
Deep Convolutional Neural Network Based Regression

Approach for Estimation of Remaining Useful Life

G. Sateesh Babu, Peilin Zhao, and Xiao-Li Li

Institute for Infocomm Research,

A∗STAR, Singapore

{giduthurisb,zhaop,xlli}@i2r.a-star.edu.sg

http://www.i2r.a-star.edu.sg

Abstract. Prognostics technique aims to accurately estimate the Remaining Use-

ful Life (RUL) of a subsystem or a component using sensor data, which has many

real world applications. However, many of the existing algorithms are based on

linear models, which cannot capture the complex relationship between the sen-

sor data and RUL. Although Multilayer Perceptron (MLP) has been applied to

predict RUL, it cannot learn salient features automatically, because of its net-

work structure. A novel deep Convolutional Neural Network (CNN) based re-

gression approach for estimating the RUL is proposed in this paper. Although

CNN has been applied on tasks such as computer vision, natural language pro-

cessing, speech recognition etc, this is the first attempt to adopt CNN for RUL

estimation in prognostics. Different from the existing CNN structure for computer

vision, the convolution and pooling filters in our approach are applied along the

temporal dimension over the multi-channel sensor data to incorporate automated

feature learning from raw sensor signals in a systematic way. Through the deep

architecture, the learned features are the higher-level abstract representation of

low-level raw sensor signals. Furthermore, feature learning and RUL estimation

are mutually enhanced by the supervised feedback. We compared with several

state-of-the-art algorithms on two publicly available data sets to evaluate the ef-

fectiveness of this proposed approach. The encouraging results demonstrate that

our proposed deep convolutional neural network based regression approach for

RUL estimation is not only more efficient but also more accurate.

Keywords: Multivariate time series analysis, Deep Learning, Convolutional Neural

Networks, Supervised Learning, Regression Methods, Prognostics, Remaining Useful

Life

1 Introduction

Prognostic technologies are very crucial in condition based maintenance for diverse ap-

plication areas, such as manufacturing, aerospace, automotive, heavy industry, power

generation, and transportation. While accessing the degradation from expected operat-

ing conditions, prognostic technologies estimate the future performance of a subsystem

or a component to make RUL estimation. If we can accurately predict when an engine



2 G. Sateesh Babu, Peilin Zhao, Xiao-Li Li

will fail, then we can make informed maintenance decision in advance to avoid dis-

asters, reduce the maintenance cost, as well as streamline operational activities. This

paper proposes a data driven approach to predict RUL of a complex system when the

run-to-failure data is available. Existing algorithms in the literature for RUL estimation

are either based on multivariate analysis or damage progression analysis [9, 16, 23, 15,

17]. However, it is extremely challenging, if not impossible, to accurately predict RUL

without a good feature representation method. It is thus highly desirable to develop a

systematical feature representation approach to effectively characterize the nature of

signals related to the prognostic tasks.

Recently, a family of learning models has emerged called as deep learning that aim

to learn higher level abstractions from the raw data [2, 7], deep learning models doesn’t

require any hand crafted features by people, instead they will automatically learn a hi-

erarchical feature representation from raw data. In deep learning, a deep architecture

with multiple layers is built up for automating feature design. Specifically, each layer

in deep architecture performs a non-linear transformation on the outputs of the previ-

ous layer, so that through deep learning models the data are represented by a different

levels of hierarchy of features. Convolutional neural network, auto-encoders and deep

belief network are the mostly known models in deep learning. Depending on the usage

of label information, the deep learning models can be learned in either supervised or

unsupervised manner. While deep learning models achieve remarkable results in com-

puter vision [11], speech recognition [10], and natural language processing [5]. To our

best knowledge, it has not been exploited in the field of prognostics for RUL estimation.

Recurrent neural network, a class of deep learning architectures is more intuitive

model for time series data [6], however it is suitable for time series future value predic-

tion. In this paper we treat RUL estimation problem as multivariate time series regres-

sion and solve it by adapting one particular deep learning model, namely Convolutional

Neural Network (CNN) adapted from deep learning model for image classification [1,

13, 12], which is the first attempt to leverage deep learning to estimate RUL in prog-

nostics. The key attribute of CNN is to conduct different processing units (e.g. con-

volution, pooling, sigmoid/hyperbolic tangent squashing, rectifier and normalization)

alternatively. Such a variety of processing units can yield an effective representation of

local salience of the signals. Additionally, the deep architecture allows multiple layers

of these processing units to be stacked, so that this deep learning model can characterize

the salience of signals in different scales. Therefore, the features extracted by CNN are

task dependent and non-handcrafted. Moreover, these features also own more predictive

power, since CNN can be learned under the supervision of target values.

Recently, different CNN architectures are applied on multi-channel time series data

for activity recognition problem which is a classification task [25, 26, 24]. In [25], a

shallow CNN architecture is used consists of only one convolution and one pooling

layer, and is restricted to the accelerometer data. In [26, 24], deep CNN architectures are

used and in these architectures all convolutional and pooling filters are one-dimensional

which applied along the temporally over individual sensor time series separately. Differ-

ent from classification tasks, in the application on RUL estimation which is a regression

task, the convolution and pooling filters in CNN are applied along the temporal dimen-

sion over all sensors, and all these feature maps for all sensors need to be unified as a



Deep CNN Based Regression Approach for Estimation of RUL 3

common input for the neural network regressor. Therefore, a novel architecture of CNN

is developed in this paper. In the proposed architecture for RUL estimation, convolu-

tional filters in the initial layer are two-dimensional which applied along the temporally

over all sensors time series and final neural network regression layer employs squared

error loss function which makes the proposed architecture is different from the existing

CNN architectures for multi-channel time series data [25, 26, 24]. In the experiments,

the proposed CNN based approach for RUL estimation is compared with existing re-

gression based approaches, across two public data sets. Results clearly demonstrates

that the proposed approach is accurately predicts RUL than existing approaches signif-

icantly.

This paper is structured as follows: First, section 2 briefly describes the problem

settings, including data sets, evaluation metrics and data preprocessing steps that are

used to evaluate the effectiveness of different algorithms. Then, section 3 describes our

proposed novel deep architecture CNN based regression approach for RUL estimation.

Next, section 4 presents the performance comparison of the proposed approach with the

standard regression algorithms for RUL estimation. Section 5 summarizes the conclu-

sions from this work.

2 Problem Settings

In prognostics, it is an important problem to estimate the RUL of a component or a

subsystem, such as the engine of an airplane. Usually, some sensors, e.g. vibration

sensors, are used to collect its information that serve as features to estimate RUL.

Formally, assume that d sensors with component index i are employed, so a mul-

tivariate time series data Xi ∈ R
d×ni can be obtained, where the j-th column of

Xi, denoted as Xi
j ∈ R

d, is a vector consisting of the signals from the d sensors

at the j-th time cycle, and Xi
ni

denotes the vector of signals when the component

fails and ni is the useful life time of a component i from the starting. Suppose we

have N same category components, e.g., N engines, then we can collect a training

set of examples {Xi
j |i = 1, . . . , N ; j = n1, . . . , nN}. Then the task is to construct

a model based on the given training set and to perform RUL estimation on a test set

{Zi ∈ R
d×mi |i = 1, . . . ,M}, where Zi

j , j = 1, . . . ,mi are signals when the compo-

nent works well. Here RUL for a component i in test set is the number of remaining

time cycles it works well from mi-th time cycle before failure. Now let’s introduce two

benchmark data sets.

Data sets: Two data sets chosen in this work, namely the NASA C-MAPSS (Com-

mercial Modular Aero-Propulsion System Simulation) data set and the PHM 2008 Data

Challenge data set [19]. The C-MAPSS data set is further divided into 4 sub-data sets

as given in Table 1. Both datasets contain simulated data produced using a model based

simulation program C-MAPSS developed by NASA [20].

Both data sets are arranged in an n-by-26 matrix where n corresponds to the num-

ber of data points in each component. Each row is a snapshot of data taken during a

single operating time cycle and in 26 columns, where 1st column represents the engine

number, 2nd column represents the operational cycle number, 3 - 5 columns represent



4 G. Sateesh Babu, Peilin Zhao, Xiao-Li Li

Table 1. Data sets details (Simulated from C-MAPSS)

C-MAPSS PHM

Data set FD001 FD002 FD003 FD004 2008

Train 100 260 100 249 218

Trajectories

Test 100 259 100 248 218

Trajectories

Operating 1 6 1 6 6

Conditions

Fault 1 1 2 2 2

Conditions

the three operating settings, and 6 - 26 columns represent the 21 sensor values. More

information about the 21 sensors can be found in [22]. Engine performance can be ef-

fected by three operating settings in the data significantly. Each trajectory within the

train and test trajectories is assumed to be life-cycle of an engine. While each engine is

simulated with different initial conditions, these conditions are considered to be of nor-

mal conditions (no faults). For each engine trajectory within the training sets, the last

data entry corresponds to the moment the engine is declared unhealthy or failure status.

On the other hand, test sets contains data some time before the failure and aim here is

to predict RUL in the test set for each engine. For each of the C-MAPSS data set, the

actual RUL value of the test trajectories were made available to the public, while the

actual RUL value of the test trajectories in PHM 2008 Data Challenge data set is not

available.

To fairly compare the estimation model performance on the test data, we need some

objective performance measures. In this work, we mainly employ 2 measures: scoring

function, and Root Mean Square Error (RMSE), which are introduced in details as

follows:

Scoring Function: The scoring function used in this paper is identical to that used in

PHM 2008 Data Challenge. This scoring function is illustrated in Eq. (1), where N is

the number of engines in test set, S is the computed score, and h = (Estimated RUL−
True RUL).

S =







∑N

i=1

(

e−
hi

13 − 1
)

for hi < 0
∑N

i=1

(

e
hi

10 − 1
)

for hi ≥ 0
(1)

This scoring function penalizes late predictions (too late to perform maintenance) more

than early predictions (no big harms although it could waste maintenance resources).

This is in line with the risk adverse attitude in aerospace industries. However, there

are several drawbacks with this function. The most significant drawback being a sin-

gle outlier (with a much late prediction) would dominate the overall performance score

(pls. refer to the exponential increase in the right hand side of Figure 1), thus masking



Deep CNN Based Regression Approach for Estimation of RUL 5

the true overall accuracy of the algorithm. Another drawback is the lack of consider-

ation of the prognostic horizon of the algorithm. The prognostic horizon assesses the

time before failure which the algorithm is able to accurately estimate the RUL value

within a certain confidence level. Finally, this scoring function favors algorithms which

artificially lowers the score by underestimating RUL. Despite all these shortcomings,

the scoring function is still used in this paper to provide comparison results with other

methods in literature.

RMSE: In addition to the scoring function, the Root Mean Square Error (RMSE) of

estimated RUL’s is also employed as a performance measure. RMSE is chosen as it

gives equal weight to both early and late predictions. Using RMSE in conjunction with

the scoring function would avoid to favor an algorithm which artificially lowers the

score by underestimating it but resulting in higher RMSE. The RMSE is defined as

given below:

RMSE =

√

√

√

√

1

N

N
∑

i=1

h2
i (2)

A comparative plot between the two evaluation metrics is shown in Figure 1. It can

be observed that at lower absolute error values the scoring function results in lower

values than the RMSE. The relative characteristics of the two evaluation metrics will be

useful during the discussion of experimental results in the later part of this paper.

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

20

40

60

80

100

120

140

150
Comparison of scoring function against RMSE for a single engine (N=1)

Error value (h)

V
al

ue
 o

f 
ev

al
ua

ti
on

 m
et

ri
c 

(R
M

S
E

 /
 S

co
re

)

 

 

RMSE
Scoring Function

Fig. 1. Comparison of evaluation metric values for different error values

In addition, to learn a model, we need to perform some data pre-processing for

which the details are given as follows.



6 G. Sateesh Babu, Peilin Zhao, Xiao-Li Li

Operating Conditions: Several literature [23, 16, 9], have shown that by plotting the 3

operating setting values, the data points are clustered into six different distinct clusters.

This observation is only applicable for data sets with different operating conditions, but

data points from FD001 and FD003 in C-MAPSS data set are all clustered at a single

point instead – they are single operating condition sub-data sets. These clusters are as-

sumed to correspond to the six different operating conditions. It is therefore possible

to include the operating condition history as a feature. This is done for FD002, FD004

and PHM 2008 Data Challenge data sets by adding 6 columns of data (multiple oper-

ating condition data sets), representing the number of cycles spent in their respective

operating condition since the beginning of the series [16].

Data Normalization: Due to the 6 operating conditions, each of these operating con-

ditions results in disparate sensor values. Therefore prior to any training and testing,

it is imperative to do data normalization so that the data points to be within uniform

scale range using Eq. (3). As normalization was carried out within the uniform scale

range for each sensor and each operating condition, this will ensure equal contribution

from all features across all operating conditions [16]. Alternatively, it is also possible to

incorporate operating condition information within the data to take into consideration

various operating conditions.

Norm(xc,f ) =
x(c,f) − µ(c,f)

σ(c,f)
, ∀c, f (3)

where c represents operating conditions; f represents each of the original 21 sen-

sors. µ(c,f) is the mean andσ(c,f) is the standard deviation in c operating condition.

RUL Target Function: In its simplest form prognostic algorithms are similar to re-

gression problems. However, unlike typical regression problems, an inherent challenge

for data driven prognostic problems is to determine the desired output values for each

input data point. This is because in real world applications, it is impossible to accurately

determine the system health status at each time step without an accurate physics based

model. A sensible solution would be to simply assign the desired output as the actual

time left before functional failure [16]. This approach however inadvertently implies

that the health of the system degrades linearly with usage. An alternative approach is to

derive the desired output values based on a suitable degradation model. For this data-set

a piece-wise linear degradation model has proposed in [9], which limits the maximum

value of the RUL function as illustrated in Figure 2. The maximum value was chosen

based on the observations and its numerical value is different for each data-set.

Both these approaches have their own advantages. The piece-wise linear RUL tar-

get function is more likely to prevent the algorithm from overestimating the RUL. In

addition, it is also a more logical model as the degradation of the system typically only

starts after a certain degree of usage. On the other hand, the linear RUL function fol-

lows the definition of RUL in the strictest sense which defined as the time to failure.

Therefore, the plot of time left of a system against the time passed naturally results in a

linear function. However, it should be noted that in cases where knowledge of a suitable

degradation model is unavailable, the linear model is the most natural choice to use.



Deep CNN Based Regression Approach for Estimation of RUL 7

0 50 100 150 200 250
0

20

40

60

80

100

120

140

Time Cycle

R
em

ai
ni

ng
 U

se
fu

l L
ife

 (R
U

L)

Linear Degradation
Phase

Constant
RUL
Phase

Fig. 2. Piece-wise Linear RUL Target Function

3 Deep Convolution Neural Network for RUL Estimation

This section presents the architecture of deep learning CNN for RUL estimation from

multi-variate time series sensor signals. The inputs are normalized sensor signals in

addition to the extracted features corresponding to the operating condition history. The

target values are the RUL of system at corresponding time cycle. The considered target

RUL function is a piece-wise linear function as described in the previous sections.

Convolutional neural networks have great potential to identify the various salient

patterns of sensor signals. Specifically, lower layers processing units obtain the local

salience of the signals. The higher layers processing units obtain the salient patterns

of signals at high-level representation. Note that each layer may have a number of

convolution or pooling operators (specified by different parameters) as described be-

low, so multiple salient patterns learned from different aspects are jointly considered

in the CNN. When these operators with the same parameters are applied on local sig-

nals (or their mapping) at different time segments, a form of translation invariance is

obtained [8, 2, 7]. Consequently, what matters is only the salient patterns of signals in-

stead of their positions or scales. However, in RUL estimation we confront with multiple

channels of time series signals, in which the traditional CNN cannot be used directly.

The challenges in our problem include (i) Processing units in CNN need to be applied

along temporal dimension and (ii) Sharing or unifying the units in CNN among multiple

sensors. In what follows, we will define the convolution and pooling filters along the

temporal dimension, and then present the entire architecture of the CNN used in RUL

estimation.

3.1 Architecture

We start with the notations used in the CNN. A sliding window strategy is adopted to

segment the time series signal into a collection of short pieces of signals. Specifically,

an instance used by the CNN is a two-dimensional matrix containing r data samples

each sample with D attributes (In case of single operating condition sub-data sets D



8 G. Sateesh Babu, Peilin Zhao, Xiao-Li Li

attributes are taken as d raw sensor signals and in case of multiple operating condition

sub-data sets D attributes includes d raw sensor signals along with extracted features

corresponding to the operating condition history as explained in operating condition

subsection in problem settings section). Here, r is chosen to be as the sampling rate

(15 used in the experiments because one of the test engine trajectories has only 15 time

cycle data samples), and the step size of sliding a window is chosen to be 1. One may

choose larger step size to decrease the amount of the instances for lesser computational

cost. For training data, the true RUL of the matrix instance is determined by the true

RUL of the last record.

In this proposed architecture as shown in Figure 3, conventional CNN is modified

and applied to multi-variate time series regression as follows: On each segmented multi-

variate time series we perform feature learning jointly. At the end of feature learning, we

concatenate a normal multi-layer perceptron (MLP) for RUL estimation. Specifically in

this work, we use 2-pairs of convolution layers and pooling layers, and one normal

fully connected multi layered perceptron. It includes D-channel inputs and length of

each input is 15. This segmented multi-variate time series (D × 15) is fed into a 2-

stages of convolution and pooling layers. Then, we concatenate all end layer feature

maps into a vector as the MLP input for RUL estimation. Training stage involves the

CNN parameters estimation by standard back propagation algorithm using stochastic

gradient descent method to optimize objective function, which is cumulative square

error of the CNN model.

Fig. 3. Proposed CNN Architecture for RUL estimation on PHM 2008 Data Challenge Data set.

This architecture consists of segmented multi-variate time series input, 2 convolutional filtering

layers, 2 pooling filtering layers, and one fully connected layer.

Convolution Layer: In the convolution layers, the previous layer’s feature maps are

convolved with several convolutional kernels (to be learned in the training process). The



Deep CNN Based Regression Approach for Estimation of RUL 9

output of the convolution operators added by a bias (to be learned) and the feature map

for next layer is computed through the activation function. The output feature map of

convolution layer computed as given below:

x
l
j = sigm

(

z
l
j

)

, z
l
j =

∑

i

x
l−1
i ∗ kl

ij + blj (4)

Where ∗ denotes the convolution operator, xl−1
i and x

l
j are the convolution filter

input and output, sigm() denotes the sigmoid function, and z
l
j is the input of non-linear

sigmoid function. Sigmoid function is used due to its simplicity. We apply convolution

filters of size D × 4 in the first convolution layer. In the second convolution layer we

apply convolution filters of size 1× 3.

Pooling Layer: In the pooling layers, the input features are sub-sampled by suitable

factor such that the feature maps resolution is reduced to increase the invariance of

features to distortions on the inputs. We utilize average pooling without overlapping

for all stage in our work. The input feature-maps are partitioned by the average pooling

and results into a set of non-overlapping regions. For each sub-region output is the

average value. Pooling layer output feature map is computed as given below:

x
l+1
j = down

(

x
l
j

)

(5)

Where x
l
j is the input and x

l+1
j is the output of pooling layer, and down(.) repre-

sents the sub-sampling function for average pooling. We apply pooling filters of size

1× 2 in the first and second pooling layers.

3.2 Training Process

As in traditional MLP training for regression task, we used the squared error loss func-

tion in our CNN based architecture defined as: E = 1
2 (y(t)− y∗(t))2, where y∗(t) is

the predicted RUL value and y(t) is the target RUL of the t-th training sample. In the

training of our CNN model, we utilize stochastic gradient descent based optimization

method for optimal parameters estimation of the network and back propagation algo-

rithm to minimize the loss function [14]. Training procedure includes three cascaded

phases of forward propagation, backward propagation and the application of gradients.

Forward Propagation: The objective of the forward propagation is to determine the

predicted output of CNN model on segmented multi-variate time series input. Specifi-

cally, each layer output feature maps are computed. As mentioned in the before sections,

each stage contains convolution layer followed by pooling layer. We compute the out-

put of convolution and pooling layers using Eqs. (4) and (5) respectively. Eventually, a

single fully connected layer is connected with feature extractor.



10 G. Sateesh Babu, Peilin Zhao, Xiao-Li Li

Backward Propagation: Once one iteration of forward propagation is done, we will

have the error value, with the squared error loss function. The predicted error propagates

back on each layer parameters from last layer to first layer, derivatives chain commonly

applied for this procedure.

For the backward propagation of errors in the second stage pooling layer, the xl−1
j ’s

derivative is calculated by the up-sampling function up(.), it is an inverse operation of

the sub-sampling function down(.)

∂E

∂xl−1
j

= up(
∂E

∂xl
j

) (6)

In the second stage feature extraction layer, zlj’s derivative is calculated as same in

hidden layer of MLP.

δlj =
∂E

∂zlj
=

∂E

∂xl
j

∂xl
j

∂zlj
= sigm′(zlj) ⊙ up(

∂E

∂xl+1
j

) (7)

In the above equation element wise product is denoted by ⊙ symbol and bias deriva-

tive is calculated by summating all values in δlj as given below:

∂E

∂blj
=

∑

u

(δlj)u (8)

The kernel weight kl
ij’s derivative is calculated by summating all values related the

kernel and it is calculated with convolution operation as given below:

∂E

∂kl
ij

=
∂E

∂zlj

∂zlj

∂kl
ij

= δlj ∗ reverse(x
l−1
i ) (9)

Where reverse(.) is the function of reversing corresponding feature extractor. At

the end, we calculate x
l−1
i ’s derivative as given below:

∂E

∂xl−1
i

=
∑

j

∂E

∂zlj

∂zlj

∂xl−1
i

=
∑

j

pad(δlj) ∗ reverse(k
l
ij) (10)

In the above equation pad(.) denotes the padding function, it pads zeros to δlj at

both ends. Specifically, pad(.) function will pad at each end of δlj with nl
2 − 1 zeros,

where nl
2 is the size of kl

ij .

Apply Gradients: After the calculation of values of parameters derivatives, we can

apply them to update parameters. Assume that the cost function that we want to mini-

mize is E(w). Gradient descent tells us to modify weights w in the direction of steepest

descent in E:

wl
ij = wl

ij − η
∂E

∂wl
ij

(11)



Deep CNN Based Regression Approach for Estimation of RUL 11

Where η is the learning rate, the learning rate is a parameter that determines how

much an updating step influences the current value of weights, and if it’s too large it

will have a correspondingly large modification of the weights wij . More details about

forward propagation, backward propagation and application of gradients can be found

in [14, 3].

4 Experimental Results

In this section, we have performed extensive experiments for comparison of our pro-

posed CNN based regression model (CNN in short) with three regression algorithms in

the state-of-the-art, including Multi-layer Perceptron (MLP) [18], Support Vector Re-

gression (SVR) [4] and Relevance Vector Regression (RVR) [21], on two publicly avail-

able data sets. The tunable parameters of all the four techniques, namely CNN, MLP,

SVR and RVR, are chosen using standard 5-fold cross-validation procedure based on

the training set only, where we tune their parameter values for training these models on

the randomly selected four folds and choose their final values that give the best results

in the last fold.

4.1 Results on C-MAPSS Data set

The four algorithms were tested on four C-MAPSS sub-data sets (see Table 1). Table 2

illustrates their comparison results across four sub-data sets in terms of RMSE values. It

is observed that CNN achieved the lower RMSE values consistently on all the sub-data

sets than MLP, SVR and RVR, regardless of the operating conditions, indicating the

proposed deep learning method can find more informative features than shallow fea-

tures and features from naive MLP network. Among the four methods, MLP achieved

higher RMSE values on all the four sub-data sets than the remaining methods, signi-

fying that naive deep model can even harm the performance and further verified the

necessity to explore modern deep learning techniques. SVR achieved the lower RMSE

values than MLP and RVR on single operating condition data sets, i.e. the first and

third sub-data sets. Furthermore, RVR achieved the lower RMSE values than MLP and

SVR on multiple operating condition data sets, i.e. the second and fourth sub-data sets.

This demonstrates that none of the existing traditional methods can beat the others con-

sistently, while our proposed CNN method consistently achieves significantly better

results across multiple data sets.

Similarly, in the same C-MAPSS data sets, Table 3 describes the comparison results

for all the four methods in terms of the evaluation scores, illustrated as scoring function

in Figure 1. It is observed that CNN achieved lower (better) score values than the MLP,

SVR and RVR on multi operating condition data sets, i.e. second and fourth sub-data

sets, as well as on 1 single operating condition data set, i.e. first sub-data set. Among

the four methods MLP achieved higher score values (worst results) on all the four sub-

data sets than remaining methods regardless of the operating conditions. CNN achieved

slightly higher (worse) scores than the RVR on one single operating condition data

set, i.e. third sub-data set, even though the RMSE values are lower. Coupled with the

characteristics of each evaluation metric (Figure 1), it implies that the slightly high score



12 G. Sateesh Babu, Peilin Zhao, Xiao-Li Li

Table 2. RMSE for various algorithms on C-MAPSS data set

Algorithms C-MAPSS Data sets

FD001 FD002 FD003 FD004

MLP 37.5629 80.0301 37.3853 77.3688

SVR 20.9640 41.9963 21.0480 45.3475

RVR 23.7985 31.2956 22.3678 34.3403

CNN 18.4480 30.2944 19.8174 29.1568

could be caused by certain outliers in predicting the RUL. Based on these observations,

we find that performance of the methods for RUL estimation also depends on their

operating conditions.

Table 3. Scores for various algorithms on C-MAPSS data set

Algor C-MAPSS Data sets

ithms FD001 FD002 FD003 FD004

MLP 1.7972∗104 7.8028∗106 1.7409∗104 5.6166∗106

SVR 1.3815∗103 5.8990∗105 1.5983∗103 3.7114∗105

RVR 1.5029∗103 1.7423∗104 1.4316∗103 2.6509∗104

CNN 1.2867∗103 1.3570∗104 1.5962∗103 7.8864∗103

4.2 Results on PHM 2008 Data Challenge Data set

Finally, we also evaluate the performance of the four algorithms on the PHM 2008 Data

Challenge test data set. After we execute the 4 algorithms to compute the estimated

RULs of 218 engines in the test data set, they were then uploaded to the NASA Data

Repository website and a single score was then calculated by the website as the final

output.

Table 4. Scores for various algorithms on PHM 2008 Data Challenge test data set

Algorithms Score

MLP 3212

SVR 15886

RVR 8242

CNN 2056

We can observe from the results in Table 4, our proposed CNN based approach out-

performs the existing regression methods based approaches significantly by producing



Deep CNN Based Regression Approach for Estimation of RUL 13

much lower score (see Figure 1), indicating that the predicted failure time from our

proposed CNN model is very near to the actual failure time or their ground truth values.

Hence, we can conclude that CNN based regression approach is better than the standard

shallow architecture based regression methods for RUL estimation.

5 Conclusion

Clearly, accurate estimation of RUL has great benefits and advantages in many real-

world applications across different industrial verticals. As the first attempt to adapt deep

learning to estimate RUL for prognostic problem, this paper investigated a novel deep

architecture CNN based regressor to estimate the RUL of complex system from multi-

variate time series data. This proposed deep architecture mainly employs the convolu-

tion and pooling layers to capture the salient patterns of the sensor signals at different

time scales. All identified salient patterns are systematically unified and finally mapped

into the RUL in the estimation model. To evaluate the proposed algorithm, we exam-

ined its empirical performance on two public data sets and our experimental results

shows that it significantly outperforms the existing state-of-the-art shallow regression

models that have been utilized extensively for RUL estimation in literature. As in our

future study, we would like to further explore novel deep learning techniques to tackle

a variety of emerging real-world problems in prognostics field.

References

1. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new perspec-

tives. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(8), 1798–1828

(Aug 2013)

2. Bengio, Y.: Learning deep architectures for AI. Foundations and trends R© in Machine Learn-

ing 2(1), 1–127 (2009)

3. Bouvrie, J.: Notes on convolutional neural networks (November 2006), http://

cogprints.org/5869/1/cnn_tutorial.pdf

4. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions

on Intelligent Systems and Technology 2, 27:1–27:27 (2011), software available at http:

//www.csie.ntu.edu.tw/~cjlin/libsvm

5. Collobert, R., Weston, J.: A unified architecture for natural language processing: Deep neural

networks with multitask learning. In: Proceedings of the 25th international conference on

Machine learning. pp. 160–167. ACM (2008)

6. Connor, J.T., Martin, R.D., Atlas, L.E.: Recurrent neural networks and robust time series

prediction. IEEE Transactions on Neural Networks 5(2), 240–254 (1994)

7. Deng, L.: A tutorial survey of architectures, algorithms, and applications for deep learning.

APSIPA Transactions on Signal and Information Processing (2014)

8. Fukushima, K.: Neocognitron: a self organizing neural network model for a mechanism of

pattern recognition unaffected by shift in position. Biological cybernetics 36(4), 193–202

(1980)

9. Heimes, F.O.: Recurrent neural networks for remaining useful life estimation. In: Interna-

tional Conference on Prognostics and Health Management, 2008. PHM 2008. pp. 1–6 (Oct

2008)



14 G. Sateesh Babu, Peilin Zhao, Xiao-Li Li

10. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.r., Jaitly, N., Senior, A., Vanhoucke,

V., Nguyen, P., Sainath, T.N., et al.: Deep neural networks for acoustic modeling in speech

recognition: The shared views of four research groups. Signal Processing Magazine, IEEE

29(6), 82–97 (2012)

11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional

neural networks. In: Advances in neural information processing systems. pp. 1097–1105

(2012)

12. LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications in vision.

In: Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on.

pp. 253–256 (May 2010)

13. LeCun, Y., Bengio, Y.: The handbook of brain theory and neural networks. chap. Convolu-

tional Networks for Images, Speech, and Time Series, pp. 255–258. MIT Press, Cambridge,

MA, USA (1998)

14. LeCun, Y., Bottou, L., Orr, Genevieve, B., Müller, K.R.: Efficient backprop. In: Orr, G.,

Müller, K.R. (eds.) Neural Networks: Tricks of the Trade, Lecture Notes in Computer Sci-

ence, vol. 1524, pp. 9–50. Springer Berlin Heidelberg (1998)

15. Lim, P., Goh, C.K., Tan, K.C., Dutta, P.: Estimation of remaining useful life based on switch-

ing kalman filter neural network ensemble. In: Annual Conference of the prognostics and

Health Management Society 2014. pp. 1–8 (2014)

16. Peel, L.: Data driven prognostics using a kalman filter ensemble of neural network models.

In: International Conference on Prognostics and Health Management, 2008. PHM 2008. pp.

1–6 (Oct 2008)

17. Ramasso, E., Saxena, A.: Review and analysis of algorithmic approaches developed for prog-

nostics on CMAPSS dataset. In: Annual Conference of the Prognostics and Health Manage-

ment Society 2014. pp. 1–11 (2014)

18. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Neurocomputing: Foundations of research.

chap. Learning Representations by Back-propagating Errors, pp. 696–699. MIT Press,

Cambridge, MA, USA (1988), http://dl.acm.org/citation.cfm?id=65669.

104451

19. Saxena, A., Goebel, K.: PHM08 challenge data set, NASA AMES prognostics data reposi-

tory. Tech. rep., Moffett Field, CA (2008)

20. Saxena, A., Goebel, K., Simon, D., Eklund, N.: Damage propagation modeling for aircraft

engine run-to-failure simulation. In: International Conference on Prognostics and Health

Management, 2008. PHM 2008. pp. 1–9 (Oct 2008)

21. Tipping, M.E.: The relevance vector machine. In: Solla, S.A., Leen, T.K., Müller, K.R. (eds.)

Advances in Neural Information Processing Systems. vol. 12, pp. 652–658. MIT Press (2000)

22. Wang, P., Youn, B.D., Hu, C.: A generic probabilistic framework for structural health prog-

nostics and uncertainty management. Mechanical Systems and Signal Processing 28, 622–

637 (2012)

23. Wang, T., Yu, J., Siegel, D., Lee, J.: A similarity-based prognostics approach for remaining

useful life estimation of engineered systems. In: International Conference on Prognostics and

Health Management, 2008. PHM 2008. pp. 1–6 (Oct 2008)

24. Yang, J.B., Nguyen, M.N., San, P.P., Li, X.L., Krishnaswamy, S.: Deep convolutional neural

networks on multichannel time series for human activity recognition. In: Proceedings of the

24th International Conference on Artificial Intelligence. pp. 3995–4001. AAAI Press (2015)

25. Zeng, M., Nguyen, L.T., Yu, B., Mengshoel, O.J., Zhu, J., Wu, P., Zhang, J.: Convolutional

neural networks for human activity recognition using mobile sensors. In: Mobile Comput-

ing, Applications and Services (MobiCASE), 6th International Conference on. pp. 197–205.

IEEE (2014)



Deep CNN Based Regression Approach for Estimation of RUL 15

26. Zheng, Y., Liu, Q., Chen, E., Ge, Y., Zhao, J.L.: Time series classification using multi-

channels deep convolutional neural networks. In: Web-Age Information Management, pp.

298–310. Springer (2014)


