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Abstract— Domain adaptation (DA) approaches address
domain shift and enable networks to be applied to different
scenarios. Although various image DA approaches have been
proposed in recent years, there is limited research toward video
DA. This is partly due to the complexity in adapting the different
modalities of features in videos, which includes the correlation
features extracted as long-range dependencies of pixels across
spatiotemporal dimensions. The correlation features are highly
associated with action classes and proven their effectiveness in
accurate video feature extraction through the supervised action
recognition task. Yet correlation features of the same action would
differ across domains due to domain shift. Therefore, we propose
a novel adversarial correlation adaptation network (ACAN) to
align action videos by aligning pixel correlations. ACAN aims
to minimize the distribution of correlation information, termed
as pixel correlation discrepancy (PCD). Additionally, video DA
research is also limited by the lack of cross-domain video datasets
with larger domain shifts. We, therefore, introduce a novel
HMDB-ARID dataset with a larger domain shift caused by a
larger statistical difference between domains. This dataset is
built in an effort to leverage current datasets for dark video
classification. Empirical results demonstrate the state-of-the-art
performance of our proposed ACAN for both existing and the
new video DA datasets.

Index Terms— Action recognition, adversarial, correlation,
dark videos, domain adaptation (DA).

I. INTRODUCTION

ACTION recognition has long been studied thanks to
its applications in various fields. Despite achieving
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promising results, most research assumes that the distribution
of the test data is in line with that of the train data. Meanwhile,
due to the high cost of annotating videos, it is desirable if
networks trained in one domain could be directly applied
to another. However, significant decrease in performances is
observed when networks are applied to cross-domain scenar-
ios. To alleviate the impact of domain shift, studies have
been conducted on unsupervised domain adaptation (UDA),
which aims to leverage data from the labeled source domain
to boost performance on the unlabeled target domain [1], [2].
Previously, UDA has been mostly explored on image-based
tasks, such as image recognition [3], [4], [5], object detec-
tion [6], [7], [8], and person re-identification [9], [10].

Comparatively, there is limited research toward applying
DA methods to videos for tasks such as action recognition.
This is mainly due to the fact that videos contain data with
more modalities, which complicates the adaptation process.
Earlier works use the same adaptation strategies as that for
image DA while utilizing 3-D convolutional neural networks
(3D-CNNs) instead of 2-D CNNs (2D-CNNs) for feature
extraction. However, these works produce inferior results due
to the fact that the simple strategy of substituting feature
extractor ignores the different characteristic between spatial
and temporal features. Current improvements in DA methods
for video tasks focus on improving alignment along the
temporal direction. Such improvements are in line with the
additional temporal information provided in videos compare to
images. They are achieved mainly through applying attention
mechanisms to features of video segments sampled across
the temporal direction [11], [12]. Alternatively, auxiliary tasks
such as clip order prediction [13] are utilized to extract robust
temporal representation [14].

Intuitively, the correlation features in videos in the form of
long-range spatiotemporal pixel dependencies are highly asso-
ciated with an action. In supervised action recognition, such
correlation features have been recently exploited to aid the
extraction of accurate video features. One significant example
is the nonlocal neural network [15], inspired by the nonlocal
mean operation for image denoising [16], [17]. The spa-
tiotemporal features are constructed by extracting correlation
features, obtained by performing self-attention [18], [19], [20].
The correlation features have brought significant increase in
network performance compared to utilizing temporal features
only [15], [21], [22], [23], [24]. This is thanks to the fact that
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Fig. 1. Illustration of our proposed correlation features alignment. Correlation
features are extracted as long-range dependencies of pixels across spatiotem-
poral dimensions. For the same action in the source and target domains, their
corresponding correlation features are distinct due to the different postures of
the actors. While correlation features are highly associated with the action,
alignment of video features should include the alignment of correlation
features. Here, we show two samples with the action “Push” from HMDB51
(top) and ARID (bottom).

temporal features only correlate to local pixel dependencies,
while long-range dependencies are captured by correlation
features. However, correlation features of the same action
could be very different, as depicted in Fig. 1. The same
action “Push” sampled from two different datasets results
in distinct correlation information. Given the close relation
between correlation features and the action, it is therefore
reasonable to not only align spatial and temporal features alone
but also to align correlation features. We therefore propose an
adversarial correlation adaptation network (ACAN) that aligns
correlation features in an adversarial manner.

For an action within a domain, its correlation features,
and the embedded correlation information, would be similar,
thanks to the similar appearance and postures of the actors.
Yet outliers may be presented in each domain, which may
impact the transferability of the network. To cope with such
impact, we propose that the joint distribution of correlation
information should be aligned. We believe that such a joint
distribution of correlation information could be computed as
the covariance of the correlation information [25], imple-
mented as its corresponding Gram matrix [26], [27]. Therefore,
aligning the correlation features of two domains is interpreted
as minimizing the difference between the Gram matrices
of the correlation information. While direct minimization
of the Gram matrix difference could come at a price of
decreasing network discriminability and high-computational
cost, we propose to minimize the pixel correlation
discrepancy (PCD).

Besides the complexity of the process of video data, the lack
of research in DA methods for action recognition and other
video-based tasks are also partly due to the lack of sufficient
and meaningful cross-domain video datasets. Apart from
current video DA datasets, we proposed a new HMDB-ARID
dataset from HMDB51 [28] and a recent dark video dataset,

ARID [29]. The different illumination conditions of videos in
HMDB51 and ARID causes larger domain shift, making the
HMDB-ARID dataset more challenging.

Our main contributions are summarized as follows.
1) We proposed a novel ACAN network for domain adap-

tation (DA) in action recognition by aligning correlation
features in the form of long-range spatiotemporal depen-
dencies across domains, which has not been explored by
prior works.

2) We further improve the effectiveness of correlation
alignment by aligning the joint distribution of correlation
information of different domains through minimizing
PCD.

3) We introduce a more challenging video DA dataset: the
HMDB-ARID dataset. To our knowledge, this is the
first video DA dataset that includes videos shot under
different illumination, which possess larger domain shift
than current video DA datasets.

4) We perform extensive experiments, whose results
demonstrate the effectiveness of our proposed method,
achieving the state-of-the-art performance across multi-
ple current and novel video DA datasets.

The rest of this article is organized as follows: related
works of unsupervised domain-adaptation in video-based
tasks, such as action recognition are discussed in Section II.
In Section III, we introduce our proposed ACAN with the
process of minimizing PCD thoroughly. Further, in Section IV,
we introduce our proposed HMDB-ARID dataset in detail.
After that, we present and analyze the experimental results
of our proposed ACAN on previous and our novel video
DA datasets, with a thorough ablation study on the design
of ACAN in Section V. Finally, we conclude the article and
propose our future work in Section VI.

II. RELATED WORKS

A. Action Recognition

Action recognition has shown great progress with the use
of CNNs for extracting accurate video features and represen-
tations. There exist mainly two branches of work. One of
which utilizes the two-stream structure [30], [31], [32], [33],
[34], [35], [36], extracting video features through CNNs from
both optical flow and RGB inputs. The other path utilizes
the 3D-CNN structure [37], [38], [39], [40], [41], [42], [43]
to extract video features by extracting spatial and temporal
features jointly with only RGB inputs. This path has made
further progress by introducing separable CNN [44], [45],
improving the efficiency of video feature extraction.

More recently, correlation features in the form of long-range
spatiotemporal dependencies have been exploited for further
improvements in action recognition. One significant example
of which is inspired by the nonlocal means for image filtering
task [16], termed the nonlocal block [15], and is introduced
with the nonlocal neural network for capturing correlation
between spatiotemporal pixels. Works as in [21], [46], and [47]
also improve video feature extraction using the same idea,
but utilizing different methods such as attention [21], [46]
or relation modules [47]. Despite the great progress made in
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Fig. 2. Overview of the structure of ACAN. We first generate video features with a shared 3D-CNN encoder for both source and target domain videos
with the same spatial and temporal dimensions. Source and target correlation feature vectors are obtained through high-level video features, extracted from a
deeper layer of the encoder. An adversarial domain loss is applied to both the video features and the correlation feature vectors for aligning the video features
and correlation feature vectors. Further, aligning the joint correlation information distribution requires the alignment of the Gram matrices constructed from
the pixel correlation matrices (PCM). To achieve this, we further introduce the PCD. Figure best viewed in color and zoomed in.

action recognition, most models rely on the target supervised
data for fine-tuning on the target dataset, and thus could not
be applied to different domains or scenarios without sufficient
labels or annotations. To this end, unsupervised DA helps
improve the transferability of models so that they could be
applied without access to target labels during training.

B. Unsupervised Domain Adaptation

In recent years, there has been a rise of research inter-
est in DA, which aims to distill shared knowledge across
domains and improve the transferability of models. In our
work, we focus on UDA, when labeled target data are not
available. With the success of generative adversarial network
(GAN) [48], [49], researchers have proposed to construct
adversarial loss [3] for DA. Various adversarial-based DA
methods [3], [4], [50], [51], [52] have been proposed for
a wide range of image-based tasks, such as image recog-
nition [4], [5], [53], [54], object detection [6], [7], [55],
semantic segmentation [56], [57], [58], [59], and person re-
identification [9], [10], [60], [61].

Despite the progress in UDA for image-based tasks, there
have been few works on UDA for video-based tasks (VUDA),
such as action recognition [11], [12], [14], [62] and action
segmentation [63]. Compared to direct integration of UDA
approaches to videos through a simple change of feature
extractor, most of these works adapt temporal features more
effectively. However, temporal features only correlate to
local pixel dependencies. Meanwhile, none of them have
explored the alignment of correlation features that correlate
to long-range pixel dependencies, which are highly associated
with actions and have proven its effectiveness in supervised
tasks, yet may be very different across different domains.
We therefore propose to align correlation information for better
video feature alignment.

III. METHOD

In video UDA, we are given a source domain with Ns

labeled videos Ds = {(V i
s , yi

s)}Ns
i=1, and a target domain

with Nt unlabeled videos Dt = {V j
t }Nt

j=1. The source and
target domains are characterized by two underlying probability
distributions ps and pt , respectively. The goal of video UDA is
to construct a network capable of learning transferable features
and minimizing a target classification risk.

Current video DA approaches still rely on aligning only
spatial and/or temporal features which correlate local pixel
dependencies and fail to align correlation features which
correlate long-range pixel dependencies. To cope with this
challenge, we propose an adversarial correlation alignment
network (ACAN) to align cross-domain correlation features
in an adversarial manner. We further introduce the PCD,
motivated by the theoretical results in style transfer. We begin
this section by presenting the base architecture of ACAN,
denoted as ACAN-base, followed by an illustration on the
minimization of PCD.

A. Base Architecture

Fig. 2 presents the base architecture of our proposed ACAN,
illustrated as ACAN-Base. During training, given a source and
target video pair (V i

s , V j
t ), the source and target video fea-

tures f i
s , f j

t are obtained through a shared 3D-CNN encoder
G f (.; θ f ). To ensure that both the shared encoder is applicable
on both the source and target data, the input source and target
videos share the same spatial and temporal dimensions. This
is achieved by sampling sequentially the same number of
frames from both source and target videos, while each frame
is resized and cropped directly. Meanwhile, the high-level
source and target video feature f i

hs , f j
ht are extracted from a

deeper layer of G f (.; θ f ) (e.g., conv4 layer). The high-level
video features are processed by a shared correlation extraction
module Gc where the correlation features of the input videos
are extracted. The results are the source and target pixel
correlation matrices Mi

s , M j
t as well as the source and target

correlation feature vectors f i
cs, f j

ct . Gc(.; θc) is built based on
the nonlocal operation [15], which extracts the correlation
features as long-range dependencies between spatiotemporal
pixels. To preserve both local and long-range spatiotemporal
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pixel dependencies, the source correlation feature vector and
video feature f i

cs, f i
s are concatenated to form the overall

feature representation of source video V i
s , which would be

input to a classifier G y for action predictions. The action class
prediction loss Ly is computed with respect to the predictions
from G y , formulated as

Ly = 1

Ns

Ns∑
i=1

L y
(
G y

(
f i
cs ⊕ f i

s

)
, yi

)
(1)

where L y is the cross entropy loss function and ⊕ denotes the
concatenation operation.

To accommodate the domain shift between source and target
domains, adversarial-based UDA approaches are proved to
perform well on image data [3], [50], [51], [52] and language
data [64]. We also leverage such technique for VUDA, which
aims to align the global distributions with additional domain
discriminators that are trained with the feature generators in
a min-max fashion. Domain discriminators are designed to
discriminate the video features while the feature generators
are trained to deceive the domain discriminators. Here the
feature generators are referred to as the combination of G f

and Gc. We adopted separate domain discriminators for the
source/target video features f �∗ (∗ ∈ (s, t), � ∈ (i, j)) and
the source/target correlation features f �

c∗. The two domain
discriminators are denoted as the video domain discrimi-
nator Gvd(.; θvd) and the correlation domain discriminator
Gcd(.; θcd). During the adversarial training process, the para-
meters θvd and θcd are learned by minimizing the video domain
loss Lvd and the correlation domain loss Lcd , respectively,
which are formulated as

Lvd = 1

Ns

Ns∑
i=1

Lb
(
Gvd

(
f i
s

)
, di

) + 1

Nt

Nt∑
j=1

Lb

(
Gvd

(
f j
t

)
, d j

)
(2)

Lcd = 1

Ns

Ns∑
i=1

Lb
(
Gcd

(
f i
cs

)
, di

) + 1

Nt

Nt∑
j=1

Lb

(
Gvd

(
f j
ct

)
, d j

)
(3)

where Lb is the binary cross-entropy loss of the domain
discriminators, while di and d j are the domain label for
the source and target domains, respectively. Meanwhile, the
parameters of the feature extractors θ f and θc are learned
to maximize the domain losses simultaneously. To achieve
uniform minimization of the action class prediction loss and
the maximization of the domain losses, a gradient reverse
layer (GRL) [3] is inserted before each domain discriminator
as in Fig. 2.

The overall loss function to be optimized can therefore be
formulated as

L = Ly − (λvLvd + λrLcd) (4)

where λv and λr are the trade-off weights for the video domain
loss and correlation domain loss, respectively.

B. Minimizing Pixel Correlation Discrepancy

In the ACAN-Base network, the same DA approach is
applied to both video and correlation features. However,

Fig. 3. Structure of the correlation extraction module Gc. Gc extract
correlation features (pixel correlation matrix M∗ and correlation feature
vector fc∗) through the high-level video feature fh∗. It is built upon the
nonlocal operation. M∗ is obtained through multiplication of fh∗ projected
on latent spaces, and represents the correlation between each spatiotemporal
pixel feature. fc∗ is further obtained by multiplying the M∗ fh∗ projected
on the latent space, followed by pooling operation over spatiotemporal
dimensions. Projection functions are implemented with convolution layers of
1 × 1 ×1 kernel.

it remains a question whether such an approach is the
most effective way for aligning correlation features across
different domains? Aligning correlation features can be further
achieved through aligning the joint distribution of correlation
information. The joint distribution could be computed as
the covariance of correlation information, implemented as its
corresponding Gram matrix. The key to the above question
therefore lies in the expression of the correlation information.
As illustrated in Fig. 2, correlation features are extracted from
Gc, whose structure is shown in Fig. 3. For the i th input video,
we define the pixel correlation matrix (PCM) Mi∗ as

Mi
∗ = ϕ

(
θ
(

f i
h∗

)T
φ
(

f i
h∗

))
(5)

where ϕ is the softmax operation. Both θ(·) and φ(·) are linear
functions projecting the high-level video features to latent
spaces. In practice, they are implemented as convolution layers
with a kernel size of 1 × 1 ×1. The value Mi∗,pq at the (p, q)
position of PCM represents the correlation between the video
feature at spatiotemporal point p, f i

h∗,p , and the video feature
at spatiotemporal point q, f i

h∗,q . We argue that PCM could be
viewed as the correlation information of the video. Therefore,
the joint correlation information distribution is constructed as
the Gram matrix of the PCM, denoted as Gi ∈ R

NM ×NM , where
NM is the number of spatiotemporal points in the feature map
θ( f i

h∗). Gi is computed by

Gi = Mi
∗

T
Mi

∗. (6)

The alignment of correlation features thus requires the
minimization of the distance between the Gram matrices G,
termed as the video covariance loss Lvs , formulated by

Lvs = ||E(Gs) − E(Gt )||2 (7)

where the subscripts s and t denotes the Gram matrices for
source and target videos respectively. However, such compu-
tation is inefficient, requiring a cost of O(NM

2). Furthermore,
improving network transferability through minimizing Lvs

comes at the price of decreasing network discriminability.
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To minimize Lvs more efficiently while causing less impact
on the network’s discriminability, we simplify according to the
theory in [65].

Theorem 1: Given the Gram matrices Gs ,Gy constructed
from source and target features Ms , Mt , the minimization of
distance between the Gram matrices Lvs can be seen as a
distribution alignment process from Mt to Ms .

As proven in [65], the above theorem indicates that
minimizing Lvs could be reformulated as minimizing the
distribution discrepancy of Mt and Ms . Set the underlying
distributions of Ms be pMs and that of Mt be pMt . Here we
propose the PCD, denote as dM(pMs, pMt). Computing and
minimizing this discrepancy are achieved by representing the
distributions pMs and pMt as elements on the reproducing
kernel Hilbert space (RKHS). As such, the distribution dis-
crepancy could be defined as distance of distribution embedded
elements on the RKHS.

Further, to align the distributions of pMs and pMt in
a more fine-grained manner, it is important to align the
distributions taking the relations between relevant classes into
consideration. That is to align pMs and pMt within the same
action classes in source and target domains, instead of aligning
it only in by the global distributions. The overall PCD is
therefore formulated as

dM(pMs, pMt ) � Ecl

∣∣∣∣EpMs (cl)[ζ (Ms)] − EpMt (cl)[ζ (Mt )]
∣∣∣∣2
H
(8)

where EpM∗(cl) is the mean embedding of distribution pM∗
for action class cl on the RKHS H. The feature map ζ
is closely related to the RKHS characteristic kernel k by
k(Ms, Mt ) = 〈ζ(Ms ), ζ(Mt )〉. The use of mean embedding for
each class enables our PCD to align distributions of correlation
information within each action class instead of only focusing
on the global correlation information distribution. In practice,
we may further assume that each video belongs to a certain
action class with a class-related weight wcl . We therefore could
estimate PCD in (8) as

dM(pMs, pMt) = 1

Cl

Cl∑
cl=1

∣∣∣∣∣∣
∣∣∣∣∣∣

Ns∑
i=1

wi
sclζ

(
Mi

s

)− Nt∑
j=1

w
j
tclζ

(
M j

t

)∣∣∣∣∣∣
∣∣∣∣∣∣
2

H
(9)

where Cl is the number of action classes. When computing
the weight of a source video for a certain action class, given
that the labels are provided, the weight wi

scl is computed by

wi
scl = yi

s∑Ns
k=1 yk

s

(10)

whereas for the target videos, since the labels are not available,
we cannot compute the weight w

j
tcl directly. Instead, we utilize

the output from the action classifier G y which characterizes
the probability of assigning a given video to an action class.
This is denoted as the pseudo-label for a target video and is
computed by

y j
t = G y

(
f j
t ⊕ f j

ct

)
. (11)

The resulting pseudo-labels of the target videos could be
used as in (10) for computing the weight of a target video
for an action class. Finally, since the feature map ζ cannot
be computed directly in most cases, we expand (9) while
utilizing the characteristic kernel k. The PCD could therefore
be reformulated as

dM(pMs, pMt ) = 1

C

C∑
c=1

⎛
⎝ Ns∑

i=1

Ns∑
i ′=1

wi
scw

i ′
sck

(
Mi

s , Mi ′
s

)

+
Nt∑

j=1

Nt∑
j ′=1

wi
tcw

j ′
tck

(
M j

t , M j ′
t

)

− 2
Ns∑

i=1

Nt∑
j=1

wi
scw

j
tck

(
Mi

s , M j
t

)⎞
⎠

(12)

where the kernel k would typically be of Gaussian form, hence
k(Mi

s, M j
t ) = −exp((‖ Mi

s − M j
t ‖2 /2σ 2)). The overall

optimization objective is thus formulated as

L = Ly − (λvLvd + λrLcd) + λd dM (13)

where λd is the trade-off weight for the PCD. Minimiz-
ing our proposed PCD is superior in effective alignment
of cross-domain correlation features thanks to its relatively
solid theoretical motivation. While aligning video features
could also be achieved by minimizing feature discrepancies
directly through methods such as MMD [66], CORAL [67],
these discrepancies cannot measure the correlation difference
between the source and the target domains as in PCD which
matters to video DA. Therefore, applying MMD or CORAL
for video feature alignment produces inferior performances
than our proposed approach as illustrated in Section V. For
inference, we follow the steps as indicated in Algorithm 1
and obtain the action recognition predictions for the unlabeled
target domain videos. Note that the video indices i, j are
omitted for simplicity.

Algorithm 1 Inference ACAN for Target Domain Videos
Input: Target data Vt ∈ Dt , trained feature generators G f ,
Gc, and trained classifier G f

Output: Predicted action class yt

Obtain target video feature ft = G f (Vt)
Obtain target correlation feature vector fct = Gc(Vt )
Concatenate ft and fct to form the overall feature represen-
tation of Vt by ft ⊕ fct

yt = G y( ft ⊕ fct )

IV. HMDB-ARID DATASET

There are very limited cross-domain benchmark datasets for
video DA tasks, therefore hindering the research for video DA.
Previous cross-domain datasets introduced for video DA [62],
[68], [69] are of very small scale, with not more than six
classes, and typically less than 1000 videos. The lack of classes
and data over these cross-domain datasets introduces limited
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TABLE I

COMPARISON OF RGB MEAN AND STANDARD
DEVIATION (STD) OVER COMMON ACTION RECOGNITION

DATASETS AND THE ARID DATASET

domain discrepancy, and therefore the performances of DA
approaches are saturated. More recently, larger cross-domain
video datasets, such as UCF-HMDBfull have been introduced
with larger domain discrepancies.

Though larger cross-domain datasets have been introduced,
both domains included in these datasets are still based on
current well-established action recognition datasets. These
action recognition datasets may include different classes with
different videos, yet most of them are collected on public video
platforms. This would lead to similar video statistics among
these datasets, as compared in Table I. Similar video statistics
suggest high probability of similar scenarios exist among
current action recognition datasets, thus the domain shift
between these datasets may not be significant. Consequently,
the difficulty of adapting the same model across the different
domains with similar video statistics or similar scenarios may
be trivial. Video DA approaches that perform well in these
cross-domain video datasets may not be well applicable in
real-world applications where the gap between domains may
be much larger than current cross-domain datasets. We argue
that video DA approaches would be more useful for bridging
with video domains with large distribution shifts, such as
dark videos (adverse illumination) or hazy videos (adverse
contrast).

To explore how to leverage current datasets to boost perfor-
mance on videos shot in adverse environments, we propose a
novel cross-domain dataset. It incorporates both the current
action recognition dataset and a more recent dark dataset,
ARID [29], whose videos are shot under adverse illumination
conditions. Compared with current action recognition datasets,
videos in ARID are characterized by low brightness and low
contrast. Statistically, videos in ARID possess much lower
RGB mean value and standard deviation (std), as presented in
Table I. The larger statistical differences between ARID and
current action recognition datasets, such as HMDB51 [28],
would strongly suggest a larger domain shift between the
different datasets.

The ARID dataset includes a total of 11 human action
classes. These includes drink, jump, pick, pour, push, run,
sit, stand, turn, walk, and wave. When proposing the cross-
domain HMDB-ARID dataset, we include all 11 action classes
in ARID and HMDB51. For both datasets, we follow the
official split method to separate the train and validation sets.
The HMDB-ARID dataset thus includes 770 training videos
and 330 validation videos from HMDB51, and 2288 training
videos and 823 validation videos from ARID. Fig. 4 shows

the comparison of sampled frames from HMDB-ARID dataset.
Compared to previous video DA datasets, besides containing
larger domain shift, our dataset also contains a larger number
of total videos for both training and validation, as illustrated
in Table II.

V. EXPERIMENTS

In this section, we evaluate our proposed ACAN performing
cross-domain action recognition on two video DA datasets:
UCF-HMDBfull and our new HMDB-ARID. We present the
state-of-the-art results on both datasets. We also present
detailed ablation studies and qualitative analysis of our
proposed ACAN to verify our design.

A. Experimental Settings and Details

We perform action recognition tasks on both the UCF-
HMDBfull dataset and our new HMDB-ARID dataset. The
UCF-HMDBfull dataset [11] is introduced as an expansion of
the original UCF-HMDBsmall dataset [68], with more classes
and larger domain discrepancy. The UCF-HMDBfull contains
a total of 3209 videos with 12 action classes, all from the
original UCF101 [70] and HMDB51 [28] datasets. It includes
two settings: UCF→HMDB and HMDB→UCF, where the
direction of the arrow symbol is set from the source domain
toward the target domain. We use the same splits as provided
in the original paper [11]. The novel HMDB-ARID dataset is
as introduced in Section IV, and also consist of two settings:
HMDB→ARID and ARID→HMDB. For all four settings,
we report the top-1 accuracy on the target dataset, averaged
on 5 runs with identical settings for each approach.

Our experiments are implemented using the PyTorch [71]
library. To obtain video features, we instantiate two 3D-CNNs,
I3D [39] and MFNet [72], as G f for both source and target
domain videos. Both I3D and MFNet are utilized thanks to
its performance on current action recognition benchmarks
(namely UCF101 [70], HMDB51 [28], and Kinetics [73]).
MFNet is also utilized due to its lightweight structure, which
enables it to achieve comparable results to that of I3D while
requiring a fraction of the parameters and computation power
needed.

The source and target feature extractors share parameters.
Following the implementation in [72] and [39], the inputs for
both I3D and MFNet as the source or target feature extractors
are frame sequences of 16 frames sampled sequentially from
the original input source or target video. Each frame is of
the same resolution obtained by resizing such that the shorter
edge is of 240 pixels and cropping the original frame to
resolution 224 × 224. The correlation extraction module takes
the high-level video feature from the output of layer4 in I3D
and the output of conv4 layer in MFNet as inputs, which are
feature maps of size 14 × 14. The stochastic gradient descent
algorithm [74] is used for optimization, with the weight decay
set to 0.0001 and the momentum to 0.9 for both I3D and
MFNet. During training, the batch size is set to 8 samples per
GPU. Empirically, our initial learning rate is set to 0.005 and
is divided by 10 after 20 and 35 epochs. λv is set to 0.5 while
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TABLE II

COMPARISON OF CURRENT AND OUR NOVEL VIDEO DA DATASETS

Fig. 4. Sampled frames for each action class from the videos in HMDB-ARID. Note that the sampled frames from HMDB51 are shown in the upper row,
whereas the sampled frame from ARID are shown in the lower row. Best viewed zoomed in.

λr and λd are both set to 1.0 through empirical results. All
experiments are conducted using two NVIDIA GP100 GPUs.

B. Overall Results

There are limited studies focusing on applying DA
approaches to the action recognition task. Here we first com-
pare previous methods utilizing the UCF-HMDBfull bench-
mark. These include TA3N [11], TCoN [12], and SAVA [14].
Due to the different encoders used for the different methods,
we report both: 1) the “Source only” results, where the net-
work is trained with supervised source data only and validated
on the target data, and is the lower bound performance for the
adaptation process; and 2) the “Target only” results, where the
network is directly trained and validated with supervised target
data and is the upper bound performance for the adaptation
process. The comparison of performance should focus on
the networks’ improvement with respect to the performance
with the “Source only” setting. The comparison should also
focus on the distance between the network’s performance
and the performance with the “Target only” setting. For the
performance of TA3N, we follow the works in [14] and obtain
the results by running the publicly available code. Table III
shows the comparison of performances between our proposed
ACAN and the methods as mentioned on UCF-HMDBfull.

The performance results in Table III shows that our
proposed ACAN achieves the best result under the
HMDB→UCF setting and very competitive performance
under the UCF→HMDB setting when using either MFNet

TABLE III

RESULTS ON THE TWO SETTINGS FOR UCF-HMDBFULL

or I3D as the encoder. More specifically, our ACAN
with the MFNet encoder achieves 85.8% top-1 accuracy
for UCF→HMDB setting, indicating that the improve-
ment brought by ACAN toward the lower bound of the
UCF→HMDB setting is 7.2%. This is significantly higher
than that brought by SAVA (1.9%) and TA3N (2.2%). The
large improvement brought by ACAN enables our network
to perform better on UCF→HMDB setting despite the lower
bound of MFNet is lower than that of I3D [39]. Under this
setting, our ACAN is also closer to the upper bound of the
encoder, with a gap of 10.2%. Comparatively, the gap to the
upper bound performance is 15.5% for TA3N and 12.8% for
SAVA. Similarly, our ACAN with I3D encoder also performs
better than both TA3N and SAVA. Comparatively, ACAN with
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TABLE IV

RESULTS ON THE TWO SETTINGS FOR HMDB-ARID

I3D encoder outperforms SAVA by 3.2% while sharing the I3D
as the common video feature encoder with SAVA. This further
demonstrates the superiority of ACAN over current video DA
methods.

The superiority of ACAN further strengthens under the
HMDB→UCF setting. Under these settings when utilizing
MFNet as the video feature encoder, our proposed ACAN
gains a 4.8% improvement toward the lower bound perfor-
mance, which is greater than that brought by SAVA (2.4%).
When utilizing I3D as the video feature encoder as in SAVA,
our proposed ACAN gains an exceptional 5.0% improvement
toward the lower bound performance. The larger increase built
upon the strong I3D encoder enables our ACAN to achieve the
best result under this setting with 93.8% top-1 accuracy. The
gap toward the upper bound performance is also the smallest
for ACAN using the I3D encoder, with 3.0% compared to
16.3% for TA3N, 6.5% for TCoN, and 5.6% for SAVA.

We further compare performances of several methods on our
novel HMDB-ARID dataset, with both HMDB→ARID and
ARID→HMDB settings, as shown in Table IV. Note that both
settings are more challenging, given that the gap between the
lower bound performance (trained with supervised source data)
and the upper bound performance (trained with supervised
target data) is larger compared to the settings for UCF-
HMDBfull. In addition to comparing with the TA3N with TRN-
Res101 [47] encoder, we also compare with performances with
other typical DA approaches, e.g., DANN [3], MK-MMD [66],
MCD [75], and CORAL [67], all with MFNet as the encoder.

The performance results in Table IV indicate that our pro-
posed ACAN achieves the best results in either setting related
to our novel HMDB-ARID dataset. Our ACAN achieves a
top-1 accuracy of 58.0% for the HMDB→ARID setting and
46.4% for the ARID→HMDB setting. Our ACAN also brings
the most significant improvement with respect to the lower
bound performance, with 9.8% and 8.5% for the two settings
respectively. Comparatively, TA3N which does not utilize
correlation alignment only brings 4.6% and 4.1% increase
with respect to the lower bound performance. This shows
that previous methods that fail to align correlations would
not be able to effectively handle the larger domain shift
caused by a more significant difference in video statistics.
Note that the gap to the upper bound performance obtained
by training with supervised target data is still relatively large,
suggesting further improvements could be made on this novel
HMDB-ARID dataset.

TABLE V

ABLATION EXPERIMENTS ON INCLUDING CORRELATION FEATURES,
ON UCF→HMDB AND HMDB→ARID SETTINGS

C. Ablation Studies

We further justify our proposed design of ACAN through
thorough ablation studies. Specifically, we first examine the
performance of our ACAN in four scenarios and justify the
need for introducing correlation features in the extraction
process, the use of two separate domain losses, and the
introduction of PCD. We also introduce an alternative form of
the joint correlation information distribution difference mini-
mization to compare and justify our current design of PCD. All
ablation studies are conducted under the UCF→HMDB and
HMDB→ARID settings, with the batch size and other training
parameters as mentioned in Section V-A. The MFNet [72] is
instantiated as the encoder for all ablation studies.

1) Necessity of Correlation Feature Alignment: We first
justify the need for correlation features for alignment, which
is achieved by: 1) comparing the “Source only” results
with and without the introduction of correlation features and
2) comparing the use of adversarial DA approaches with and
without correlation features. Results in Table V justifies the
use of correlation features, where such strategy consistently
improves the performance of the network under both “Source
only” training and when DANN method is used for DA.
It could also be observed that the use of correlation features
brings more improvement when the DANN method is applied.
Such observation is consistent with our argument of improving
video feature alignment using correlation alignment.

2) Effectiveness of Domain Loss Ld: We then justify our
design of the domain loss Ld , which is the weighted sum
of Lvd and Lcd . We compare with the variants of ACAN
where either Lvd or Lcd alone is used as the domain loss,
denoted as ACAN−Lcd and ACAN−Lvd . We also tested on
the case where the domain loss is not applied (hence aligning
correlation features by minimizing PCD alone), denoted as
MFNet+PCD. As indicated in Table VI, both losses contribute
to the effective alignment of video features. The removal
of either loss brings a decrease in network performance for
both dataset settings. Further decrease is observed when no
domain loss is applied. Meanwhile, the domain discriminators
corresponding to either domain loss bring only a negligible
growth in computation cost. Hence it is worthwhile to include
two separate domain discriminators, with two domain losses
for the overall domain loss Ld .

3) Effectiveness of PCD: PCD is introduced for improving
the effectiveness of correlation alignment by matching the
joint correlation information distribution of video domains.
We examine the effect of PCD through comparing with the
ACAN variant without PCD, which is ACAN-Base as shown
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Fig. 5. Class activation maps (CAMs) on ARID, utilizing i) ACAN and ii) MFNet trained with adversarial DA approach. CAMs are obtained from three
actions: (a) “Wave,” (b) “Stand,” and (c) “Drink.” We also show the original frames at the top row from which the CAMs are computed. Original frames are
tuned brighter for visualization.

Fig. 6. Comparison of t-SNE visualization of video features of both source
and target domains under HMDB→ARID. Video features are obtained from
(a) ACAN and (b) MFNet trained with the adversarial DA approach. Green
dots represent the data from the source domain while the blue dots represent
the data from the target domain.

TABLE VI

ABLATION EXPERIMENTS ON THE DOMAIN LOSS Ld ON

UCF→HMDB AND HMDB→ARID SETTINGS

in Fig. 2. The results in Table VII demonstrates the effec-
tiveness of PCD, whose absence results in a noticeable 1.6%
accuracy decrease for UCF→HMDB setting, and a significant
5.4% accuracy decrease for HMDB→ARID setting. Though
the introduced PCD improves the effectiveness of correlation
alignment greatly, minimizing PCD involves kernel estimation
which increase computation cost. Inspired by the hypothesis
presented in [76], minimizing the joint distribution difference,
and hence the distance between distributions pMs and pMt ,
could also be achieved through matching the norm of pMs and
pMt toward a shared restrictive scalar R. The computation of
distribution distance with this method is simpler given that no
kernel estimation is required. In this case, the equation for the

TABLE VII

ABLATION ON PCD AND ALTERNATIVE WAY OF MINIMIZING JOINT
CORRELATION INFORMATION DISTRIBUTION DIFFERENCE,

ON UCF→HMDB AND HMDB→ARID SETTINGS

overall loss (13) is reformulated as

L = Ly − (λvLvd + λrLcd)

+ λdist

⎛
⎝Ldist

(
1

Ns

Ns∑
i=1

n
(
Mi

s

)
R

)

+ Ldist

⎛
⎝ 1

Nt

Nt∑
j=1

n
(

M j
t

)
, R

⎞
⎠

⎞
⎠. (14)

Here Ldist is the distance loss between the norm of PCMs and
the restrictive scalar R, and is implemented as L2-distance,
while n(·) denotes the norm function. R is set to 25 during
the experiments. We denote the variant of ACAN with loss
function in (14) as ACAN (l2-norm) and compare with the
original ACAN. The results in Table VII shows that the variant
formulated by (14) could still bring noticeable improvement
compared to the ACAN-Base where the distributions of pMs

and pMt are not aligned. However, compared to PCD, the
improvement is relatively minor, which further justifies the
effectiveness of the current design of PCD.

D. Qualitative Analysis

To better understand the effect of ACAN, we perform
qualitative analysis on trained networks. We first present
the class activation maps (CAMs) [77] of the target ARID
videos with ACAN and with MFNet (encoder) trained with
adversarial DA approach in Fig. 5. The dark videos in
ARID make it difficult for accurate video features to be
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extracted. Therefore, if correlation alignment is not utilized,
the network may fail to focus on the actual action in the target
domain. Instead, it may only briefly focus on the whole actor
[see Fig. 5(ii-a)], or on unrelated background [see Fig. 5(ii-b)].
With the involvement of correlation features and its alignment,
ACAN is able to focus on the waving hand for the “Wave”
action, or the person standing for the “Stand” action, thus
showing much stronger performance on the HMDB→ARID
setting. Further, we visualize the distribution of the source
and target domains under the HMDB→ARID setting with
t-SNE [78], as shown in Fig. 6. It could be observed that
our proposed ACAN can group both the data from the source
domain (green dots) and data from the target domain (blue
dots) into denser clusters. Our ACAN could also match the
target domain data with source domain data more accurately.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose a novel DA method for action
recognition across different domains. The new ACAN aligns
correlation features in an adversarial manner while minimizing
joint correlation information distribution differences by mini-
mizing PCD. We further introduce a novel video DA dataset,
HMDB-ARID, with a larger domain shift, and is the first video
DA dataset that includes videos shot in adverse conditions.
Our method obtains the state-of-the-art results on both the
UCF-HMDBfull and HMDB-ARID datasets. We further justify
our design via thorough ablation studies and validate the
effectiveness of ACAN with qualitative results.

Although state-of-the-art performances have been achieved
by the proposed ACAN, we observe that the gap to the
upper bound performance obtained by training with supervised
target data is still relatively large as depicted in Table IV,
suggesting further improvements could be made on the
novel HMDB-ARID dataset. Additionally, cross-domain video
datasets that involve a variety of large domain shift scenarios,
such as blurry or hazy videos may be explored. Video DA
approaches that cope with these different large domain shift
scenarios would also be further investigated.

REFERENCES

[1] L. Shao, F. Zhu, and X. Li, “Transfer learning for visual categorization:
A survey,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 5,
pp. 1019–1034, May 2015.

[2] S. Zhao et al., “A review of single-source deep unsupervised visual
domain adaptation,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33,
no. 2, pp. 473–493, Feb. 2022.

[3] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by back-
propagation,” in Proc. Int. Conf. Mach. Learn., 2015, pp. 1180–1189.

[4] X. Ma, T. Zhang, and C. Xu, “Deep multi-modality adversarial networks
for unsupervised domain adaptation,” IEEE Trans. Multimedia, vol. 21,
no. 9, pp. 2419–2431, Sep. 2019.

[5] Q. Kang, S. Yao, M. Zhou, K. Zhang, and A. Abusorrah, “Effec-
tive visual domain adaptation via generative adversarial distribution
matching,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 9,
pp. 3919–3929, Sep. 2021.

[6] Y. Chen, W. Li, C. Sakaridis, D. Dai, and L. Van Gool, “Domain adaptive
faster R-CNN for object detection in the wild,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 3339–3348.

[7] Q. Cai, Y. Pan, C.-W. Ngo, X. Tian, L. Duan, and T. Yao, “Exploring
object relation in mean teacher for cross-domain detection,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 11457–11466.

[8] S. Song et al., “Deep domain adaptation based multi-spectral salient
object detection,” IEEE Trans. Multimedia, vol. 24, pp. 128–140, 2022.

[9] F. Yang et al., “Part-aware progressive unsupervised domain adapta-
tion for person re-identification,” IEEE Trans. Multimedia, vol. 23,
pp. 1681–1695, 2021.

[10] Y. Ge, D. Chen, and H. Li, “Mutual mean-teaching: Pseudo label refinery
for unsupervised domain adaptation on person re-identification,” 2020,
arXiv:2001.01526.

[11] M.-H. Chen, Z. Kira, G. Alregib, J. Yoo, R. Chen, and J. Zheng, “Tempo-
ral attentive alignment for large-scale video domain adaptation,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 6321–6330.

[12] B. Pan, Z. Cao, E. Adeli, and J. C. Niebles, “Adversarial cross-
domain action recognition with co-attention,” in Proc. AAAI, 2020,
pp. 11815–11822.

[13] D. Xu, J. Xiao, Z. Zhao, J. Shao, D. Xie, and Y. Zhuang, “Self-
supervised spatiotemporal learning via video clip order prediction,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 10334–10343.

[14] J. Choi, G. Sharma, S. Schulter, and J.-B. Huang, “Shuffle and attend:
Video domain adaptation,” in Proc. Eur. Conf. Comput. Vis. Cham,
Switzerland: Springer, 2020, pp. 678–695.

[15] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural
networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 7794–7803.

[16] A. Buades, B. Coll, and J. M. Morel, “A non-local algorithm for image
denoising,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., vol. 2,
Jul. 2005, pp. 60–65.

[17] H. Li and C. Y. Suen, “A novel non-local means image denoising
method based on grey theory,” Pattern Recognit., vol. 49, pp. 237–248,
Jan. 2016.

[18] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 5998–6008.

[19] H. Chen, D. Jiang, and H. Sahli, “Transformer encoder with multi-modal
multi-head attention for continuous affect recognition,” IEEE Trans.
Multimedia, vol. 23, pp. 4171–4183, 2021.

[20] Y. Zhang, Y. Gong, H. Zhu, X. Bai, and W. Tang, “Multi-head enhanced
self-attention network for novelty detection,” Pattern Recognit., vol. 107,
Nov. 2020, Art. no. 107486.

[21] Y. Chen, Y. Kalantidis, J. Li, S. Yan, and J. Feng, “A2-Nets: Double
attention networks,” in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 352–361.

[22] L. Wang, W. Li, W. Li, and L. Van Gool, “Appearance-and-relation
networks for video classification,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., Jun. 2018, pp. 1430–1439.

[23] K. Yue, M. Sun, Y. Yuan, F. Zhou, E. Ding, and F. Xu, “Compact
generalized non-local network,” in Proc. Adv. Neural Inf. Process. Syst.,
2018, pp. 6510–6519.

[24] N. Lu et al., “MASTER: Multi-aspect non-local network for scene text
recognition,” Pattern Recognit., vol. 117, Sep. 2021, Art. no. 107980.

[25] J. A. Rice, Mathematical Statistics and Data Analysis. Boston, MA,
USA: Cengage Learning, 2006.

[26] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, U.K.:
Cambridge Univ. Press, 2012.

[27] M. Ramona, G. Richard, and B. David, “Multiclass feature selection with
kernel Gram-matrix-based criteria,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 23, no. 10, pp. 1611–1623, Oct. 2012.

[28] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “HMDB:
A large video database for human motion recognition,” in Proc. Int.
Conf. Comput. Vis., Nov. 2011, pp. 2556–2563.

[29] Y. Xu, J. Yang, H. Cao, K. Mao, J. Yin, and S. See, “ARID: A new
dataset for recognizing action in the dark,” 2020, arXiv:2006.03876.

[30] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for
action recognition in videos,” in Proc. Adv. Neural Inf. Process. Syst.,
2014, pp. 568–576.

[31] C. Feichtenhofer, A. Pinz, and R. P. Wildes, “Spatiotemporal multiplier
networks for video action recognition,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 4768–4777.

[32] A. Tran and L.-F. Cheong, “Two-stream flow-guided convolutional
attention networks for action recognition,” in Proc. IEEE Int. Conf.
Comput. Vis. Workshops (ICCVW), Oct. 2017, pp. 3110–3119.

[33] X. Wang, L. Gao, P. Wang, X. Sun, and X. Liu, “Two-stream 3-D
convNet fusion for action recognition in videos with arbitrary size and
length,” IEEE Trans. Multimedia, vol. 20, no. 3, pp. 634–644, Mar. 2018.

[34] Y. Zhu, Z. Lan, S. Newsam, and A. Hauptmann, “Hidden two-stream
convolutional networks for action recognition,” in Proc. Asian Conf.
Comput. Vis. Cham, Switzerland: Springer, 2018, pp. 363–378.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



XU et al.: ALIGNING CORRELATION INFORMATION FOR DA IN ACTION RECOGNITION 11

[35] L. Wang et al., “Temporal segment networks for action recognition
in videos,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 11,
pp. 2740–2755, Nov. 2019.

[36] Z. Tu et al., “Multi-stream CNN: Learning representations based on
human-related regions for action recognition,” Pattern Recognit., vol. 79,
pp. 32–43, Jul. 2018.

[37] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3D convolutional networks,” in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 4489–4497.

[38] D. Tran, J. Ray, Z. Shou, S.-F. Chang, and M. Paluri, “ConvNet
architecture search for spatiotemporal feature learning,” 2017,
arXiv:1708.05038.

[39] J. Carreira and A. Zisserman, “Quo vadis, action recognition? A new
model and the kinetics dataset,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 6299–6308.

[40] K. Liu, W. Liu, C. Gan, M. Tan, and H. Ma, “T-C3D: Temporal
convolutional 3D network for real-time action recognition,” in Proc.
32nd AAAI Conf. Artif. Intell., 2018, pp. 7138–7145.

[41] K. Hara, H. Kataoka, and Y. Satoh, “Can spatiotemporal 3D CNNs
retrace the history of 2D CNNs and ImageNet?” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 6546–6555.

[42] H. Yang et al., “Asymmetric 3D convolutional neural networks for
action recognition,” Pattern Recognit., J. Pattern Recognit. Soc., vol. 85,
pp. 1–12, Jan. 2019.

[43] J. Li, X. Liu, W. Zhang, M. Zhang, J. Song, and N. Sebe,
“Spatio–temporal attention networks for action recognition and detec-
tion,” IEEE Trans. Multimedia, vol. 22, no. 11, pp. 2990–3001,
Nov. 2020.

[44] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri,
“A closer look at spatiotemporal convolutions for action recognition,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 6450–6459.

[45] S. Xie, C. Sun, J. Huang, Z. Tu, and K. Murphy, “Rethinking spatiotem-
poral feature learning: Speed-accuracy trade-offs in video classification,”
in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 305–321.

[46] C.-Y. Ma, A. Kadav, I. Melvin, Z. Kira, G. AlRegib, and H. P. Graf,
“Attend and interact: Higher-order object interactions for video under-
standing,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 6790–6800.

[47] B. Zhou, A. Andonian, A. Oliva, and A. Torralba, “Temporal relational
reasoning in videos,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 803–818.

[48] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv. Neural
Inf. Process. Syst., 2014, pp. 2672–2680.

[49] F. Liu, L. Jiao, and X. Tang, “Task-oriented GAN for PolSAR image
classification and clustering,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 30, no. 9, pp. 2707–2719, Sep. 2019.

[50] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial discrim-
inative domain adaptation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 7167–7176.

[51] J. Hoffman et al., “CyCADA: Cycle-consistent adversarial domain
adaptation,” in Proc. Int. Conf. Mach. Learn., 2018, pp. 1989–1998.

[52] H. Zou, Y. Zhou, J. Yang, H. Liu, H. P. Das, and C. J. Spanos,
“Consensus adversarial domain adaptation,” in Proc. AAAI Conf. Artif.
Intell., vol. 33, 2019, pp. 5997–6004.

[53] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko, “Simultaneous deep
transfer across domains and tasks,” in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Dec. 2015, pp. 4068–4076.

[54] J. Zhang, W. Li, and P. Ogunbona, “Joint geometrical and statistical
alignment for visual domain adaptation,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 1859–1867.

[55] X. Zhu, J. Pang, C. Yang, J. Shi, and D. Lin, “Adapting object
detectors via selective cross-domain alignment,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 687–696.

[56] Y. Zou, Z. Yu, B. V. Kumar, and J. Wang, “Unsupervised domain
adaptation for semantic segmentation via class-balanced self-training,”
in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 289–305.

[57] T.-H. Vu, H. Jain, M. Bucher, M. Cord, and P. P. Perez, “DADA: Depth-
aware domain adaptation in semantic segmentation,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 7364–7373.

[58] Y.-C. Chen, Y.-Y. Lin, M.-H. Yang, and J.-B. Huang, “CrDoCo:
Pixel-level domain transfer with cross-domain consistency,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 1791–1800.

[59] D. Guan, J. Huang, S. Lu, and A. Xiao, “Scale variance minimization
for unsupervised domain adaptation in image segmentation,” Pattern
Recognit., vol. 112, Apr. 2021, Art. no. 107764.

[60] R. Panda, A. Bhuiyan, V. Murino, and A. K. Roy-Chowdhury, “Adapta-
tion of person re-identification models for on-boarding new camera(s),”
Pattern Recognit., vol. 96, Dec. 2019, Art. no. 106991.

[61] G. Wang, Y. Yuan, X. Chen, J. Li, and X. Zhou, “Learning discriminative
features with multiple granularities for person re-identification,” in Proc.
26th ACM Int. Conf. Multimedia, Oct. 2018, pp. 274–282.

[62] A. Jamal, V. P. Namboodiri, D. Deodhare, and K. Venkatesh, “Deep
domain adaptation in action space,” in Proc. BMVC, 2018, p. 264.

[63] M.-H. Chen, B. Li, Y. Bao, G. AlRegib, and Z. Kira, “Action segmen-
tation with joint self-supervised temporal domain adaptation,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 9454–9463.

[64] L. Fu, T. H. Nguyen, B. Min, and R. Grishman, “Domain adaptation
for relation extraction with domain adversarial neural network,” in Proc.
8th Int. Joint Conf. Natural Lang. Process., vol. 2, 2017, pp. 425–429.

[65] Y. Li, N. Wang, J. Liu, and X. Hou, “Demystifying neural style transfer,”
2017, arXiv:1701.01036.

[66] M. Long, Y. Cao, J. Wang, and M. Jordan, “Learning transferable
features with deep adaptation networks,” in Proc. Int. Conf. Mach.
Learn., 2015, pp. 97–105.

[67] B. Sun and K. Saenko, “Deep coral: Correlation alignment for deep
domain adaptation,” in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland:
Springer, 2016, pp. 443–450.

[68] W. Sultani and I. Saleemi, “Human action recognition across datasets
by foreground-weighted histogram decomposition,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2014, pp. 764–771.

[69] T. Xu, F. Zhu, E. K. Wong, and Y. Fang, “Dual many-to-one-encoder-
based transfer learning for cross-dataset human action recognition,”
Image Vis. Comput., vol. 55, pp. 127–137, Nov. 2016.

[70] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A dataset of 101
human actions classes from videos in the wild,” 2012, arXiv:1212.0402.

[71] A. Paszke et al., “PyTorch: An imperative style, high-performance
deep learning library,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 8026–8037.

[72] Y. Chen, Y. Kalantidis, J. Li, S. Yan, and J. Feng, “Multi-fiber networks
for video recognition,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 352–367.

[73] W. Kay et al., “The kinetics human action video dataset,” 2017,
arXiv:1705.06950.

[74] L. Bottou, “Large-scale machine learning with stochastic gradi-
ent descent,” in Proceedings of COMPSTAT’2010. Berlin, Germany:
Springer-Verlag, 2010, pp. 177–186. [Online]. Available: https://link.
springer.com/book/10.1007/978-3-7908-2604-3

[75] K. Saito, K. Watanabe, Y. Ushiku, and T. Harada, “Maximum classifier
discrepancy for unsupervised domain adaptation,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 3723–3732.

[76] R. Xu, G. Li, J. Yang, and L. Lin, “Larger norm more transferable:
An adaptive feature norm approach for unsupervised domain adapta-
tion,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 1426–1435.

[77] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning
deep features for discriminative localization,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2921–2929.

[78] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
J. Mach. Learn. Res., vol. 9, no. 11, pp. 2579–2605, Nov. 2008.

Yuecong Xu (Member, IEEE) received the
B.Eng. degree from the School of Electrical and
Electronic Engineering, Nanyang Technological
University (NTU), Singapore, in 2017, and the
Ph.D. degree from NTU in 2021.

He is currently a Research Scientist with
the Institute for Infocomm Research, A*STAR,
Singapore, and a Lecturer at NTU. His research
focuses on video understanding and analysis based
on deep learning and transfer learning.

Dr. Xu was a recipient of the Nanyang President’s
Graduate Scholarship. He was the Co-Organizer of the UG2+ Challenge for
Computational Photography and Visual Recognition, held in conjunction
with CVPR 2021 and CVPR 2022.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



12

Haozhi Cao received the B.Eng. degree from the
School of Electrical Engineering and Automation,
Wuhan University, Wuhan, China, in 2019, and
the M.Eng. degree from the School of Electrical
and Electronic Engineering, Nanyang Technological
University (NTU), Singapore, in 2021, where he is
currently pursuing the Ph.D. degree with the School
of Electrical and Electronic Engineering.

He is also working as a Research Associate
with the Centre for Advanced Robotics Technology
(CARTIN), NTU. His research interests include deep

learning with applications in video understanding, transfer learning, and multi-
modal learning.

Kezhi Mao (Member, IEEE) received the B.Eng.
degree from Jinan University, Jinan, China, in 1989,
the M.Eng. degree from Northeastern University,
Shenyang, China, in 1992, and the Ph.D. degree
from The University of Sheffield, Sheffield, U.K.,
in 1998.

He was a Lecturer with Northeastern University,
Shenyang, China, from March 1992 to May 1995; a
Research Associate with The University of Sheffield
from April 1998 to September 1998; and a Research
Fellow with Nanyang Technological University, Sin-

gapore, from September 1998 to May 2001, where he was also an Assistant
Professor with the School of Electrical and Electronic Engineering from
June 2001 to September 2005 and has been an Associate Professor since
October 2005. His areas of interests include computational intelligence,
pattern recognition, text mining, knowledge extraction, cognitive science, big
data, and text analytic.

Zhenghua Chen (Senior Member, IEEE) received
the B.Eng. degree in mechatronics engineering from
the University of Electronic Science and Technol-
ogy of China (UESTC), Chengdu, China, in 2011,
and the Ph.D. degree in electrical and electronic
engineering from Nanyang Technological University
(NTU), Singapore, in 2017.

He is currently a Scientist and the Lab Head of
the Institute for Infocomm Research, and an Early
Career Investigator with the Centre for Frontier AI
Research (CFAR), Agency for Science, Technology

and Research (A*STAR), Singapore. His research interests include smart
sensing, data analytics, machine learning, transfer learning, and related
applications.

Dr. Chen has won several competitive awards, such as the First Place
Winner of CVPR 2021 UG2+ Challenge, the A*STAR Career Development
Award, the First Runner-Up Award for Grand Challenge at IEEE VCIP 2020,
and the Finalist Academic Paper Award at IEEE ICPHM 2020. He is currently
the Vice Chair of IEEE Sensors Council Singapore Chapter. He serves as an
Associate Editor for Neurocomputing (Elsevier) and IEEE TRANSACTIONS
ON INSTRUMENTATION AND MEASUREMENT.

Lihua Xie (Fellow, IEEE) received the B.E. and
M.E. degrees in electrical engineering from the Nan-
jing University of Science and Technology, Nanjing,
China, in 1983 and 1986, respectively, and the Ph.D.
degree in electrical engineering from The University
of Newcastle, Callaghan, NSW, Australia, in 1992.

Since 1992, he has been with the School of Elec-
trical and Electronic Engineering, Nanyang Techno-
logical University, Singapore, where he is currently
a Professor and served as the Head of Division of
Control and Instrumentation from July 2011 to June

2014. He held teaching appointments with the Department of Automatic
Control, Nanjing University of Science and Technology, from 1986 to 1989,
and a Changjiang Visiting Professorship with the South China University of
Technology, Guangzhou, China, from 2006 to 2011. His research interests
include robust control and estimation, networked control systems, multi-agent
control, and unmanned systems.

Dr. Xie is a fellow of the Academy of Engineering Singapore, a fellow of
IFAC, and a fellow of Chinese Automation Association. He has served as an
Editor of IET Book Series in Control and an Associate Editor for a number
of journals, including IEEE TRANSACTIONS ON AUTOMATIC CONTROL,
Automatica, IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY,
and IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS

BRIEFS.

Jianfei Yang (Member, IEEE) received the B.Eng.
degree from the School of Data and Computer
Science, Sun Yat-sen University, Guangzhou, China,
in 2016, and the Ph.D. degree from Nanyang Tech-
nological University (NTU), Singapore, in 2021,
where he received the Best Ph.D. Thesis Award.

He used to work as a Senior Research Engi-
neer with the University of California at Berkeley,
Berkeley, CA, USA. He is currently a Presidential
Post-Doctoral Research Fellow and an Independent
Principal Investigator at NTU. His research focuses

on Artificial Intelligence of Things (AIoT), such as wireless sensing and
computer vision based on deep learning and transfer learning.

Dr. Yang won many international AI challenges in computer vision and
interdisciplinary research fields.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




