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Abstract

Mixed-scaling-rotation (MSR) coordinate rotation digital computer (CORDIC) is an attractive ap-

proach to synthesizing complex rotators. This paper presents the fixed-point error analysis and parameter

selections of MSR-CORDIC with applications to the fast Fourier transform (FFT). First, the fixed-point

mean squared error of the MSR-CORDIC is analyzed by considering both the angle approximation error

and signal round-off error incurred in the finite precision arithmetic. The signal to quantization noise ratio

(SQNR) of the output of the FFT synthesized using MSR-CORDIC is thereafter estimated. Based on

these analyses, two different parameter selection algorithms of MSR-CORDIC are proposed for general

and dedicated MSR-CORDIC structures. The proposed algorithms minimize the number of adders and

word-length when the SQNR of the FFT output is constrained. Design examples show that the FFT

designed by the proposed method exhibits a lower hardware complexity than existing methods.
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I. INTRODUCTION

Discrete Fourier transform (DFT) is one of the most important algorithms in the digital signal processing

systems, and thus there has been much research on its efficient calculation [1]–[4], approximation [5]–

[10], and implementation [11]–[15]. The N -point DFT is defined as

X(k) =

N−1∑
n=0

x(n)W kn
N for k = 0, 1, ..., N − 1, (1)

where WN = e−j(2π/N). The direct calculation of (1) requires O(N2) complex multiplications. The

radix-2 fast Fourier transform (FFT) algorithm can compute the DFT using only O(N log2N) operations

[1], [2]. There are several variants such as radix-2p for p = 2, 4, 8... or split-radix FFT for reducing the

computational complexity further [1], [3]. Refer to [1]–[3] for descriptions on the FFT algorithms in

detail.

The complex multiplication creates a bottleneck in the computation of FFT. Thus, its efficient design

has been one of the major issues in FFT related literatures. All the coefficients (called twiddle factors)

of the complex multipliers in an N -point FFT are represented in the form of ejθ, where θ = 2πk/N for

an integer k. Let x and y be complex numbers. Then, the twiddle factor multiplication y = ejθx can be

viewed as a complex rotation of a 2× 1 vector as

y =
[
1 j

]
R(θ)

xre
xim

 (2)

where x = xre + j · xim with real xre and xim, and

R(θ) =

cos θ − sin θ

sin θ cos θ

 . (3)

The direct calculation of (2) requires 4 real multiplications and 2 additions. The rotation (2) can also be

expressed using 3 real multiplications and 3 additions as [9], [10]

yre = (cos θ − sin θ)xre + sin θ(xre − xim)

yim = (cos θ + sin θ)xim + sin θ(xre − xim) (4)

where y = yre + j · yim. Another strategy is to decompose (3) into well-known lifting steps as [6]–[10]

R(θ) =

1 tan θ
2

0 −1

 1 0

− sin θ 1

1 − tan θ
2

0 −1

 , (5)

where 3 real multiplications and 3 additions are required as well. Since multiplications require higher

computational complexity than additions in general, the representation of (4) or (5) is more efficient than

that of (2).
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In a practical implementation, the coefficients need to be quantized into finite precision. A direct method

is to approximate the coefficients in (3), (4), or (5) using finite precision representations. Alternatively,

the coordinate rotation digital computer (CORDIC) algorithm is applied for the approximation of (3)

[16], [17]. The CORDIC algorithm is more hardware-friendly than the multiplication and accumulation

(MAC) unit since it can be implemented by pipelined structures of submodules using only shift and add

operations [18]. Many published articles applied the CORDIC algorithm to the FFT [5], [9]–[13], [18].

In FFT processor designs, the twiddle factors are known in advance. Modified CORDIC algorithms

were proposed to improve the latency, accuracy, and complexity of the computation [19]–[22]. Mixed-

scaling-rotation (MSR)-CORDIC algorithm proposed by Lin et al. [22] approximates the vector rotation

with the smallest approximation error among existing CORDIC algorithms under the same hardware

complexity. The conventional optimization methods based on Viterbi and greedy algorithms minimize

the approximation error of single MSR-CORDIC processor in the course of parameter determination

[21]. However, if the MSR-CORDIC is used as complex multiplier in FFT, all the MSR-CORDICs in the

N -point FFT need to be optimized jointly so that the total mean squared error (MSE) of the FFT output

is minimized. Furthermore, for the fixed point optimization of FFT, more practical metric is required to

reflect the round-off and scaling errors as well as approximation errors. Keeping these in view, in this

paper, we present a parameter optimization algorithm specially for the optimization of complex rotators

when they are implemented using MSR-CORDIC. We also derive error analysis equations which are

used as metric during optimization. The contributions of this paper are as follows:

First, the output MSE is estimated to achieve the optimal design of FFT with MSR-CORDIC. In [22],

the MSE of approximation error of MSR-CORDIC has been analyzed. In this paper, the round-off error

of MSR-CORDIC are also analyzed in terms of MSE. Our error model provides more accurate output

error of MSR-CORDIC considering both of these two error terms.

Second, the MSE and the corresponding signal to quantization noise ratio (SQNR) of output of radix-

2 decimation-in-time (DIT) FFT algorithm with MSR-CORDIC are derived. We prove that our error

analysis closely matches actual simulation results by design examples. The analysis can be applied to

FFTs with different radix or split-radix.

Third, a parameter optimization algorithm is proposed when twiddle factor multipliers of FFT are

implemented using generalized MSR-CORDIC. In this application, the same MSR-CORDIC module is

shared during the computation of a symbol FFT data to reduce the hardware cost by re-using the resources

and to enhance the regularity of the overall structure. The reference implementation using generalized

MSR-CORDIC is shown in [14]. The generalized MSR-CORDIC is implemented as a uniform structure
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for resource sharing, and designed to minimize the implementation cost while criteria such as the accuracy

of FFT are satisfied.

Fourth, a parameter optimization algorithm is proposed when dedicated CORDICs are employed for

the FFT. Each twiddle factor multiplication is designed to have its own dedicated CORDIC circuit for

parallel processing. Recently, the design with dedicated multiplier has an increasing interest with the

development of very large scale integrated (VLSI) technology in the applications such as digital filters

[23]–[25], discrete cosine transform (DCT) [8], [26], and FFT [7]–[9] to satisfy the demand for high

throughput rate. In the dedicated circuit, the number of adders is usually used as the measure that estimates

the implementation cost since the shifter is hard-wired. The cost also depends on the word-length selection

for intermediate registers in FFT. The design method which considers both the number of nonzero digits

and word-length is proposed.

The rest of this paper is organized as follows. In Section II, the MSR-CORDIC is reviewed. In

Section III, the fixed point errors of MSR-CORDIC algorithm are analyzed. Based on the analysis,

the output MSE and the corresponding SQNR of radix-2 DIT FFT are estimated. Section IV presents

the parameter determination algorithm to minimize the adder cost and word-length of FFT for a given

accuracy constraint where the complex multipliers are implemented using generalized MSR-CORDIC.

An alternative algorithm is proposed for FFT with dedicated MSR-CORDICs in Section V. A brief

conclusion is given in Section VI.

II. REVIEW OF MSR-CORDIC ALGORITHM

The original CORDIC algorithm proposed in [16], [17] approximates the real rotation matrix (3) as

[R(θ)]Q =
1

S

K−1∏
k=0

 1 −µ(k)2−k

µ(k)2−k 1

 (6)

where [·]Q is a nonlinear approximation operator, µ(k) ∈ {−1, 1}, S =
∏K−1
k=0

√
1 + 2−2k, and K is

the number of rotations. The original CORDIC algorithm suffers from some drawbacks such as low

approximation accuracy, long latency, and computational overhead due to the scaling factor 1/S. The

MSR-CORDIC overcomes these drawbacks with a few modifications of the original CORDIC equations

as follows:

First, the MSR-CORDIC enhances the approximation accuracy by replacing R(θ) with cascades of
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sub-rotations which include more flexible sum of signed powers-of-two (SPT) coefficients than (6), i.e.,

[R(θ)]Q =

1

S

K−1∏
k=0

∑I(k)−1
i=0 ηi(k)2−pi(k) −

∑J(k)−1
j=0 µj(k)2−qj(k)∑J(k)−1

j=0 µj(k)2−qj(k)
∑I(k)−1

i=0 ηi(k)2−pi(k)

 (7)

where

ηi(k), µj(k) ∈ {−1, 1},

0 ≤ pi(k), qj(k) ≤ Bc for the coefficient word-length Bc,

S =

K−1∏
k=0

√√√√√( I(k)−1∑
i=0

2−pi(k)
)2

+

( J(k)−1∑
j=0

2−qj(k)
)2

, (8)

and I(k) and J(k) are nonnegative integers which represent the number of SPT terms. The approximated

angle is given by

[θ]Q =

K−1∑
k=0

tan−1
(∑J(k)−1

j=0 µj(k)2−qj(k)∑I(k)−1
i=0 ηi(k)2−pi(k)

)
. (9)

An appropriate search algorithm should be employed to obtain [θ]Q, and the approximation accuracy

depends on how well the (sub)optimal parameters are found so as to minimize the residual angle, |θ−[θ]Q|.

Second, the MSR-CORDIC attempts to reduce the latency by limiting the number of iterations K (K is

usually set to be the internal register word-length in original CORDIC.). Even though the MSR-CORDIC

has a smaller K, the approximation error is not more than that of original CORDIC due to more flexible

representation of sub-rotations.

Third, the MSR-CORDIC obviates the postprocessing which multiplies the output with 1/S. It can be

attained by performing a search algorithm such that |S − 1| as well as |θ − [θ]Q| is minimized. In that

case, (7) is rewritten as

[R(θ)]Q =

K−1∏
k=0

∑I(k)−1
i=0 ηi(k)2−pi(k) −

∑J(k)−1
j=0 µj(k)2−qj(k)∑J(k)−1

j=0 µj(k)2−qj(k)
∑I(k)−1

i=0 ηi(k)2−pi(k)

 . (10)

In this paper, [R(θ)]Q is regarded as (10) instead of (7). Note that the number of additions required for

the 2× 1 vector rotation by MSR-CORDIC is represented as

Ac =

K−1∑
k=0

Ac(k) =

K−1∑
k=0

2
(
I(k) + J(k)− 1

)
(11)
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Fig. 1. Error model for the MSR-CORDIC algorithm. eca = [ecare, e
ca
im]T is the approximation error, which is assumed to

be added in at the last sub-rotation. ecr(k) = [ecrre(k), e
cr
im(k)]T is the round-off error introduced at the k-th MSR-CORDIC

sub-rotation.

where Ac(k) is the number of additions at the k-th sub-rotation. It should also be noted that the approx-

imation ability of the MSR-CORDIC depends on Ac and the coefficient word-length Bc. Specifically, as

Ac or Bc increases, the approximation error decreases.

III. ERROR ANALYSIS OF MSR-CORDIC AND FFT

A. Error Analysis of MSR-CORDIC

In this section, the output MSE of radix-2 DIT FFT algorithm where complex rotators are implemented

as MSR-CORDIC is estimated. For this, the output MSE of MSR-CORDIC is first derived, and it is ap-

plied to the error analysis of FFT thereafter. The error sources and models are illustrated with the cascade

structure of MSR-CORDIC in Fig. 1. There are two error sources in the fixed-point implementation of

MSR-CORIC. One is the approximation error denoted by eca = [ecare, e
ca
im]T in Fig. 1, which results from

the discrepancy between the ideal matrix R(θ) and the approximated matrix [R(θ)]Q. Superscript ‘ca’

is the abbreviation for ‘CORDIC approximation’, and similar abbreviations are used for the other error

sources of CORDIC and FFT. The intermediate data in the CORDIC computation is usually stored in

registers with limited word-length to avoid an increase in the hardware size. Thus, the lower bits of the

data are truncated for maintaining the word-length after the multiplication (shift) operation is performed.

It introduces the round-off error ecr(k) = [ecrre(k) ecrim(k)]T for 0 ≤ k < K at the k-th sub-rotation,

which is the other error source of the MSR-CORDIC.

The output MSE of the approximation error of MSR-CORDIC was derived in [22]. It is rewritten
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using notations of this paper as follows:

E{(eca)Teca} ' E{|x|2}
(
δ2 + (1− S)2

)
(12)

where x is the 2 × 1 input vector of rotator and δ = θ − [θ]Q. It can be seen that the approximation

error reduces as δ becomes smaller and S closer to 1. As stated previously, it can be attained by using

larger Ac and/or Bc although it is a trade-off with a larger chip area. It should also be noted that the

approximation error depends on the energy of input x.

The magnitude of the round-off error depends on the word-length of register, especially the number

of fractional bits after the fixed point, which is denoted as Br. The round-off error ecr(k) introduced at

the k-th sub-rotation is propagated through the subsequent CORDIC sub-rotations. Therefore, the sum

of the accumulated round-off errors on the CORDIC output is given by

ecr =

K−1∑
k=0

( K−1∏
l=k+1

P(l)
)
ecr(k) (13)

where P(l) is the matrix representing the l-th sub-rotation and represented as

P(l) =

∑I(l)−1
i=0 ηi(l)2

−pi(l) −
∑J(l)−1

j=0 µj(l)2
−qj(l)∑J(l)−1

j=0 µj(l)2
−qj(l) ∑I(l)−1

i=0 ηi(l)2
−pi(l)

 . (14)

Now, we derive E{(ecr)T (ecr)} as

E{(ecr)T (ecr)}

= E{
K−1∑
k=0

(ecr(k))T
k+1∏

l=K−1
P(l)T

K−1∑
i=0

K−1∏
j=i+1

P(j)ecr(i)}

= E{
K−1∑
k=0

Trace{
K−1∏
l=k+1

P(l)ecr(k)(ecr(k))T
k+1∏

l=K−1
P(l)T }}

= E{
K−1∑
k=0

Trace{ecr(k)(ecr(k))T
k+1∏

l=K−1
P(l)T

K−1∏
l=k+1

P(l)}} (15)

assuming that E{ecr(k)Tecr(l)} = 0 when k 6= l. Let S =
∏K−1
k=0 S(k), where

S(k) =

√√√√√( I(k)−1∑
i=0

2−pi(k)
)2

+

( J(k)−1∑
j=0

2−qj(k)
)2

(16)

from (8). Then, (15) is rewritten as

E{(ecr)T (ecr)} =

K−1∑
k=0

K−1∏
l=k+1

S(l)2E{(ecr(k))Tecr(k)}. (17)
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When a two’s complement data with Br fractional bits is truncated by i right shift operation (x >> i),

the error variance is represented as 2−2Br

12 (1− 2−2i) [27]. Thus,

E{ecr(k)Tecr(k)} =

2−2B
r

12

( I(k)−1∑
i=0

(1− 2−2pi(k)) +

J(k)−1∑
j=0

(1− 2−2qj(k))
)
. (18)

Finally, assuming that eca is uncorrelated with ecr and the means of all the errors are zero, the total

MSE of MSR-CORDIC is expressed as

E{(ec)Tec} = E{(eca)Teca}+ E{(ecr)Tecr}

= E{|x|2}(δ2 + S2 − 2S + 1) +

K−1∑
k=0

K−1∏
l=k+1

S(l)2
2−2B

r

12

( I(k)−1∑
i=0

(1− 2−2pi(k)) +

J(k)−1∑
j=0

(1− 2−2qj(k))

)
. (19)

It should be noted that although the order of the sub-rotations is changed, the approximation error remains

unchanged due to the same S and δ. However, the round-off error depends on the order of sub-rotations.

Thus, we need to adjust the order of the sub-rotations after the searching process is completed such that

(17) is minimized.

B. Error Analysis of FFT with MSR-CORDIC

In the DIT FFT algorithm, the basic repetitive operation is the multiplication with twiddle factors

followed by Butterfly operations as shown in Fig. 2 (a). The operation of the m-th and m′-th channels

at the n-th FFT stage can be expressed asxm′,n+1

xm,n+1

 =

1 1

1 −1

1 0

0 Wm,n

xm′,n
xm,n

 for

0 ≤ m,m′ < N, 0 ≤ n < log2N, and

m = m′ + 2n (20)

where xm,n and xm′,n are the input complex numbers of the m-th and m′-th channels at the n-th stage,

respectively, and Wm,n is the twiddle factor. Also, log2N is the number of stages for the N -point radix-2

FFT. When the twiddle factor multiplication Wm,nxm,n is implemented using MSR-CORDIC algorithm,

the error ecm,n is introduced as shown in Fig. 2 (a), and its MSE can be estimated using (19).

August 13, 2012 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING 9

 

,m nx 

,m nx

, 1m nx  

, 1m nx 

,

c

m ne

,m nW

(a)

 

,m nx 

,m nx , 1m nx 

,

c

m ne



,

fs

m ne

1

2

1

2



,

fs

m ne 

, 1m nx  

,m nW

(b)

Fig. 2. The Butterfly operation of the radix-2 DIT FFT algorithm with error model at the n-stage when (a) the scaling process

is not performed, (b) the down-scaling by the factor 1/2 is performed.

Now, the propagation of ecm,n into the last stage of FFT is examined in order to estimate the MSE of

the FFT output. Let

1 1

1 −1

 be denoted as B, and

1 0

0 Wm,n

 as Wm,n in (20). Since BHB = 2× I

where [·]H is Hermitian of the matrix, the MSE of ecm,n is doubled due to the Butterfly operation, and

propagated into the (n + 1)-th stage. Similarly, the MSE is doubled at every stage from the (n + 1)-th

stage to the last, because

(B[Wm,n]Q)H(B[Wm,n]Q) ' 2× I for all m and n. (21)

In summary, the MSE introduced at the n-th stage is amplified by a factor of 2log2N−n after completing

the computation of the last stage. It should also be noted that some twiddle factors having trivial values

such as ±1 or ±j do not require any complex multiplications, and thus do not generate errors. Finally,

the MSE per sample of FFT output can be represented as

E{(ef )Tef} =

1

N

( log2N−1∑
n=0

N−1∑
m=0

E{(ecm,n)Tecm,n}2log2N−n
)

(22)

August 13, 2012 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING 10

where

E{(ecm,n)Tecm,n} =0 if Wm,n = ±1,±j, or (m mod 2n+1) < 2n,

given in (19) otherwise.
(23)

Meanwhile, the intermediate data is usually down-scaled by 1/2 for preventing the overflow during the

Butterfly calculation as shown in Fig. 2 (b) (The scaling factor is 1/p in the radix-p FFT.). In this case,

(22) is replaced with

E{(ef )Tef} =

1

N

( log2N−1∑
n=0

N−1∑
m=0

(
E{(ecm,n)Tecm,n}

(1

2

)log2N−n

+ E{(efsm,n)Tefsm,n}2
(1

2

)log2N−n−1
))

. (24)

The first term of the summation in the right hand side in (24) is the modification of (22) based on the

fact that (12B)H(12B) = 1
2 × I, and the second term of that is contributed by the down-scaling operation,

where

E{(efsm,n)Tefsm,n} = 2
2−2B

r

12
(1− 2−2) for all m,n. (25)

Note that (24) is obtained as the weighted sum of MSEs by assuming that the errors generated at the

different stages are uncorrelated. However, the assumption needs to be examined further. More specifically,

let us rewrite (24) as

E{(ef )Tef} =

E{(efa)Tefa}+ E{(efr)Tefr}+ E{(efs)Tefs} (26)

where superscripts ‘fa’, ‘fr’, and ‘fs’ are abbreviations for ‘FFT approximation’, ‘FFT round-off’, and

‘FFT scaling’, respectively. It should be noted that efa and efr are originated from the MSR-CORDIC,

and efs are from the down-scaling operation. According to (19) and (24), each term in (26) is represented
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as

E{(efa)Tefa} =

1

N

log2N−1∑
n=0

N−1∑
m=0

E{(ecam,n)Tecam,n}
(1

2

)log2N−n, (27)

E{(efr)Tefr} =

1

N

log2N−1∑
n=0

N−1∑
m=0

E{(ecrm,n)Tecrm,n}
(1

2

)log2N−n, (28)

E{(efs)Tefs} =

1

N

log2N−1∑
n=0

N−1∑
m=0

E{(efsm,n)Tefsm,n}2
(1

2

)log2N−n−1 (29)

where E{(ecam,n)Tecam,n}, E{(ecrm,n)Tecrm,n}, and E{(efsm,n)Tefsm,n} are given as (12), (18), and (25),

respectively. Many published articles have justified (28) and (29) by ignoring the second order effect

among the errors, and they are proved through exhaustive simulations [8], [27], [28]. However, the

equality in (27) often causes significant difference between the analysis and simulation, because the

approximation errors introduced in the same data path are highly correlated. An alternative method for

estimating the approximation error is to calculate the difference between the ideal and approximated

matrix of DFT directly. To be more precise, let DN be the true N ×N DFT matrix and x be the N × 1

input vector of the matrix. The output MSE then can be computed as

E{(efa)Hefa}

=
1

N
E
{(

(DN − [DN ]Q)x
)H(

DN − [DN ]Q
)
x
}

=
1

N
Trace{(DN − [DN ]Q)Rxx(DN − [DN ]Q)H} (30)

where Rxx = E{xxH}. By replacing (27) with the more precise representation in (30), the output MSE

of FFT can be rewritten as

E{(ef )Tef} =

1

N

(
Trace{(DN − [DN ]Q)Rxx(DN − [DN ]Q)H}

+

log2N−1∑
n=0

N−1∑
m=0

(
E{(ecrm,n)Tecrm,n}(

1

2
)log2N−n

+ E{(efsm,n)Tefsm,n}2(
1

2
)log2N−n−1

))
. (31)
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The MSE can also be represented as SQNR defined as

SQNR (dB) = 10 log10
E{xHx}

N2E{(ef )Tef}
(32)

where the term N2 is due to down-scaling operation. The output MSE of FFT with different radix or

split-radix can also be estimated with a few modifications of the proposed analysis. It is observed that

our analysis closely matches the simulation results obtained in next sections.

IV. DESIGN OF FFT WITH GENERALIZED MSR-CORDIC

In generalized MSR-CORDIC, complex multipliers are often reused to minimize the silicon area of

the integrated circuits, and all the complex multiplications are designed to have a uniform structure. For

this purpose, the parameters such as Ac, K, I(k), and J(k) should be fixed for all the multiplications.

Meanwhile, the ‘generalized MSR-CORDIC’ module which has been proposed in [22] (see Fig. 9 in [22])

permits the flexibility of I(k) and J(k). In this section, we propose a novel determination algorithm of the

parameters of MSR-CORDIC when the generalized MSR-CORDIC is employed for FFT. We minimize

the number of adders and bit-width of complex multipliers when the SQNR of the FFT output is given as

a design constraint. The twiddle factor multiplication and scaling in Butterfly operation shown in Fig. 2

(b) are the only sources of the MSE of the FFT output. Therefore, error analysis equations derived in

the previous section are used for the proposed parameter determination algorithm.

In Subsection IV-A, the determination algorithm of the SPT coefficients
∑I(k)−1

i=0 ηi(k)2−pi(k) and

−
∑J(k)−1

j=0 µj(k)2−qj(k) based on the derived MSR-CORDIC error equation (19) is introduced for given

parameters Bc, K, and Ac(k). Then, the determination procedure of K and Ac(k) is developed in

Subsection IV-B under the assumption that Ac and Bc are fixed. Finally, Subsection IV-C provides the

flowchart for the determination of Ac and Bc.

A. Determination of SPT Coefficients in MSR-CORDIC

Since the parameters of the MSR-CORDIC in (10) cannot be directly obtained, it should be searched

within a discrete coefficient space using a proper optimization technique. The accuracy of the fixed-point

FFT depends largely on the ability of the employed searching method. Assume that the number of adders

for each CORDIC sub-rotation Ac(k) and coefficient word-length Bc are fixed. The definitions for Ac(k)

and Bc are given in (11) and (8), respectively, and the determination algorithm of Ac(k) and Bc is

presented in next section. The optimization technique uses (19) as an objective function to search the

two SPT coefficients
∑I(k)−1

i=0 ηi(k)2−pi(k) and −
∑J(k)−1

j=0 µj(k)2−qj(k) in (10) for given Ac(k) and Bc.
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For this purpose, we need to collect all the possible SPT coefficients which satisfy (11). The following

constraint is added to remove the duplicate candidates:

{p0(k), ..., pI(k)−1(k), q0(k), ..., qJ(k)−1(k)} includes zero

for all k (33)

and it can be attained by adding the same integer to all the elements in the set of (33). It provides not

only the reduced discrete candidate space, thus speeding up the searching process, but also the reduced

round-off noise because the number of truncated bits is reduced during the bit-shift operation.

The direct approach is to create all the candidates of (10) using exhaustive combinations of possible

SPT numbers which are consistent with (11) and (33), and then find the one which minimizes (19) in

the candidate pool. For this purpose, the pools of SPTs, sub-rotations, and rotations are created one

after another. Then, the candidate which has the smallest MSE is chosen in the pool of rotations. The

exhaustive search is computationally acceptable if Ac and/or Bc are small. Otherwise, it requires high

computational complexity and memory storage due to the vast number of candidates even if it can provide

a global optimum.

Another method is to make use of the suboptimal approaches. They create only the pools of SPTs

and sub-rotations during the optimization whereas the approximated rotation is obtained through specific

strategies such as greedy or trellis based algorithms. Their computational complexity can be significantly

reduced because the pool of rotations is not created. However, the MSE would be larger than that obtained

by exhaustive search. The algorithm descriptions are omitted in this paper. Please refer to [25] for further

details of trellis based algorithm, and [21] for those of greedy algorithm.

In N -point DIT FFT algorithms, the angle θm,n of the twiddle factor Wm,n, where Wm,n = ejθm,n , is

represented as −2πk/N , where k is an integer within 0 ≤ k < N/2. Thus, the twiddle factor angle falls

within the range of −π < θm,n ≤ 0. When the twiddle factor is θm,n = 0 or −π/2, the multiplication

can be done without using multiplier circuitry. Moreover, the periodicity property of the twiddle factors

can be exploited to reduce the complexity of the searching process further as follows:
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for − π/2 < θm,n < −π/4,

[R(θm,n)]Q =

0 1

1 0

 [R(−θm,n − π/2)]Q

−1 0

0 1


for − 3π/4 ≤ θm,n < −π/2,

[R(θm,n)]Q =

 0 1

−1 0

 [R(θm,n + π/2)]Q

for − π < θm,n < −3π/4,

[R(θm,n)]Q =

1 0

0 −1

 [R(−θm,n − π)]Q

−1 0

0 1

 . (34)

If [R(θm,n)]Q’s have already been obtained for the angle −π/4 ≤ θm,n < 0, those existing beyond the

range can be obtained without any additional searching process using this property; thus the overhead of

the searching process can be further reduced.

B. Determination of K and Ac(k)

Ac(k) and K can be determined for given Ac and Bc as follows: First, the set S(Ac) defined as

S(Ac) =
{(
Ac(0), ..., Ac(K − 1)

)
: Ac =

K−1∑
k=0

Ac(k),

Ac(k) is even, 0 < Ac(k) ≤ Ac(l) for k < l
}
, (35)

TABLE I

THE ESTIMATED MSE AND SQNR (DB) OF THE 128-POINT RADIX-2 DIT FFT WHERE THE COMPLEX MULTIPLIERS ARE

IMPLEMENTED IN THE STRUCTURE CORRESPONDING TO EACH ELEMENT IN THE SET S(8).

element ∈ S(Ac) K E{(ef )T ef} SQNR

(8) 1 1.772080e−5 29.45

(4, 4) 2 1.131848e−6 41.43
Ac = 8

(2, 6) 2 5.147796e−7 44.86

(2, 2, 4) 3 3.533044e−7 46.49

(2, 2, 2, 2) 4 1.055369e−6 41.74
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Fig. 3. The MSE (dB) versus word-length Bc (=Br) in the 128-point radix-2 DIT FFT algorithm.

is obtained for the given Ac. The element
(
Ac(0), ..., Ac(K − 1)

)
means that the rotation has K sub-

rotations and each of them has Ac(0),...,Ac(K − 1) adders. From (11), we see that Ac and Ac(k) are

even numbers for all k. For example, when Ac = 8, S(Ac) has five elements, (8), (4, 4), (2, 6), (2, 2, 4),

and (2, 2, 2, 2). The element (2, 6) means that the rotation is implemented as the cascade of two sub-

rotations (K = 2), and each sub-rotation includes 2 and 6 adders. In generalized MSR-CORDIC, only

one element in S(Ac) should be selected and applied to all the twiddle factor multiplications in FFT.

For this purpose, the searching process is performed for each case corresponding to each element in the

set S(Ac) separately, and then the best element which minimizes the MSE of the FFT output is chosen.

As an example, Table I shows the MSE and SQNR of a 128-point radix-2 DIT FFT estimated by (31)

and (32), respectively when Ac = 8. In the simulation, we set Bc = Br = 12, and use Gaussian random

inputs with zero mean and standard deviation 0.1 for the real and imaginary inputs. Also, the searching

method presented in Subsection IV-A with the trellis-based algorithm is employed to obtain the SPT

numbers. From the table, it can be seen that (2, 2, 4) provides the minimum MSE among all the cases.

Thus, we finally set K = 2, Ac(0) = 2, Ac(1) = 2, and Ac(2) = 4 for Ac = 8 and Bc = 12.

C. Determination of Ac and Bc

The MSE of FFT decreases with increasing Ac because the approximation error reduces. The MSE

also decreases as Br increases due to the reduction of round-off and scaling errors. However, this is

not valid for specific Ac and Br. For more observations, the relationship between the MSE (dB) of the

128-point radix-2 DIT FFT and the word-length Bc when Ac ranges from 2 to 12 is shown in Fig. 3.

Bc should not be larger than Br since it is meaningless if the number of bits to be shifted is larger
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Fig. 4. The MSE (dB) of approximation, round-off, scaling, and total errors versus word-length Bc (=Br) in the 128-point

radix-2 DIT FFT algorithm with Ac = 10.
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Fig. 5. The MSE (dB) of approximation, round-off, scaling, and total errors versus the number of nonzero digits Ac in the

128-point radix-2 DIT FFT algorithm with Bc = Br = 12.

than the word-length of the registers. Also, Bc need not be smaller than Br for obtaining the higher

approximation accuracy if the limitation in the ROM size is not strict. Thus, Bc is set to have the same

value as Br. As shown in this figure, the MSE is not improved even though Ac is increased from 10

to 12 if Br is smaller than 13. Also, if Ac is small, larger word-length does not guarantee a smaller

MSE. For better understanding, the MSEs (dB) of approximation, round-off, and scaling errors versus

Br with Ac = 10 are illustrated in Fig. 4. The MSEs (dB) versus Ac with Br = 12 are also illustrated

in Fig. 5. As shown in Fig. 4, when Br is small, the round-off and scaling errors become dominant error

sources, and thus the total error is almost the same as the sum of these two errors. We can expect that

if Ac > 10, the angle approximation error would be reduced further whereas the round-off error and
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Fig. 6. The flowchart for the determination of Ac and Br in the FFT with generalized MSR-CORDIC.

scaling error would slightly increase with more SPT terms. Finally, the total error with Ac > 10 would

be almost the same as that with Ac = 10 when Br is small, which could be seen in Fig. 3. Therefore, Br

should be increased instead of Ac in order to have a smaller MSE. On the contrary, when Ac is small,

the approximation becomes the dominant error source as shown in Fig. 5. Hence, a better MSE can not

be obtained even if Br increases. In that case, Ac should be increased.

Based on this observation, a procedure for determining Ac and Br (=Bc) is proposed for a given MSE

constraint. The flowchart of the detail design procedure is described in Fig. 6. Ac and Br are initially

set to small values (e.g. Ac = 2 and Br = 5 in Fig. 6). For current Ac, all the elements in the set S(Ac)

are obtained, and [R(θm,n)]Q corresponding to each element are found for all m and n using the method

presented. The element which provides the minimum MSE of FFT is chosen. If the minimum MSE for

the current Ac and Br is smaller than the given MSE constraint, the procedure is terminated, otherwise,

more adders are allocated by setting Ac = Ac + 2, and the same procedure is repeated. If additional

adders cannot reduce the MSE any more (|MSE(Ac)−MSE(Ac − 2)| < ε) in Fig. 6, the round-off and
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TABLE II

THE MSE, SQNR (DB), AND PARAMETERS OBTAINED BY THE PROCEDURE IN FIG. 6 FOR THE N -POINT RADIX-2 DIT

FFT WHEN GENERALIZED MSR-CORDIC IS EMPLOYED AND 50 DB IS GIVEN AS THE SQNR CONSTRAINT.

estimated error simulated error
N

E{|efa|2} E{|efr|2} E{|efs|2} E{|ef |2} SQNR E{|ef |2}
Ac ∈ S(Ac) Br

8 1.277e−8 1.990e−7 1.669e−6 1.881e−6 51.81 1.879e−6 8 (2, 2, 4) 9

given SQNR 16 5.446e−7 1.161e−7 4.466e−7 1.107e−6 50.82 1.108e−6 8 (2, 2, 4) 10

constraint: 32 4.730e−7 4.438e−8 1.154e−7 6.328e−7 50.08 6.334e−7 8 (2, 2, 4) 11

50 dB 64 4.463e−9 7.199e−8 1.174e−7 1.938e−7 52.15 1.931e−7 10 (2, 4, 4) 11

128 2.915e−9 2.151e−8 2.957e−8 5.400e−8 54.65 5.426e−8 10 (4, 6) 12

256 2.520e−9 2.231e−8 2.969e−8 5.452e−8 51.58 5.543e−8 10 (4, 6) 12

512 1.757e−9 5.729e−9 7.436e−9 1.492e−8 54.19 1.515e−8 10 (4, 6) 13

down-scaling are considered as the dominant error sources. Thus, Ac is initialized and Br is increased.

The MSE in Fig. 6 could be replaced with the SQNR without any modifications.

Table II shows the obtained MSE, SQNR, Ac, Br when N (from 8 to 512)-point radix-2 DIT FFT

is designed using the proposed procedure and 50 dB is given as the SQNR constraint. The simulated

errors are also listed in the table to show that our estimates closely match the actual errors. Specially,

the coefficient values for the case of 128-point are listed in Table III. [R(θm,n)]Q can be obtained by

substituting the listed sum of SPT coefficients into (10).

V. DESIGN OF FFT WITH DEDICATED MSR-CORDIC

The generalized MSR-CORDIC processor is designed to perform multiplications of diverse twiddle

factors. In that case, the parameters of the CORDIC are obtained via off-line optimization, and stored in

ROM. The complex multiplier reads the appropriate parameters according to the twiddle factor angle from

ROM. However, in the FFT with dedicated MSR-CORDIC where each complex multiplier is designed

to have its own circuit, very high throughput rate can be achieved when it is implemented as the fully

parallel structure with minimum memory storages but more CORDIC rotators. Also, the N -point FFT with

dedicated MSR-CORDIC can be used as sub-blocks of radix-N FFT. Since the reusability and regularity

of the complex multiplier are not constrained in the design, the parameters such as Ac, Ac(k), K, I(k),

and J(k) are not necessary to be fixed for all the complex multipliers. In other words, each complex

multiplier can have not only different number of adders but also different elements in the set S(Ac),

and therefore, provides a smaller approximation error than that with the generalized MSR-CORDIC. A
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TABLE III

THE COEFFICIENT VALUES OF THE 128-POINT RADIX-2 DIT FFT IN TABLE II. [R(θm,n)]Q CAN BE OBTAINED USING THE

SUM OF SPT COEFFICIENTS IN THE TABLE AND (10).

twiddle Ac(0) = 4 Ac(1) = 6

factors ∑
i ηi(0)2

−pi(0)
∑

j µj(0)2
−qj(0)

∑
i ηi(1)2

−pi(1)
∑

j µj(1)2
−qj(1)

W 1
128 2−4 20 − 2−9 2−6 − 2−9 − 2−12 −20

W 2
128 20 2−5 − 2−8 20 − 2−7 − 2−11 −2−3

W 3
128 20 + 2−7 −2−3 20 − 2−6 −2−5 + 2−7

W 4
128 20 + 2−12 −2−2 20 − 2−5 2−4 − 2−6

W 5
128 2−2 + 2−11 20 0 −20 + 2−5 − 2−10 − 2−12

W 6
128 20 + 2−3 − 2−5 0 20 − 2−3 −2−2 − 2−6

W 7
128 20 − 2−5 −2−3 20 + 2−12 −2−2 + 2−5

W 8
128 20 − 2−4 −2−5 20 − 2−9 −2−1 + 2−3

W 9
128 2−1 20 + 2−5 2−7 −20 + 2−3 + 2−9

W 10
128 2−6 − 2−10 −20 2−1 − 2−6 20 − 2−3

W 11
128 20 − 2−6 −2−7 20 − 2−3 −2−1 − 2−6

W 12
128 20 + 2−8 −2−4 20 − 2−3 − 2−6 −2−1

W 13
128 20 −20 + 2−3 20 − 2−2 2−4 − 2−9

W 14
128 2−2 20 − 2−3 −2−1 + 2−4 −20 − 2−7

W 15
128 20 − 2−2 −2−6 20 + 2−7 −20 + 2−3

W 16
128 0 −20 + 2−2 − 2−8 20 − 2−4 20 − 2−4

dynamic adder allocation algorithm is proposed to minimize the total number of adders consumed by the

FFT processor when the MSE of the FFT output is given as the design constraint.

Let the adder cost for the multiplication with Wm,n be Acm,n. Thus, the total number of adders allocated

to all the complex multipliers are represented as

Af =

log2N−1∑
n=0

N−1∑
m=0

Acm,n. (36)

In addition,

Acm,n = 0 if Wm,n = ±1,±j, or (m mod 2n+1) < 2n. (37)

The detailed design procedure is described in Fig. 7 (a). Acm,n is initially set to 0 for all m and n, and

Br is initialized to a small value (e.g. Br = 5 in Fig. 7 (a)). Then, we need to determine (m, n) which

can achieve the largest reduction for the MSE of the FFT output when more adders are allocated. As

described in Algorithm 1, we find [R(θm,n)]Q when two more adders are allocated to the CORDIC in
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Fig. 7. The flowcharts for the determination of Ac
m,n and Br in the FFT with dedicated MSR-CORDIC, when (a) the MSE

is given as the design constraint, (b) the total number of adders consumed by FFT, At, is given as the design constraint.

the location of (m,n). E{|ef |2} is estimated for a newely found [R(θm,n)]Q, and denoted as Φm,n. We

repeat the procedure until Φm,n are obtained for all m and n, and the index (m∗, n∗) that provides the

minimum output MSE is chosen. If the minimum MSE for the current Af and Br is smaller than the

given MSE constraint, the procedure is terminated. Otherwise, more adders are allocated, and the same

procedure is repeated.

The logic depth of the complex multiplier may be constrained to reduce the critical path and maximize

the throughput of the FFT. Note that we can control the critical path by limiting the number of adders in

all the CORDICs. With a little modification of flowchart in Fig. 7 (a), the constraint for the maximum

number of Acm,n can be added.

It is well known that the number of non-trivial complex multiplications of N -point radix-2 DIT FFT

algorithm is given as (N/2)(log2N−3)+2. Whenever every 2 real adders are allocated, Algorithm 1 is

executed. Thus, (31) should be evaluated (N/2)(log2N − 3) + 2 times whenever 2 adders are allocated.
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Algorithm 1 Calculates Φm,n for all m and n.
1: for n = 0, ..., log2N − 1 do

2: for m = 0, ..., N − 1 do

3: if Wm,n 6= ±1,±j, ∩ (m mod 2n+1) ≥ 2n then

4: Find [R(θm,n)]Q when Acm,n = Acm,n + 2.

5: Set Φm,n = E{|ef |2} when [R(θm,n)]Q is deployed.

6: end if

7: end for

8: end for

If N is large, the evaluation of (31) may require a significant amount of time. For example, if 512-point

radix-2 DIT FFT is designed and 2×n adders on average are allocated to each complex multiplier, (31)

should be executed 1, 538×1, 538×n times for 1, 538 non-trivial complex multipliers. The evaluation of

E{(efa)Hefa} term in (31), that is, (30) requires high computational complexity when N is large. In that

case, (24) would be more computationally efficient than (31) with a little degradation of accuracy. The

second term in the summation in (24) associated with down-scaling does not vary with new allocations of

adders since the term does not depend on the MSR-CORDIC parameters. Furthermore, the first term in the

summation in (24) is obtained through (19), where E{(ecr)Tecr} can be omitted because the procedure

in Fig. 7 (a) always works in the state that the approximation error is dominant (As shown in Fig. 7 (a).

When the round-off error becomes dominant, the algorithm increases Br and resets Acm,n, making the

approximation error dominant again.). Finally, only the approximation error term E{(eca)Teca} needs to

be evaluated at every iteration. Meanwhile, since the input energy E{|xm,n|2} in (19) should be updated

every iteration resulting in time-consuming. If E{|xm,n|2} is obtained using the ideal Wm,n only once,

and is used during the whole procedure, the computational time could be significantly reduced. Our

design experience shows that all these simplifications do not cause severe deterioration.

In the design with dedicated MSR-CORDIC, the silicon area of the FFT highly depends on the total

number of adders in FFT, denoted as At, since the area of hard-wired shifter is negligible. In some design

problems, At is constrained to minimize the silicon area. In this case, the design algorithm allocates the

adders to each complex multiplier such that the total number of adders are not more than the given

adder cost while the output MSE is minimized. As shown in Fig. 2, the Butterfly operation includes two

complex additions and a complex multiplication. In addition, the N -point radix-2 DIT FFT algorithm
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TABLE IV

THE MSE, SQNR (DB), AND PARAMETERS OBTAINED BY THE PROCEDURE OF FIG. 7 (A) FOR THE N -POINT RADIX-2 DIT

FFT WHEN DEDICATED MSR-CORDIC IS EMPLOYED AND 50 DB IS GIVEN AS THE SQNR CONSTRAINT. AV. Ac MEANS

AVERAGE Ac PER EACH CORDIC WHICH IS CALCULATED AS Af/(N
2
(log2N − 3) + 2).

estimated error simulated error
N

E{|efa|2} E{|efr|2} E{|efs|2} E{|ef |2} SQNR E{|ef |2}
Af Av. Ac At Br

8 1.277e−8 1.990e−7 1.669e−6 1.881e−6 51.25 1.858e−6 16 8 64 9

given SQNR 16 5.024e−7 1.137e−7 4.467e−7 1.063e−6 50.70 1.062e−6 76 7.6 204 10

constraint: 32 4.517e−7 4.487e−8 1.154e−7 6.120e−7 50.09 6.076e−7 258 7.6 578 11

50 dB 64 1.243e−7 5.624e−8 1.173e−7 2.979e−7 50.21 2.962e−7 764 7.8 1532 11

128 1.109e−7 1.492e−8 2.956e−8 1.554e−7 50.02 1.553e−7 1976 7.7 3768 12

256 3.195e−8 1.609e−8 2.969e−8 7.773e−8 50.02 7.750e−8 4972 7.7 9068 12

512 2.764e−8 3.986e−9 7.438e−9 3.906e−8 50.00 3.906e−8 11678 7.6 20894 13

consists of log2N stages, and each stage includes N/2 Butterfly operations. If At real adders are given

as the design constraint, At− 2N log2N (=Af ) real adders can be allocated for the complex multipliers.

Fig. 7 (b) describes the adder allocation procedure which is similar to that in Fig. 7 (a) except that At

is given as the design constraint. The number of non-trivial complex multiplications of N -point radix-2

DIT FFT algorithm is given as (N/2)(log2N − 3) + 2. Therefore, the average number of real adders for

each complex multiplier becomes Af/((N/2)(log2N − 3) + 2).

Table IV shows the obtained MSE, SQNR (dB), Af , and Br when N (from 8 to 512)-point radix-2

FFT is designed with dedicated MSR-CORDIC using the proposed procedure and the SQNR constraint

is 50 dB. The coefficient values for the 64-point example are listed in Table V. As shown in this table,

Acm,n, Acm,n(k), and K may have different values for different (m,n). Specifically, the SPT coefficients

when (m,n) = (5, 40) or (5, 56) are different from those when (m,n) 6= (5, 40) or (5, 56). It is because

the design algorithm is terminated while the adders are allocated to the multipliers with angle W 8
64.

The proposed design methods consider both the approximation and round-off errors whereas the

conventional methods [7], [9] minimize only the Frobenius norm (FN) related with the approximation

error under the assumption that the register word-length Br is sufficiently large. The FN is defined as

FN =
√

Trace{(DN − [DN ]Q)(DN − [DN ]Q)H}. (38)

Note that (30) provides better results than (38) because (30) reflects the statistics of the FFT input. For

the comparison with the results of [7], [9] in terms of FN, the FFTs which minimize only approximation
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TABLE V

THE SPT COEFFICIENT VALUES OF THE 64-POINT RADIX-2 DIT FFT IN TABLE IV. [R(θm,n)]Q CAN BE OBTAINED USING

THE SPT COEFFICIENTS IN THE TABLE AND (10). W 8
64-A: (m,n) = (5, 40) OR (5, 56). W 8

64-B: (m,n) 6= (5, 40) OR (5, 56).

twiddle k = 0 k = 1 k = 2

factors ∑
i ηi(0)2

−pi(0)
∑

j µj(0)2
−qj(0)

∑
i ηi(1)2

−pi(1)
∑

j µj(1)2
−qj(1)

∑
i ηi(2)2

−pi(2)
∑

j µj(2)2
−qj(2)

W 1
64 20 −2−4 20 −2−5 − −

W 2
64 20 −2−2 20 − 2−5 2−4 − 2−6 − −

W 3
64 20 −2−2 20 2−6 20 − 2−5 −2−4

W 4
64 20 − 2−6 2−3 20 − 2−3 −2−1 − −

W 5
64 0 −20 + 2−4 2−1 20 − 2−4 − −

W 6
64 2−1 20 − 2−2 0 −20 − 2−3 + 2−6 − −

W 7
64 2−2 20 − 2−3 −2−1 + 2−4 −20 − 2−7 − −

W 8
64-A 20 20 0 −20 + 2−4 20 − 2−2 0

W 8
64-B 20 20 0 −20 + 2−4 20 − 2−2 + 2−8 0

TABLE VI

COMPARISONS OF THE PROPOSED DESIGNS WITH OTHER DESIGNS IN TERMS OF NUMBER OF ADDERS AND FROBENIUS

NORM (FN) IN DB.

N
radix-2 FFT method in [7] method in [9] FFT 1 (Sec. IV) FFT 2 (Sec. V)

mult. add. add. FN add. FN add. (At) Bc FN add. (At) Bc FN

8 4 52 84 −64 − − 64 9 −73 64 9 −73

16 24 152 252 −53 − − 208 9 −54 208 9 −71

32 88 408 756 −45 616 −46 592 9 −51 592 9 −65

64 264 1032 2094 −43 − − 1552 9 −49 1552 9 −61

128 712 2504 6727 −41 4800 −41 3856 9 −47 3856 9 −60

error are designed under fixed Bc and large Br, and (38) is computed. In the proposed design, the average

number of adders is set to 8. Hence, the total number of adders consumed by FFT, At, is expressed as

At = 4N(log2N − 3) + 16 + 2N log2N. (39)

The FNs and total numbers of adders of different FFT algorithms are summarized in Table VI. As shown

in the table, the proposed design of FFT with MSR-CORDIC shows better accuracy as well as lower

hardware complexity than other methods.

Some papers proposed the bit allocation algorithm which allows the register at each FFT stage to have
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different Br [8], [28]. Its design objective is to consume fewer bits for internal registers and memory

storages while maximizing the system accuracy. However, this issue is beyond the scope of this paper.

Interested readers may incorporate the proposed analysis and design with the algorithms introduced in

[8], [28].

VI. CONCLUSIONS

In this paper, the fixed-point error analysis of the FFT is presented when MSR-CORDIC is employed

for the twiddle factor multiplier. Based on the analysis, total quantization error of the FFT including

the approximation error, round-off error and scaling error, is derived in terms of SQNR. Parameter

determination algorithms are proposed to maximize the SQNR and to minimize the total number of

adders. The proposed method alleviates the impairment of the round-off error as well as approximation

error in the course of design. The proposed design is helpful in low-cost and high accuracy design of

FFT with the MSR-CORDIC.
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