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Abstract— In scenarios where the environment and task
are known and certain, autonomous robotic manipulation can
be performed. However, when an unforeseen situation arises
where prior information is unknown, timely human assistance
becomes very useful in accomplishing the task. In this paper, we
propose a supervisory autonomy system that allows a user to as-
sist the robot in uncertain task scenarios by specifying, through
an intuitive user interface, the discrete actions (e.g. grasping)
to be performed on the selected objects. The robot has partial
knowledge of the environment in that it is able to segment and
localize objects. This information is shared with the user to
allow easy object and action specification, after which the robot
executes the action on the object autonomously while avoiding
obstacles. We investigated the system using live perception of
real objects with simulated robot and environment.

I. INTRODUCTION

Human-robot collaboration is an active area of research,

thanks to the successful applications in areas such as robot

tele-operation [1], learning [2], and rehabilitation [3]. In

general, humans are superior in reasoning and decision-

making, while robots function near perfect in autonomous

tasks given the desired trajectory. The conjunction of these

capabilities is an important step towards the desired goal of

full autonomy in robots.

Existing works on human-robot collaboration systems

include lower-level shared control systems and higher-level

supervised autonomy systems. Shared control systems com-

bine, at the motion or force control level, the inputs from

human and robot, either in a continuous [4], [5] or switched

manner [6], [7]. In contrast, higher-level systems are based

on discrete commands that are translated into lower-level

control by the system itself. Other approaches include learn-

ing from demonstration for the purpose of teaching motor

trajectories to robots [8] and interactive policy learning [9]

where human demonstration not only initializes but also

improves the policy.

One of the earlier works on supervised autonomy showed

how a mobile robot could autonomously navigate from

one room to another with simple instructions given by the

supervisor through a graphical user interface which displayed

a view of the robot’s environment from a camera attached

to the robot [10]. More recently, [11] presented a mobile

manipulation robot with a visual feedback interface to assist

telemanipulation. A virtual reality interface was used to

render a third person view of the scene, for the purpose
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Fig. 1: Supervised autonomy system with integrated perception and
motion planning

of guiding the human user. In [12], supervised autonomy

was combined with reinforcement learning for the purpose

of teaching a software-based agent how to make a cake.

The human expert guides the agent by treating rewards via

supervised autonomy in a simulation framework, while the

agent is carrying on its task. In [13], a supervised autonomy

framework was used to enable a human teleoperator to assist

the robot in localizing an object by positioning a 3D model

of the object within a virtual environment of the remote

scene. Other applications of supervised autonomy include

providing variable ground-based control support for space-

deployed robotic systems [14] and robot-assisted therapy for

autism spectrum disorders [15]. Systems that are able to

dynamically adjust the level of autonomy to optimize the use

of resources and capabilities as conditions evolve are termed

sliding autonomy systems, and have been applied to human

robot coordination systems for space applications [16] and

to UAV path planning [17].

In this work, we developed a supervised autonomy system

using an RGB-D camera on the robot to provide visual

feedback to the teleoperator as well as to perceive the robot’s

environment. Unlike the above mentioned works, which do

not have automatic coordination between perception and

motion planning, our proposed supervised autonomy system

integrates a user interface, a perception module and a ma-

nipulation module. The perception module enables automatic

segmentation and localization of objects, which are then

displayed to the user. Through the user interface, the user

can select objects that are in the robot’s environment and

specify actions to be performed on the objects. The manip-



ulation module enhances motion planning by autonomously

performing a set of discrete actions to the objects.

Such an integrated system enables a human and robot to

collaborate in terms of supervision provided by the human

user to the autonomous robot. The user helps the robot by

specifying the task in a step-by-step manner for the robot,

whereas the robot helps the human user through automatic

sensing and management of the environment.

Fig. 2: Operational relationship of the GUI with ROS.

II. SUPERVISED AUTONOMY INTERFACE FOR

TELEMANIPULATION

An overview of the Supervised Autonomy system is shown

in Fig. 1. The full configuration of the system consists

of the Olivia robot, a customized version of the DRC-

Hubo robot comprising a torso (3-DOF), head (2-DOF), and

dual articulated arms (7-DOF each), a perception module

comprising object detection and segmentation submodules,

an intuitive user interface, and a manipulation module. All

operations and communications between the modules in the

system are controlled using the Robot Operating System

(ROS).

During the operation of the system, an RGB-D camera

(Asus Xtion Pro) mounted on Olivia provides point cloud

data for the system. The segmentation module uses the

dominant tabletop surface to segment tabletop objects into

individual point cloud clusters. This pre-processed point

cloud data is then transferred to the object detection module

in which, we establish the orientations of the objects and

visualize bounding boxes surrounding the objects. All the

essential data generated is then displayed on the user inter-

face, which uses RViz, a 3D visualization tool for ROS, and

works with mouse device inputs, thereby providing a user-

friendly graphical interface. Subsequently, the user interface

relays user-specified pose goals to the manipulation module,

which plans and executes collision-free joint trajectories on

Olivia, allowing the robot to achieve the tasks indicated by

the user.

A. Perception Module for Object Segmentation and Local-

ization

The Perception module allows the robot to segment

and localize objects in its field of view while providing

visual information for the user to make selections and

specify actions to be performed on the objects. This

module comprises two submodules, namely a point cloud

segmentation module for object and table segmentation,

and an object detection module able to create oriented

bounding boxes around object clusters. A coverage of these

submodules can be found in the following two sections.

1) Point Cloud Segmentation Module: The point cloud

segmentation module utilizes the Organized Multi-Plane

Segmentation pipeline from Point Cloud Library (PCL) to

identify all possible planes in the scene. In this pipeline,

an organized point cloud normal to the raw point cloud

is first estimated using integral images [18]. A connected

component analysis [19] is then performed on the input

organized normal point cloud. This process extracts and

labels disjoint and connected components in the point cloud,

allowing for the identification of regions that are planar.

The different planar regions are stored in a cluster, with the

region of largest size (i.e. dominant plane indicating tabletop)

occupying the first index of the cluster.

Object segmentation is performed in a three-dimensional

polygonal prism space generated just above the segmented

tabletop. Consequently, all points that lie inside the prism

will be segmented while the outliers ignored. Euclidean

cluster extraction is performed on the inliers to obtain the

various object indices needed for further processing in the

object detection module.

Fig. 3: Action choices when an object is selected.

2) Object Detection Module: The object detection module

uses principal component analysis (PCA) to identify the

principal components of each object cluster so as to estimate

the orientation of the bounding box encapsulating the cluster.

Due to the nature of RGB-D cameras, point cloud clusters

are usually not a full representation of the object in its

entirety since the camera is limited to a single view and

the rear of the object is obscured. Therefore, the estimated

principal components tend to deviate from actual ones,

resulting in the orientations of the bounding box and the

tabletop becoming mutually exclusive, which is not logical

in the context of this discussion. To overcome this problem,

we project all the points in the point cloud along the normal

of the tabletop onto the table. A pseudo two-dimensional

PCA is then performed on the projected point cloud. In this

way, the third principal component of the object cluster will

be identical to the normal of the tabletop (same z-direction).

With the principal components determined, the maximum

and minimum points in the new x, y and z directions are

determined. These points are then used to determine the

centroid of the object.

Let C be a three-dimensional vector representing the

center point of the object in a 3D space with respect to the



Fig. 4: Snapshot showing dropdown menu for action selection
when the user right-clicks on an object on the screen.

world frame. It can be evaluated by utilizing M and N, the

derived minimum and maximum points of the object in the

three axes respectively:

C⋆ = M⋆ +
(N⋆ − M⋆)

2
(1)

where ⋆ denotes x, y, or z.

A new tf frame is added at the object’s center point and

with the orientation containing the results of the PCA. All the

new data concerning the objects are utilized for visualization

using the RViz visualization and interactive markers.

B. Intuitive User Interface for Object and Action Selection

Qt Creator was selected as the Graphical User Interface

(GUI) Designer due to its ease of use and high compatibility

with ROS and RViz. The GUI is a customized implementa-

tion of the ROS package and incorporates a specialized con-

stituent called qnode linking the Qt UI with ROS, allowing

the adaptation of the GUI to operate in a ROS environment.

Fig. 2 summarizes the operational relationship between the

frontend UI and ROS.

Using the designed GUI, users select objects to be ma-

nipulated by clicking on the interactive marker covering the

desired object, prompting two main actions in a menu for the

user to select, Push and Pick. If Push is selected, users

will be allowed to drag the interactive marker representing

the selected object to a desired location to be pushed to.

The robot will then proceed with the action after the user

confirms the action procedure. If Pick is selected, the robot

first proceeds with the action and follows up with a list of

follow-up actions, such as Place, Stack, and Use as a

tool, for users to select. Fig. 3 illustrates the action choices

available.

In the event that an error (e.g. object is out of the

robot’s reach) is encountered during the motion planning or

execution process, the system reverts to its previous state,

and a separate window appears to warn the user about the

detected error.

C. Manipulation Module

The manipulation task is handled by a separate manip-

ulation module to maintain the modularity of the system.

The manipulation module expects the object information and

a task code containing the desired action indicated by the

Fig. 5: Pop-up window which probes users for sub-action selection
with different choices.

user to execute the action and feedback the result to the

user interface. Object information comprises of the objects

bounding box size S(sx, sy, sz) in the object tf frame

(OBBi). All objects in sight have a unique frame handled

and managed together with the robots base frame by ROS

tf-transform. The object pose with respect to the base frame

is represented by the transformation matrix:

Tobj =

[

Robj pobj
0 1

]

(2)

The task code identifies the action to be performed among

the predefined set of actions. This set of action varies upon

the current state:

• Action: pick, push, undo

• Action with tool: push with tool, stack,

place, undo

RRT Connect [20] was used to generate the path. The

robot always returns to a ready position after start-up and

before listening to a new command, where motion plan-

ning and control are triggered by a call-back mechanism.

Reversion to the ready position was adopted because it is

easier to reach the goal poses from such a position as well

as to prevent any obstruction to the vision. In addition,

determination of utilizing which end-effector (left hand or

right hand) is contingent upon the position of the selected

object based on the robot’s frame.

At the start of each action, a virtual planning scene is set

up with objects built from the object information passed in

by the detection module. The scene includes the table surface

as well as other objects to enable collision avoidance during

action planning. Subsequently, the end effector goal pose,

with respect to the base frame, is given by:

Tee = TobjToffset (3)

where Toffset is the object-to-hand transformation matrix.

There are two modes of motion, namely the joint space

planning and the compute Cartesian path modes, that are

determined by the nature of action. Pick, Place and

Stack uses the joint space planning mode which finds

the path minimizing the total joint displacement. Push

and Use as a tool operates near the table, so we use

compute Cartesian path mode which ensures a straight trans-

lational motion of the end-effector. If Moveit fails to generate

a plan to reach the goal, the robot will move the end-

effector along a minute and random trajectory to create a

small disturbance and attempt to generate the motion plan

again. If planning continues to fail, no action is executed. In



the case where there are interruptions during the execution

of the motion plan, the robot will stop its motion. In both

cases, the manipulation module will return the robot to its

ready state and publish a Fail message to the perception

module which prompts the user. If the motion is planned and

executed successfully, a success message will be returned.

The motion plan is visualized using RViz UI and its output

is simulated with Gazebo.

III. EXPERIMENT RESULTS

Experimental results were successful in the Gazebo sim-

ulation environment, with the robot able to perform a wide

range of actions with the objects in the scene. The GUI pro-

vides a clean interface design in a three-dimensional visual

space while RViz interactive markers were used extensively

in this experiment, allowing users a comfortable level of

involvement in directing the robot to complete its tasks.

Dissemination of user instructions through concise methods

such as dropdown menus were used. Figure 4 shows an

organized dropdown menu after desired object is selected.

The system incorporates a parallel evaluation framework

where users can rely on both the error log channel for any

error/failure notifications and the RViz UI for visual verifi-

cation. This framework ensures that the users’ experiences

are consistent with the effects of their actions.

Executable actions including pushing, picking and using

objects as tools among others were developed as part of the

manipulation aspect of the experiment.

1) Push: With the GUI, users will provide input by

clicking on the desired object and selecting push option in

the dropdown menu. The User Interface will provide the user

with a draggable interactive marker for determining the final

location. This information is used to control the robot end-

effector to move directly above the object, grab it, push it

along the table and release when finished. The robot then

returns to its ready position and update the state to the UI.

Figure 6 shows a snapshot of the push action process.

2) Pick: Another action that we have developed is the

pick action and it was designed to revolve around the idea

of utilization of the picked object by the robot and was

developed into further sub-actions such as place and stack,

to specify a couple. There are slight differences in the

procedure of this action as compared to the push action

that we have discussed previously. After the user selects

the object to be picked up and confirms from the dropdown

menu, object information is sent to the control unit to plan a

path for the end-effector to reach directly above the object top

surface, grasp it and return to ready position. If the action is

successful, an internal message is sent to update the state and

enable sub-actions under “Tooled” state. Figure 5 shows the

pop-up window which probes users for sub-action selection

while Figure 7 shows snapshots of the pick action procedure.

The sub-actions that we have developed are discussed in the

following sections.

3) Place: The Place sub-action allows users to control

the robot to place the picked object at any feasible location

and orientation on the tabletop in the scene that is within

the robot’s reach. Through the GUI, users will confirm the

end location and orientation of the object to be placed using

the draggable interactive marker which appears after the user

selects place in the sub-action selection pop-up window. End-

location information will be sent to the control unit, which

is at the “Tooled” state, to plan the path for the end-effector

to reach the desired location and to release the object. Figure

8 contains snapshots which illustrates this process.

4) Stack: The Stack sub-action allows users to stack the

picked object onto another object in the scene. Perception

of the robot reactivates, allowing for the segmentation of

objects in the scene and for the users to select the desired

object to be stacked onto. Users can choose between 2

orientations in which the picked object should be stacked

onto, each perpendicular to the other. Upon receiving the

required information as stated above, the control unit will

plan the path for the end-effector to reach the selected object

with the respective orientation and release the picked object.

Figure 9 contains snapshots of the entire process.

5) Use as a tool: The Use as a tool sub-action is

a highly expandable sub-action due to its genericness. The

tool previously picked up is merged into robot’s end-effector

for extended reach and interaction. In this experiment, we

assumed that the picked object is used to push another object

in the scene. The robot is able to push another object to any

feasible location on the tabletop within the robot’s reach.

The highly general nature of this sub-action also provides

flexibility and means that it can be further developed in future

studies. Figure 10 shows some snapshots of the sub-actions

being performed in the User Interface space.

6) Undo: The Undo action is a special feature enabling

the user to undo any revertible action previously executed.

The current reversible action set includes pushing, picking,

placing and stacking. During any of such action, the user can

stop the process and revert the current action. A successful

Pick action with Undo would result similarly to a Place

and vise versa. Sometimes the reverse action can fail due

to unforeseeable reasons. In this case, since the previous

action was stopped, the robot would treat it as a normal

fail action and prompt the user for further request. Figure

11 shows some snapshots of the undo performed while

executing place action in the User Interface space.

IV. CONCLUSION

A supervised autonomy system that integrates user inputs,

such as placing an object onto another, through a user

interface has been studied in this paper. The automatic

perception allows a better understanding of the target object

that the user is selecting compared to previous studies. The

automatic planning removes the bulk of the responsibility

of coordinating the robot end effector from the user. These

features enable a human-robot collaboration, where the user

specifies the task in a sequential manner to the robot and

the robot automatically manages its interaction with its

environment. As a future work, we would like to present this

study on a real robot and to explore elements of Artificial

Intelligence through automatic action suggestions on the UI.



(a) Confirmation window which appears af-
ter user selects push action on the desired
object.

(b) Users are able to drag the interactive
marker to select the end location and ori-
entation for the push action.

(c) Execution of push action by the robot
towards the user-directed end location and
orientation.

Fig. 6: Snapshots of user-directed Push action using the supervised autonomy interface.

(a) Movement of end-effector to reach di-
rectly above the object top surface.

(b) Movement of end-effector back to the
ready position while grasping the object.

(c) Return of end-effector back at the ready
position and activation of ”Tooled” state.

Fig. 7: Snapshots of user-directed Pick action using the supervised autonomy interface.

(a) Determination of end location and orien-
tation of the object using interactive markers.

(b) Movement of end-effector towards end
location while grasping the picked object.

(c) Return of end-effector back at the ready
position and activation of ”Tooled” state.

Fig. 8: Snapshots of user-directed Place sub-action using the supervised autonomy interface.

(a) Initial suggested configuration for stack-
ing action.

(b) 90-degree-rotated configuration for stack
action.

(c) Movement of end-effector towards se-
lected object.

Fig. 9: Snapshots of user-directed Stack sub-action using the supervised autonomy interface.



(a) Determination of end location of the
object using interactive markers.

(b) Movement of the combined end-effector
towards behind the target.

(c) Straight translational motion of the com-
bined end-effector to push the object.

Fig. 10: Snapshots of user-directed Use as a tool sub-action using the supervised autonomy interface.

(a) Determination of final pose for placing
object.

(b) Human interruption with undo command
mid-execution.

(c) Cancellation of place action an return to
previous state

Fig. 11: Snapshots of user-directed Undo action using the supervised autonomy interface.
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