interference caused by CFO
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Fig. 7. The recognition accuracies for different activities with different
number of hidden nodes for the proposed ABLSTM.

and SFO, it is difficult to manually extract some informative
features. Therefore, many research works did not include this
information for recognition [13], [14]. The proposed deep
learning based approach can still learn informative features
from the noisy phase information of CSI to further boost the
performance of activity recognition. This further indicate
the effectiveness of the proposed ABLSTM for human activity
recognition using WiFi CSI measurements.

4.7 Unseen Activity

In some real cases, we may encounter unseen activities for
human activity recognition. For all supervised learning, if
one class “A” does not appear in training, the data from
class “A” will be mapped to other classes during testing.
Besides, if class “A” is similar to class “B” (e.g., similar pat-
terns) which is included in training, the data from class “A”
will have a high probability to be recognized to class “B”.
Note that, our proposed approach and the state-of-the-art
approaches are all supervised learning methods.

To verify this, we perform an additional experiment
where we train the proposed algorithm with the data from
five activities and test the algorithm with the data from an
unseen activity using the public dataset. Specifically, we
train the proposed ABLSTM with the data from the five
activities of “Lie down”, “Fall”, “Walk”, “Run” and “Stand
up”, and test the algorithm with the data from the activity
of “Sit down”. The probabilities of recognizing “Sit down”
as the five activities are shown in Table 4. It can be found
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Fig. 8. The proposed ABLSTM with and without the phase information of
CSl under the two environments.



TABLE 4
The Probabilities of Recognizing “Sit Down”

to the Other Five Activities
Activity Lie down Fall Walk Run Stand up
Sit down 0.33 0.03 0.07 0.05 0.52

TABLE 5
The Training and Testing Time of All the Approaches

Time RF  HMM SAE LSTM  ABLSTM
Training (sec) 6.09  0.029 1788.28 5168.86 13007.20
Testing (sec)  0.016  0.22 0.23 4.39 6.86

that it has higher probabilities to be classified as “Stand up”
and “Lie down”, which have similar movement patterns
with the activity of “Sit down”.

4.8 Time Complexity

It is a common concern about the time complexity of the deep
learning based approaches. We have evaluated the training
and testing time of all the approaches with the data from the
activity room. The workstation for the experiments has twelve
core CPUs of Intel i7-8700 3.20 GHz and a GPU of NVIDIA
GeForce GTX1080Ti. The results are shown in Table 5. It can
be found that the training time of deep learning based
approaches, ie., SAE, LSTM and ABLSTM, is much larger
than that of conventional machine learning algorithms,
i.e., RF and HMM. Among all the deep learning based appr-
oaches, the proposed ABLSTM has the longest training time.
Although the training time of the proposed approach is large,
this time-consuming training process is offline and only
requires to be done once. According to Table 5, the testing
time of all the approaches is quite small. For example, the test-
ing time of the proposed ABLSTM with all the testing samples
(420 testing samples) is 6.86 seconds. This means that the test-
ing time for each sample is 0.0163 seconds. Note that each
sample has a window size of 4 seconds for data segmentation.
Thus, this small testing time for each sample can be neglected.
We can claim that our proposed ABLSTM approach can be
used for real-time WiFi CSI based human activity recognition.

5 CONCLUSION

In this paper, we propose an attention based bi-directional
long short-term memory (ABLSTM) approach for WiFi CSI
based passive human activity recognition. The BLSTM net-
work is able to learn significant sequential features from
raw WiFi CSI measurements in two directions, i.e., forward
and backward. The attention mechanism will assign differ-
ent weights for features and time steps based on the impor-
tance of them. We performed real experiments to verify the
effectiveness of the proposed approach and compared
it with some benchmark approaches, including shallow
algorithms, i.e.,, random forest (RF) and hidden Markov
model (HMM), with hand-crafted features and deep learn-
ing approaches of sparse autoencoder (SAE) and conven-
tional LSTM. Owing to the sequential feature learning
in two directions by using BLSTM and the attention mecha-
nism to assign higher weights for more important features
and time steps, the proposed ABLSTM can achieve much
better performance than all the benchmark approaches.
In experiments, instead of assigning the same weight for
each feature and time step in conventional LSTM, we dem-
onstrate that the attentions (weights) for different features
and time steps are distinct for the proposed approach.
This indicates that different features and time steps should
have different importance for activity recognition. Since the
number of hidden nodes is a key parameter for the

proposed ABLSTM, we investigate the impact of this hyper-
parameter on recognition performance. It can be concluded
that when the number of hidden nodes is few, the recogni-
tion performance is limited. With the increase of the number
of hidden nodes, the recognition performance improves.
But when the number of hidden nodes is large enough,
the recognition performance will be stable.

In our future works, we attempt to explore the two chal-
lenging issues, i.e., environment change and non-line-of-sight,
for human activity recognition using WiFi CSI signals.
Besides, in this work, we only focus on the recognition of sin-
gle-user activity. The more realistic scenario of multi-user
human activity recognition [34] will be considered in our
future works. For human activity recognition, the sensory
data is easy to acquire. However, the data annotation is some-
times difficult and expensive. Semi-supervised learning can
be a good solution for this task [35], which will also be one of
our future works.
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