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The flexibility in engineering the holey structure and controlling the wave guiding properties in photonic 
crystal fibers (PCFs) has enabled a wide variety of PCF-based plasmonic structures and devices with 
attractive application potential. Metal thin films, nanowires and nanoparticles are embedded for achieving 
surface plasmon resonance (SPR) or localized SPR within PCF structure. This article begins with an outline 
of plasmonic sensing principle. This is followed by an overview on fabrication and experimental 
investigation of plasmonic PCFs. Reported plasmonic PCF designs are categorized based on their target 
application areas including optical/biochemical sensors, polarization splitters and couplers. Finally, design 
and fabrication considerations, as well as limitations due to structural features of PCFs, are discussed.  © 
2016 Optical Society of America 

OCIS codes: (060.6595) Photonic crystal fibers; (060.2370) Fiber optics sensors; (250.5403) 
Plasmonics;  

http://dx.doi.org/10.1364/AOP.0.000000 

 
1. Introduction ......................................................................................................................................................2 
2. Operating principle of SPR fibers ......................................................................................................................2 
3. Review of fabrication process and experimental studies of plasmonic PCF structures .....................................6 

3.1 Metal nano/microwires filled plasmonic PCF structures .............................................................................6 
3.2 Metal coated plasmonic PCF structures .................................................................................................... 11 
3.3 Plasmonic PCF structures with nanoparticles............................................................................................ 16 

4. Review of plasmonic PCF designs for various applications ............................................................................. 22 
4.1 Refractive index sensing and biosensing ................................................................................................... 22 
4.2 Dual or multi-analyte sensing ................................................................................................................... 35 
4.3 Temperature sensing and dual parameter sensing ................................................................................... 35 
4.4 Polarization and birefringent devices ........................................................................................................ 38 
4.4.1 Metal wire filled PCFs ............................................................................................................................. 38 
4.4.2 Metal film coated PCFs and nanoparticles coated PCFs ......................................................................... 46 
4.5 Others ....................................................................................................................................................... 51 



 2

5. Conclusion ...................................................................................................................................................... 51 
Funding. ................................................................................................................................................................ 52 
Bibliography ........................................................................................................................................................ 52 
 

1. Introduction  Plasmonics, a bridging technology for electronics and photonics, has been extensively studied and widely explored for nanophotonics, magneto-optic data storage, microscopy, solar cells, and sensing applications such as biological and chemical detection [1, 2]. Surface plasmon (SP) waves are coupled electron-photon modes at the boundaries between a metal and a dielectric. Generally, plasmonic sensing devices are categorized into two types: propagating surface plasmon resonance (SPR) sensors and localized surface plasmon resonance (LSPR) sensors. Because of the momentum mismatch between SPs and photons propagating in vacuum, special configurations are needed to excite the plasmon modes.  Compared with prism coupling in traditional bulk-optic systems, the SPR optical fiber offers a more compact and robust configuration with potential in remote and in situ monitoring applications. The first SPR optical fiber was proposed and demonstrated in 1993. It showed comparable sensitivity to bulk SPR systems, thus paving a promising path for the development of plasmonic fiber optic technology and applications [3]. Since then, numerous plasmonic fiber optic structures based on simulation and experimental studies have been reported in literature. Various fiber types such as single mode fibers (SMFs) [4], multimode fibers (MMFs) [5, 6], hollow fibers or capillaries [7, 8], tapered fibers [9, 10, 11], U-shaped fibers [12, 13], D-shape fibers [14, 15], side-polished fibers [16, 17] and fiber tips [18, 19] have been demonstrated for enhancing the sensor performance. Fiber grating technologies have also been incorporated to further improve sensitivity, and multiple channel sensing capability has been demonstrated through fiber Bragg grating SPR sensors [20, 21] and fiber long period grating SPR sensors [22, 23].  Photonic crystal fibers (PCFs), also known as microstructured optical fibers, or holey fibers, contain axially aligned air holes which can be arranged periodically or non-periodically in the cladding region centered on a solid or hollow core. These fibers provide unique features and flexibilities not attainable in conventional optical fibers. Since its discovery in 1996, the past two decades have witnessed substantial development of PCF technology for sensing, communication and medical applications [24, 25]. Particularly for sensing applications, PCFs have attracted significant attention in light of the ever increasing demand for high performance sensing devices [26]. The incorporation of plasmonic structures into PCFs seems a natural move of plasmonic fiber optic technology, as PCFs allow unparalleled flexible control of waveguiding properties through engineering the holey structures. As a desirable platform for plasmonic structures, PCFs enable and enhance many application opportunities in terms of performance and versatility.  The potential impact of plasmonic PCFs has resulted in growing effort in developing new device features for all kinds of applications. The most recent review article on this topic focuses on PCF based surface plasmon resonance (SPR) chemical sensors [27]. Other review articles place focuses on optical fiber sensors with SPR or LSPR structures in general [28, 29, 30, 31, 32]. Therefore, there exists a need to have a comprehensive review on using PCFs as a platform for both SPR and LSPR structures for a wider spectrum of applications including temperature sensors and polarization splitters etc. In this review, we first summarize the current state-of-the-art achievements in the design, fabrication and application experiments of plasmonic PCFs. We then identify important research directions for the research community. This review begins with an introduction on the operating principles of plasmonic fibers, then followed by an overview on the progress in fabrication techniques and experimental studies. In the second half of this review, we present a summary on various plasmonic PCF structures, which are classified based on their respective applications with benchmarking, and a discussion on their opportunities and challenges. 
2. Operating principle of SPR fibers Surface plasmon waves (SPWs) are electron oscillations guided by an interface between two materials having negative and positive real parts of permittivity. This type of interface is often implemented with a metal-dielectric layer stack. SPWs can be excited by photons when the parallel optical wave vector matches the propagation constant of the corresponding SPW. In an optimized system, an excited SPW can propagate over a long distance with a significant portion of the optical energy being converted to the guided mode. The basis of SPR, which has been extensively used for sensing applications, indeed arises from this wave vector matching requirement as the extent of energy transfer from photons to SPW is very sensitive to a number of parameters such as refractive index of the 
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medium adjacent to the metal-dielectric interface. A widely adopted practical realization of the SPR sensor is the Kretschmann configuration [33], in which an inverted metal-coated prism exhibits attenuated total internal reflection (ATR) when matching of wave vectors takes place at the metal-glass interface. The metal commonly used is gold because of its chemical stability. Silver provides better performance, but seldom used in practical systems for the same reason. In the case of optical fiber SPR sensors, efficient coupling can be achieved by exposing the core either by side-polishing [34] or selective etching in hydrofluoric acid [35].  Figure 1 shows a typical SPR sensor configuration based on the Kretschmann and fiber configurations.  

 Figure 1. Typical SPR sensor based on the Kretschmann (a) and fiber (b) configurations 
Since the excitation of SPWs can be exactly described by the transfer matrix technique, one can readily use the Fresnel’s equations [36, 37] to represent the ratio between the incident and reflected electric fields in the system. SPR results in significant optical energy dissipation in the p-polarized component because of coupling of SPW while leaving the s-polarized component unaffected. Equation (1) shows the phase and amplitude of the reflected p-polarized component. ݎ௣௠ௗ = หݎ௣௠ௗห݁௝థ = ாೝா೔ = ௥೛೘ା௥೘೏௘௫௣൫ଶ௜௄೘೤௤൯ଵା௥೛೘௥೘೏௘௫௣൫ଶ௜௄೘೤௤൯     (1) where ݎ௣௠ௗ represents the reflection coefficient of the prism-metal-dielectric structure, หݎ௣௠ௗห the amplitude, ߶ the phase, ܧ௥ and ܧ௜ respectively the reflected and incident electric filed, ݍ the metal thickness and ݎ௞௟ = ఌ೗௞ೖ೤ିఌೖ௞೗೤ఌ೗௞ೖ೤ାఌೖ௞೗೤        (2) ܭ௞௬ = ටቀଶగఒ ቁଶ ௞ߝ − ݇ correspond to the coordinate system shown in Figure 1, where ݕ and ݔ ௫ଶ       (3) Here, the subscriptsܭ , ݈  are ݌ (prism),  ݉  (metal), and ݀  (dielectric), ߣ is the incident wavelength, ܭ is the propagation constant of the evanescent wave at the prism-metal/metal-dielectric interfaces, and ߝ௣, ߝ௠, ߝௗ the permittivity of the prism, metal and dielectric respectively. The transfer matrix technique is highly desirable to treat multilayer structures. It is a type of an ab 

initio calculation to get close reproduction of the reflection properties in reality, i.e. a dip in the reflection as described in equation 1 is corresponding to the resonance of surface plasmon excitation. An intuitive approach is to investigate the dispersion relations of the waves in the waveguides. The propagation constant of the surface plasmon along the metal-dielectric interface is matched to the parallel component of the wave vector in the dielectric. The phase matching conditions in plasmonic fibers are satisfied at the intersections of the effective mode index of the core mode and the surface plasmons. At phase matching wavelengths, the real part of the effective mode index of the fiber waveguide and the surface plasmons are equal. In addition, the confinement loss of the fiber waveguide mode, which is a function of the imaginary part of the effective mode index, would exhibit a peak at the phase matching wavelengths corresponding to surface plasmon excitation. 
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Changes of both the amplitude and the phase under resonance conditions are extremely sensitive to variations in the ambient refractive index ݊ ௗ (with ݊ ௗ = ඥߝௗ  if the material is a non-magnetic medium) in the dielectric layer. Due to the dispersive nature of the resonance, spectral response can also be used as a detection parameter. It is the shifts in amplitude, phase and spectral characteristics that constitute the basis of SPR sensors, which is well-known for their high performance in detecting small changes of refractive index on the metal surface caused by conjugation of biomolecular species. This technique has a major advantage over its fluorescence counterparts because of the “label-free” measurement approach. Users may use their samples without having to treat them with fluorescence tags. Moreover, there is no issue associated with photobleaching.  
 

3. Review of fabrication process and experimental studies of plasmonic PCF structures  

3.1 Metal nano/microwires filled plasmonic PCF structures Plasmonic nanowires, such as those made from Au and Ag, are the constituents widely used for creating nanoscale metallic structures in plasmonic waveguides. In a plasmonic fiber structure, guided surface plasmon-polaritons (SPPs) can be excited and supported in metallic nanowires when fiber core guided modes are phase-matched to the SPP modes, thus resulting in distinct resonances of fiber core guided modes. The fabrication of metallic nanowires in a PCF, can be done during [42, 43] or after [44] [45] [46] [47] the PCF drawing process. The drawing approach was achieved through incorporating the Taylor-wire process [48] into the stack-and-draw procedure for silica PCFs and Polymethyl Methacrylate (PMMA) fibers [42, 43]. Firstly, six silica-coated copper rods were stacked together with 114 hollow capillaries around a single solid silica rod to form the structure of interest. The stack was inserted into another silica tube for high temperature drawing. Scanning electron microscopy (SEM) images of the fabricated PCF with six copper wires are shown in Figure 5. The copper wire diameter was around 4 µm [42]. Tuniz et al. demonstrated a co-drawing of PMMA PCFs with polymethyl-methacrylate and indium, and experimentally showed that the polarization dependent transmission property of the fiber was useful for THz filtering and polarizer applications [43]. The fiber drawing method was also shown to be useful for the fabrication of metallic nanowires and microwire arrays [49, 50]. Apart from the Taylor-wire process, a gold filled cane was used to fabricate high-quality gold wires of diameter down to 260 nm and length more than 100 m in standard step index fibers through direct drawing [51]. This method permits more precise control over fabrication parameters, e.g. location of the gold wire in the fiber [51].  

    (c)             (d) Figure 5. SEM images of metallic optical fiber with one ring of copper rods. a) shows a cleaved fiber end-face with six copper wires protruding from the surface. b) is a higher magnification image of the six copper wires. c) is a backscattered electron image of the polished fiber sample end-face. d) shows details of the copper rods in c). Reprinted with permission from [42]. Copyright 2008 Optical Society of America.  
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More recently, Jain et al. reported fabrication of micron sized gold nickel alloy wire in a graded index silica fiber by pressure assisted melt filling technique to address the mechanical and chemical weakness of pure metals [55]. The fiber contained a germanium oxide doped graded core and an empty channel parallel to the core, which was filled with the gold nickel alloy using pressure assisted melt filling technique. Instead of fabricating a metal nanowire structure within PCF, Lu et al. reported preparation of silver nanowire solutions in ethanol and chloroform for infiltration in PCF for temperature sensing measurements [56, 57]. In this approach, the authors used capillary effects in the air holes to drive the liquid into the channels, with a penetration depth up to several centimeters. In the experiment, the silver nanowire colloid was a stable translucent colloidal suspension of silver nanowires in ethanol carrier. The liquid was regarded as a physical mixture of ethanol and chloroform. The diameter of the nanowires was about 90 nm, and the average length was about 30 µm. The mixing volume ratio of the silver nanowire solution and the chloroform was changed to tune the plasmonic resonance and the transmission loss.   

 Figure 7. Optical side-views of the splices (left-hand column) and SEM images of the cleaved end-faces (right-hand column). (a) Solid-core PCF with all its channels filled with Au. (b) PCF in which only two channels are filled with Au. (c) Modified step index fiber with a parallel gold nanowire. Reprinted with permission from [47]. Copyright 2011 Optical Society of America.  
The characteristics of the metal wires in different PCFs structures are summarized in Table 1. Depending on different fabrication conditions, e.g. temperature, pressure and usage of precursor, metal wire filled PCF have been reported mainly on silica and PMMA PCFs, and various metal materials, showing different outcome of the metal wire characteristics, e.g. diameter and length.  
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Table 1  Characteristics of the metal wire filled PCFs Fabrication technique Wire diameter (µm) Wire length (mm) Fabrication condition Features and properties1 Ref. 
Modified stack-and-draw technique (combination of Taylor-wire process) 4.2 70 High temperature, e.g. 1880℃ Silica PCF with single or a few copper microwires. The attenuation was measured.  Hou 2008 [42] 
Modified stack-and-draw technique (combination of Taylor-wire process) <10 Up to kilometer Low temperature, e.g. 156.6℃ PMMA fiber with Indium wire array, Transmittance was measured via THz time domain spectroscopy. Tuniz 2010 [43] 

Pressure assisted melt filling technique 1.3 Up to 8.1 High temperature, e.g. 1100 ℃, High pressure, e.g. 50 bar Silica fiber with AuNi micron sized wire array. The attenuation was measured by cut-back technique. Jain 2016 [55] High-pressure microfluidic chemical deposition technique 5 Several cm High temperature at 700℃, High pressure, organic precursor, e.g. GeH4 germane precursor at 2 MPa partial pressure in Ar was flowing at a total pressure of 40 MPa 
Silica PCF with silicone and germanium microwires. The deposited material was studied by Raman spectroscopy; Electrical characterization was conducted on resistivity and carrier type, mobility and concentration. 

Finlayson 2007 [44]  
High temperature pressure cell technique 0.55 Up to 40 High temperature, e.g. 1100℃, high pressure, e.g. 60 bar Silica PCF with single and multiple sub-micron Au or Ag wires. The SPR excitation and coupling from fiber core mode was characterized by transmission spectrum measurement. 

Schmidt 2008 [45] 
0.9 24.5 Silica PCF with single sub-micron Au wires. Due to SPR coupling, highly polarization- and wavelength-dependent transmission was observed. 

Lee 2008 [46] 
Pressure-assisted splicing technique 0.12-4 Up to 200 Filling pressure of 300 bar Silica PCF with multiple sub-micron and micron Au wires. Optical transmission spectra was measured Lee 2011 [47] 

                                                                                 
1 Unless mentioned, the plasmonic effects in the fibers were not studied in the work. 
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and showed dips at wavelengths where guided surface plasmon modes on the nanowire phase match to the glass core mode. The intensity distribution of the SPPs and the polarization characteristics in a PCF with gold nanowire array were measured using a scanning near-field optical microscopy.  
Uebel 2012 [53] 

A single wire-filled and a double wire-filled PCF were measured and showed polarization dependent attenuation spectra. Polarization splitting was observed for the double wire-filled PCF . 
Lee 2012 [54] 

Combined method of fiber drawing with advanced filling materials 0.05 1.5 meter High temperature at 850℃  Zinc microwires embedded in glass matrices; the microwires were analysed by taking SEM and energy-dispersive X-ray spectroscopy.  Zhang 2008 [49] 
Iterative co-drawing of multimaterial in polymer matrices 0.015 A few hundreds meters Low temperature <240 oC Semiconducting and piezoelectric nanowire and nanotube arrays in polymer matrix; the electrical and photoconductivity was measured.  

Yaman 2011 [50] 
Capillary effect infiltration technique 0.09 0.03 Infiltrated in room temperature  Ag nanowires mixed in solution. The SPR induced resonance was measured for sensing applications. Lu [56, 57]  
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PCF structure was then tested for fluorescence spectroscopy detection of Rhodamine B (RhB) with concentration from 10 µM to 100 µM using the surface plasmon effect. Partial or complete collapsing of holey cladding enables excitation of higher order modes to reach the outer surface of the PCF. This technique is popular for producing PCF interferometers for liquid detection and biosensing [64, 65]. Wong et al. employed this technique in developing a plasmonic PCF biosensor [66]. The PCF sample was spliced between two multimode fibers, with a fully collapsed zone over length of 126 µm. The fiber was then cleaned, dried, and fixed onto a platform for sputtering gold coating around its surface. The gold coated PCF was subsequently chemically treated to form thiol and protein G coating on the gold surface, and used to measure the binding kinetics of the IgG (anti-IgG) complexes with a minimum detection limit at concentration of 0.267 mg/L of anti-IgG.   Tapered PCFs with subwavelength core can provide substantially enhanced evanescent field. A metalized nanostructured PCF taper with gold film perforated on the cross-section of the taper using thermal evaporation technique was reported to show enhanced transmission peaks in the spectral domain [67]. The characteristics of the metal coatings in different PCFs structures are summarized in Table 2. 
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Table 2  Characteristics of the metal coated PCFs  Fabrication technique Coating thickness (nm) Coating length (mm) Fabrication condition Features and properties2 Ref. 
High pressure microfluidic chemical deposition 25 70 High pressure, e.g. 10-100 MPa; organic precursor, e.g. GeH4, SiH4; High temperature, e.g. 700℃ Conformal coating of germanium, silicon in silica PCF; Transconductance measurements were carried out to characterize the performance of the semiconductor structure fabricated in the PCF. 

Sazio 2006 [58] 

Chemical deposition by Tollens reaction 60 1 meter Room temperature, Medium pressure, e.g. 100 psi Suspended core fiber with silver coating; The angular position of SPR features were measured for a slide with chemically deposited silver and a slide coated using sputtering, the fiber was not measured for SPR signal.  
Boehm 2011 [59] 

Two-step fiber drawing method Granular coating 40 cm Low temperature, e.g. for polymer fiber drawing Polymer PCF with selective silver coating. The polarization-dependent 
transmission of the silver coated fiber 

was experimentally measured. 
Zhang 2007 [60] 

Chemical plating technique 50 10 Precipitation of metallic silver form ammoniacal silver nitrate solution  Exposed core silica fiber with silver coating; Performance of the sensor in terms of its refractive index sensitivity and full width at half maximum (FWHM) of SPR response were experimentally investigated.  
Klantsataya 2015 [61] 

Sputtering technique 37 6 Ar-ion physical sputtering Polymer side hole PCF with gold Wang 2009 [62] 
                                                                                 
2 Unless mentioned, the plasmonic effects in the fibers were not studied in the work. 
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coating; SPR features were experimentally measured for fluid sensing. 34-35 10.5 D-shaped silica PCF with gold coating; The SPR field enhancement of the fiber sensor was experimentally demonstrated with an improvement in fluorescence emission intensity and higher sensitivity in fluorescence spectroscopy. 

Yu 2011 [63] 

30, 50, 60 5-20 Gold externally coated PCF; The structure was experimentally demonstrated as a SPR biosensor to monitor the binding kinetics of the IgG (anti-IgG) complexes. 
Wong 2013 [66] 

Thermal evaporation technique 15-200 - Vacuum Gold coated on cleaved end of a tapered PCF; A white light was coupled into the PCF side to produce an enhanced optical transmission in the spectral domain through the plasmonic structure at the tapered end. 

Arabi 2011 [67]  
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3.3 Plasmonic PCF structures with nanoparticles Nanoparticles (NPs) have been extensively studied for applications involving localized surface plasmon resonance (LSPR), in particular surface-enhanced Raman scattering (SERS) due to its unique molecular specificity. The combination of plasmonic nanoparticles and PCFs offers the unique benefit of working with extremely low sample volume and long interaction length. Clearly there exists captivating advantages and promises for developing fully integrated plasmonic devices especially for sensing applications. The most straightforward method for NP deposition on the inner surface of PCFs is to infiltrate the NP solution into the air holes by capillary effect. After a heating and drying process, the NPs are attached to the inner surface by the opposite charge affinity [68]. The PCF is subsequently filled with the analyte solution. Fiber structures with immobilized NPs are categorized as coated PCFs thereafter. Using this method, Yan et al. reported a solid core photonic crystal fiber (SCPCF) with four large air holes surrounding the solid core and surface coated with gold NPs for SERS detection [69].  The NPs can be mixed with the analyte solution and filled into the air channels of PCFs, which does not require a drying process. Structures fabricated with this technique are categorized as liquid filled SCPCFs. Xie et al. reported a silver NPs filled SCPCF SERS probe for detection of the 4-Mercaptobenzoic acid solution [70]. Zhang et al. demonstrated an ultra-low SERS detection limit of 50 fM using an optimized SCPCF structure filled with gold NPs and Rhodamine 6G (R6G) solution [71]. Hollow core PCFs (HCPCFs) were introduced in the design of SERS detector probes at the same time in order to address a few challenges faced by SCPCFs, which include weak evanescent field in the voids for improved Raman signal excitation and suppression of strong Raman background signal from silica [72, 73, 74]. HCPCFs with NPs immobilized on the inner surface of air holes through the infiltration and drying procedures are categorized as coated HCPCFs. Liquid-filled HCPCFs refer to structures that are completely filled with physical mixture of NPs and analyte. The geometry of silver NPs was optimized for enhanced SERS detection in a liquid filled HCPCF [75]. Improvements of SERS performance were made by sealing/collapsing the air holes in the cladding and infiltrating the hollow core with mixed solution of NPs and analyte for forming a liquid core photonic crystal fiber (LCPCF) [76, 77, 78]. The enhancement was attributed to increased SERS active volume as a result of good confinement of both light and analyte in the central core. Higher sensitivity was later demonstrated using an inner wall-coated LCPCF probe with a sandwich structure, i.e. two types of silver NPs were used as SERS substrates simultaneously. The hollow core was selectively coated with NPs first and selectively filled with a mixed solution of NPs and the analyte [79]. Only the central core was filled/coated with NPs in LCPCFs. A more detailed review of HCPCF-based SERS probes can be found in [80]. The infiltration process can also be assisted with a differential pressure, which was reported by Du’s group in the development of a forward-propagating full-length SERS-active SCPCF platform with immobilized and discrete silver NPs [81, 82]. By adjusting the launching condition, an improved SERS signal was demonstrated in a SCPCF coated with gold NPs [83].  Khetani et al. reported a differential pressure system for repetitive characterization of a HCPCF Raman probe and experimentally determined HC-PCF filling time is inversely proportional to the pressure difference across the HCPCF in the range of 15 to 60 psi [84].  



 17

 Figure 11. SEM images of the inner walls coated with gold nanoparticles: a) An overview and b) zoomed in. c) Tilted front view of one hole’s cross section at the starting point. d) A view of the fiber end [85].  Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission. 
A dynamic low pressure chemical deposition technique for NP layer deposition was reported by Csaki 

et al. and Schröder et al., who used a combination of self-assemble monolayer technique and microfluidics [85] [86]. The inner walls of PCFs were chemically modified by the perfusion of the silanes, acting as a chemical adhesive layer for metal NPs due to its amino modification. The NP solutions were then incubated by continuous flow. The coating uniformity, e.g. the NP density and the layer thickness was constant up to 6 m. Figure 11 shows the homogeneous coating density on the local curvature of the capillary-channel cross section and NP monolayer at saturation coverage [85].  The high pressure chemical deposition technique was reported by Amezcua-Correa et al., employing an organic solvent under high pressure to deliver a silver precursor complex into the fiber holes, followed by a simple thermal reduction of the precursor to form an annular deposition of silver nanoparticles inside the holes. Figure 12 shows the SEM images of silver coating layers achieved by different experimental parameters [87]. The PCFs were typically NP-coated over 15 cm with the central 5–6 cm having the most uniform filling. Their work highlighted the importance of optimized PCF structure with high numerical aperture for efficient collection and detection of Raman response, low loss core guided modes with large optical component propagating in the voids for large excitation area and long interaction length for improved SERS sensitivity. Optimized fiber structures with increased field-particle overlap were investigated for SERS enhancement by Peacock et al. [88].   
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 Figure 12. SEM images showing a range of silver deposition profiles obtained by tuning the experimental parameters. A) Deposition Time = 0.5 h with a precursor concentration of 5 mg mL–1; 1 µm scale bar. B) Deposition Time = 0.5 h with a precursor concentration of 10 mg mL–1; scale bar is 1 µm. C) Deposition Time = 2 h with a precursor concentration of 10 mg mL–1; scale bars are 2 µm and 20 µm on the inset. D) Deposition Time = 3 h with a precursor concentration of 15 mg mL–1; 2 µm scale bar. Reproduced with permission from [87]. Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.  
Using the stack-and-draw technique, Bigot et al. fabricated a PCF doped with gold NPs by combining a gold NPs-doped silica core rod with capillaries drawing from silica tubes [89]. Sol-gel route was used to synthesize a cylindrical rod with interconnected nanometric pores, which was subsequently doped with gold NPs. The gold NPs-doped core rod was surrounded by silica capillaries to form a preform and drawn into a plasmonic fiber. The integration of the NP-based SERS substrates in PCF platform has resulted in many successful demonstrations of sensitive, rapid and compact biosensors for bacterial detection, e.g. S. oneidensis [30] and various cancer biomarkers detection including Epidermal growth factor receptors (EGFR) [90], serological liver cancer biomarkers [91], leukaemia cells [92] and sialic acid [93]. The performance figures of the demonstrated NP-based plasmonic PCF devices are summarized in Table 3. The PCFs possess a triangular lattice cladding unless otherwise stated in the table.  
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Table 3 Performance figures of NP-based plasmonic PCF sensors PCF characteristics NPs Measurand and techniques Sensitivity ReferenceCoated suspended core fiber (SCF) with three large holes Au Refractive index (RI) based on resonance shift 78 nm/RIU Csaki 2010 [85]
Coated SCF with three large holes  Au3  RI based on resonance shiftCrystal violet based on SERS 80 nm/RIU 100 µM Schröder 2012 [86]

Coated hollow core photonic crystal fiber (HCPCF)  Au Rhodamine B (RhB) based on SERS 10-5M Yan 2006 [72]Coated solid core photonic crystal fiber (SCPCF) with four large holes in a triangular lattice cladding Au RhB based on SERS 10-7M Yan 2008 [69]
Coated SCPCF  Au RhB based on SERS 10-7M Zhang 2013 [83]Liquid filled HCPCF with a kagome lattice cladding Ag Rhodamine 6G (R6G) based on SERS 2.1x10-7M Cox 2007 [73]Liquid core photonic crystal fiber (LCPCF)  Ag R6G based on SERShuman insulin based on SERS tryptophan based on SERS 10-4 ~ 10-5 M Zhang 2007 [76]

Inner wall coated-LCPCF   Ag R6G based on SERS 10-6 M Shi 2008 [79]Coated SCPCF  Ag R6G based on SERS 2x10-6 M Oo 2009 [82]Coated SCPCF  Coated HCPCF  Ag R6G based on SERS 10-7 M Han 2010 [74]Coated SCPCF  Coated steering-wheel PCF with three large holes Ag R6G based on SERS 10-6 M  Oo 2010 [81]
                                                                                 
3 The fibers were coated with different types of NPs, e.g. Au, Ag. The Au NP-coated SCF was tested for sensor measurement. 
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Coated SCF with three large holes 10-6 M 10-10 M Liquid-filled HCPCF LCPCF Ag R6G based on SERS 10-7 M10-10 M Yang 2010 [78]Liquid-filled HCPCF Ag R6G based on SERS 10-3M Tiwari 2014 [75]Coated SCF with three large holes Ag-Au core -shell R6G based on SERS 10-7 M Pinkhasova 2015 [94]Liquid filled SCPCF with a side channel in a triangular lattice cladding Gold R6G based on SERS 5x10-14 M zhang 2016[71] Coated SCPCF  Ag Benzenethiol based on SERS 1 mM Amezcua-Correa 2007[87] LCPCF  ZnO polyacrylic acid (PAA) based on Raman spectroscopy 1 mM Irizar 2008[77] Coated SCPCF  Ag 4-aminothiophenol (4-ATP) 0.5 mM Peacock 2008[88] Liquid filled SCPCF  Ag 4-Mercaptobenzoic acid based on SERS 10-6 M Xie 2009[70] LCPCF Ag S. oneidensis MR-1 strain (bacterial) based on SERS 106 cells/mL Yang 2011[30] Doped SCPCF Au Absorption coefficient based on direct measurement of optical attenuation 0.84x10-12 cm/W Bigot 2011[89] Protein coated HCPCF4 AuNP core SERS nanotag5 Epidermal growth factor receptors (EGFRs)based on SERS 10 µg /mL Dinish 2012[90] Protein coated HCPCF AuNP core SERS nanotag Serological cancer biomarkers based on SERS 200 µg /mL Dinish 2014 [91]
                                                                                 
4 The inner wall of the air holes was coated with protein (analyte) first, followed by infiltration of SERS nanotag solutions 
5 The SERS nanotag was constructed by absorbing malachite green isothiocyanate (MGITC) molecule onto the gold NPs followed by bioconjugation.  
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Liquid filled HCPCF Ag  Leukemia cells based on SERS 300 cells/ml Khetani2015[92] Liquid filled SCPCF with a side channel in a triangular lattice cladding Au Sialic acid based on SERS 2 fM Gong 2015 [93]
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4. Review of plasmonic PCF designs for various applications Various designs of plasmonic PCF structures have been proposed to achieve desirable characteristics, e.g. sensitivity, detection range, stability, miniaturization etc. for a wide range of applications including measurement of refractive index (RI), dual or multi-analyte sensing, temperature sensing, dual parameter sensing, biosensing, polarization devices and couplers. In this section, the plasmonic PCF designs are categorized and reviewed based on their target applications. Gold and silver are two commonly used metals for SPR sensors. Gold or silver coated SPR sensors are investigated in visible wavelengths where the plasma frequencies of both materials are located. Specifically, gold is favoured because of its availability, chemical stability and strong SPR signal which results in good detection sensitivity. On the other hand, silver has a sharp resonance peak which offers better performance in terms of detection sensitivity.  
4.1 Refractive index sensing and biosensing The phase matching condition of the plasmonic and fiber modes is ultrasensitive to refractive index (RI). This property has generated immense interest in the exploration of plasmonic fiber designs for RI sensing applications. High RI sensitivity is a key enabler to develop biosensing devices. In 2014, a review paper overviewed PCF-based SPR chemical sensor designs categorized by three types of metallic structures and various PCF structures [27]. In this section, the pioneering and key designs are emphasized and designs reported from 2014 and onwards are presented.  The key designs were selected based on authors’ perspectives with the best effort to represent plasmonic PCF designs of the same class. Phase matching conditions in plasmonic fiber sensors are assessed at the intersections of the effective mode index of the core mode and the surface plasmons, i.e. at phase matching wavelength, the real part of the effective mode index of the fiber waveguide and the surface plasmons are equal. An important parameter, i.e. the confinement loss which is related to the imaginary part of the effective mode index of the fiber waveguide mode, is usually used for characterization of the plasmonic sensor, especially for amplitude interrogation and wavelength interrogation methods.  The confinement loss of the waveguide core modes can be obtained from equation (4): ߙ = 8.686 × ଶగఒ ൫݊௘௙௙൯݉ܫ × 10ସ      (4) where ߣ is the operating wavelength in ݉ߤ, and the unit for ߙ is ݀ ଵሿିܷܫሾܴ(ߣ)The confinement loss spectrum of a plasmonic fiber sensor exhibits one or more loss peaks, corresponding to mode couplings to surface plasmons. The loss can be monitored and measured in amplitude change at a particular wavelength. The sensitivity using amplitude based detection method can be defined in equation (5) ஺ܵ .݉ܿ/ܤ = ଵ௉(௅,ఒ,௡ೌ) డ௉(௅,ఒ,௡ೌ)డ௡ೌ = ଵఈ(ఒ,௡ೌ) డఈ(ఒ,௡ೌ)డ௡ೌ     (5) where ߙ is the confinement loss which is defined in equation 4, and ߲ ߲ ,is the loss variation ߙ ݊௔ is the analyte RI variation. Amplitude interrogation requires simple experimental setup since only intensity measurement is involved. The detection resolution is normally obtained with an assumption of 1% of transmission intensity can be detected reliably and accurately.   In addition to amplitude variation, the loss peak wavelength can also be monitored and measured for varying RI in the wavelength interrogation method. The sensitivity is defined in equation (6) ఒܵሾ݊݉ ∙ ଵሿିܷܫܴ = ௗఒ೛೐ೌೖ(௡ೌ)ௗ௡ೌ       (6) where ݀ ܯܱܨ  ௣௘௔௞is the shift of the wavelength of the loss peak. The detection resolution is calculated with an assumption of 0.1 nm resonance wavelength peak can be detected reliably with good accuracy. Figure of Merit (FOM) takes the full-width half-maximum (FWHM) of the plasmonic peak into account as well as the absolution resonance wavelength shift, therefore it provides a more comprehensive description of the sensitivity. The definition of FOM is given in equation (7)ߣ =  ௌ (௡௠/ோூ௎)ிௐுெ (௡௠)       (7) where S is the RI sensitivity obtained by wavelength interrogation, and FWHM is the full width half-maximum of the resonance peak in the loss spectra.  Another important interrogation technique is called phase interrogation which offers higher sensitivity but narrower detection range. The phase shift or phase difference between two polarized waveguide modes per unit sensor length is calculated by equation (8), and the phase sensitivity is calculated using equation (9). ߶ௗ = ଶగఒ ൫ܴ݁(்݊ெ) − ܴ݁(்݊ா)൯       (8) ܵథሾ݀݁݃ ∙ ଵିܷܫܴ ∙ ܿ݉ିଵሿ = ௗథ೏(௡ೌ)ௗ௡ೌ       (9) 
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when (d) d1/d2= 0.95 (e) d1/d2 = 0.4 with analyte RI at 1.38. Figure reprinted with permission from [124]. © IOP Publishing.  Reproduced with permission. All rights reserved. https://doi.org/10.1088/2040-8978/18/6/065005 
Sensors based U-shaped PCF with a rectangular lattice and gold coating on the U-type trench have been reported. The aqueous analyte detection took place in the trench where SPR wave interacted with the analyte. Both phase interrogation and wavelength interrogation were considered for the proposed design, showing upper detection limit at 1.384 for phase interrogation and figure of merit up to 533.8 RIU-1 for wavelength interrogation respectively [127].  Graphene coating has been used to prevent metallic oxidation and also to enhance the sensing performance in plasmonic sensor construction.  For examples, silver coated or copper coated PCF sensors with a graphene layer deposition on the metal coating have been reported for enhanced sensor performance. Dash et al. reported a PCF structure with a void in the core region, and graphene on silver deposition on the outer layer of the fiber. Other air holes in the fiber were controlled to achieve good confinement and birefringent properties.  The analyte detection occurred in the external region to the fiber structure. The sensor performance was shown to be better with higher sensitivity than bimetallic configuration (gold on silver) [128].  The same group reported an improved design by using a D-shaped PCF with similar structure. RI sensitivities of 216 RIU-1 and 3700 nm/RIU were obtained by amplitude and wavelength interrogation, which were subsequently proposed for detection of biolayer thickness [129]. Another design was reported by Rifat et al, using a PCF with triangular lattice holey cladding, and three high RI analyte-filled cores in a straight line with the central core with graphene on silver coating. Both amplitude and wavelength interrogation methods were considered, and their respective sensitivity levels were 418 RIU-1 and 3000 nm/RIU [130]. Yang et al. investigated sensor performance of a design based  on an analyte-filled and graphene-Ag bi-metal coated PCF with a central air hole in the core region and optimized air holes in the cladding. RI sensitivities of 2520 nm/RIU was demonstrated over RI range of 1.33 to 1.34 [131]. Recently, graphene on copper deposition outside the fiber structure was considered for a plasmonic fiber sensor design. The reported PCF structure has a central void, surrounded by three layers of air holes, which can be readily produced through standard stack-and-draw technique. The graphene-on-copper coating outside the fiber can be obtained by sputtering, CVD deposition method. The proposed sensor was analyzed for both amplitude and wavelength interrogation, and the respective RI sensitivities were 140 RIU-1 and 2000 nm/RIU [132].  The void in the core region can be filled with analyte, forming a liquid core PCF as a plasmonic sensing platform especially useful for measuring analyte with RI higher than that of the host material. Zhang et 

al. compared the sensor performance of an analyte filled core PCF with an air filled core PCF, and demonstrated better linearization of the sensor response in a dynamic RI range of 1.33-1.42 [133].  A multicore holey fiber design was proposed by Shuai et al., with the gold coated liquid core and holey cladding. Six silica cores were formed by missing of air holes in the triangular lattice. The sensor exhibited better linearity and higher sensitivity in RI range 1.43-1.53 compared to range 1.33-1.42, i.e. 9231 nm/RIU and 2929 nm/RIU respectively [134]. Silver coated multicore holey fiber was subsequently considered and investigated by Liu et al., showing an average RI sensitivity of 4500 nm/RIU and 1013 RIU-1 for RI range 1.33-1.42 using wavelength and amplitude interrogation, respectively [135].   
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Photonic bandgap PCF-based SPR sensors were studied and optimized for sensing aqueous solutions in visible and near-IR [141, 142]. Several bandgap fiber structures were discussed and analyzed for SPR RI sensing, including solid core Bragg fiber-based SPR sensors with large or small core size, analyte-filled hollow-core Bragg fiber-based SPR sensors, and honeycomb PCF-based SPR sensors. The schematics of the fiber structures are shown in Figure 19. The bandgap guidance enables flexibility in designing any desirable operating wavelength from visible to near IR. Based on simulation results, sensor resolutions in the range 7·10-6-5·10-5 RIU were demonstrated for an aqueous analyte.  

 Figure 19 Schematics of photonic crystal waveguide-based SPR sensor schemes. a) Single mode planar photonic crystal waveguide-based SPR sensor. The dispersion relation of the core guided mode is in solid blue, that of the plasmon is in thick dashed red. Inset - coupler schematic; |Sz| of a plasmon (left) and a core mode (right). b) Solid core Bragg fiber-based SPR sensor. c) Microstructured core, honeycomb photonic crystal fiber-based SPR sensor. Reprinted with permission from [141]. Copyright 2007 Optical Society of America.  
Tian et al. reported a detailed analysis of an all-solid D-shaped PCF structure by looking at the effect of several parameters, including the silver coating thickness, first layer rods and polishing depth on the sensor performance. It should be noted that the guiding mechanism in this design was also based on photonic bandgap effect [143]. Performance comparison between reported designs of plasmonic PCF schemes based on their structures for aqueous analyte RI detection is summarized in Table 4. Due to high loss of the plasmonic fibers based on metal coatings, e.g. ranging from below 100 to 8000 dB/cm, photon propagation is limited to a few hundred microns. Therefore, this kind of sensors should only be considered and developed as an integrated photonic element rather than a fiber [95].  Some designs have relatively lower loss, e.g. below 20 dB/cm, with light propagation of a few millimetres in the structure for sensing purpose and allowing practical fiber handling, such as cleaving and splicing [140] [141].  The design of an exposed core PCF embedded with a single metal nanowire has been shown to offer similar sensitivities compared to metal-coated PCF sensors but with much reduced losses, e.g. 1-5 dB/cm for both polarizations [114]. Therefore, the schemes based on nanowire embedded PCF and metal coated PCF, which have lower loss values, should be explored further for sensing applications in light of their high chance for practical realization. 
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Table 4 Simulated performance of metal coated plasmonic PCF sensors based on SPR for aqueous analyte RI detection PCF characteristics RI range Interrogation Sensitivity6 Loss7 (dB/cm) Resolution(RIU) 8 Figure of merit (RIU-1) Ref.
Solid core PCF with a void in the core region Au-coated 1.33-1.34 Amplitude 100 ~180   10-4 - Hassani 2006[95] Au-coated Ag-coated 1.30-1.35 Wavelength 1167 984  ~30 ~40 8.57 × 10-5 1.02 × 10-4 - Zheng 2011 [97]Au-coated 1.33-1.34 Amplitude Wavelength ܧܪଵଵ௫ : ଵଵ௬ܧܪ220 : ଵଵ௫ܧܪ 125 : ଵଵ௬ܧܪ 2000 : 1500 

~400 ~80 4.54 × 10-5   8 × 10-5 5 × 10-5  6.67 × 10-5 
- Akowuah 2012 [100] 

Au-coated 1.33-.134 Wavelength ଵଵ௫ܧܪ : ଵଵ௬ܧܪ2200 : ଵଶ௫ܧܪ 2400 : ଵଶ௬ܧܪ 2200 : 2400 
>1000  4.54 × 10-5 4.17 × 10-5 4.54 × 10-5 4.17 × 10-5 

- Azzam 2016 [101]
Au-coated 1.37-1.41 Wavelength 5500 ～100 10-5 73 Yu 2009 [98]Ag-coated 1.325-1.345 Wavelength 1500 ~140  6.67 × 10-5 - Wei 2012 [99]Ag-coated 1.33-1.335 Wavelength 1064 - 1205 ~120 8.3 × 10-5 – 9.4 × 10-5 - Lu 2013[102] Au-coated 1.33-1.34 Wavelength 1667 - 3333 ~700 3 × 10-5 – 6× 10-5 - Otupiri 2014 [103]Au-coated 1.33-1.37 AmplitudeWavelength 3204000 ~50 3.13 × 10-5 2.5 × 10-5 - Rifat 2015 [104]

                                                                                 
6 The unit of sensitivity is RIU-1, nm/RIU, deg/RIU/cm for amplitude, wavelength and phase interrogation respectively. Unless otherwise specified, the sensitivity is calculated for the ݕ11ܧܪ  mode.  
7 It is highly dependent on the order of the plasmonic peak, the metal layer thickness, the fiber geometry and the RI of the analyte. The loss at the first peak of SPR resonance for lowest RI value in the 
detection range is included in the table. In addition, the value of the loss is indicative only as it varies with different metal layer thickness. 
8 The resolution is calculated by assuming that 1% of change in the transmitted intensity, or a 0.1 nm change in resonance wavelength can be accurately and reliably detected in amplitude, 
wavelength respectively. 
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Au-coated 1.33-1.34 Amplitude Wavelength ܧܪଵଵ௫ : ଵଵ௬ܧܪ519.4 : ଵଵ௫ܧܪ 631.5 ଵଵ௬ܧܪ 104 : :6700  
~100 ~50 1.925× 10-5 1.583× 10-5  1 × 10-5 1.49 × 10-5  

- Hameed 2016 [105] 
Au-coated 1.34-1.48 Wavelength 1131 ~100 8.84 × 10-5 - Liu 2016 [126]D-shaped and Au-coated9 1.33-1.34 AmplitudeWavelength Phase 120 2900  5.03 × 104  ~2000 8.3 × 10-5 3.4 × 10-5  - - Luan 2015 [106]
ITO-coated 1.33-1.35 AmplitudeWavelength 80 2000  ~1750 12 × 10-5 5 × 10-5  - Dash 2014 [39]Solid core PCF without a central void Au-coated 1.25-1.383 1.383-1.45 Wavelength 1.4 × 1042.7 × 104  >360 7.1 × 10-63.7 × 10-6 - Zhou 2012 [107]Au wire 1.30-1.63 1.63-1.79 Wavelength 1003233  ~2500  1.0 × 10-43.09 × 10-5 - An 2016[108] TiO2 and Au-coated 1.33-1.35 AmplitudeWavelength 370 2000  ~60 2.7 × 10-5 5 × 10-5 - Gao 2014[109] Three-hole PCFs  Au-coated 1.33-1.34 AmplitudeWavelength 80  1000  ~70 1.25 × 10-41 × 10-4 -- Hautakorpi 2008[111] Grapefruit fibers Ag nanowire 1.33-1.335 Wavelength 2400 ~700 4.17 × 10-5 - Lu 2012[112] Exposed core grapefruit fibers  Ag-coated 1.33-1.42 Amplitude Wavelength ܧܪଵଵ௫ : ଵଵ௬ܧܪ204 : ଵଵ௫ܧܪ 191 : up to 13500 (not linear) ܧܪଵଵ௬ : up to 12000 (not linear) 

~8000 ~1000 4.9 × 10-5 5.23 × 10-5 7.4 × 10-6 8.3 × 10-6 
- Yang 2015 [113]

Exposed core three hole 1.33-1.34 Amplitude ܧܪଵଵ௫ : 247 5 4.05 × 10-5 - Luan 2016 [114]
                                                                                 
9 The diameter of the central hole is fixed at 0.2Λ in the structure for three interrogation method. 
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fiber Ag wire10 Wavelength  ܧܪଵଵ௬ : ଵଵ௫ܧܪ 231 : ଵଵ௬ܧܪ 2700 : 3000 1 4.33 × 10-5 3.70 × 10-5 3.33 × 10-5 D-shaped solid core PCF without a central void Au-coated 1.33-1.35 1.35-1.41 Wavelength 2000 8129  ~100 ~300 5 × 10-5 1.23 × 10-5 - An 2014[116] Au-coated 1.37-1.398 Wavelength 7481 ~400 1.34 × 10-5 478.3 Peng 2015 [118]Au-coated 1.333-1.357 Phase 6.5 × 104 ~100 2.2 × 10-6 - Tan 201411 [119]Au-coated 1.36-1.41 1.371-1.373 WavelengthPhase 60002.2 × 105 ~1000 1.67 × 10-5- - Shi 2015 [120]ITO-coated 1.33-1.37 Wavelength 5200 ~140 1.92 × 10-5 - Dash 2016 [121]ITO-coated 1.33-1.35 AmplitudeWavelength 741.7 × 104 ~40 1.35 × 10-4 5.8 × 10-6 - Dash 2016[122] ITO-coated 1.30-1.31 1.28-1.34 1.28-1.34 AmplitudeWavelength Phase 1486000 1.2 × 106 ~1000 6.76 × 10-5 1.67 × 10-5 - - Huang 2016[123] Highly birefringent PCFsAu-coated 1.33-1.38 Wavelength 3000 ~90 3.33× 10-5 - Zhang 2016 [124]U-shaped PCFs 1.365-1.395 1.382-1.384 WavelengthPhase ~7.6 × 1038.1× 104 ~150 1.32 × 10-5- 533.8 Ge 2016[127] Graphene coated PCFsGraphene on silver 1.33-1.37 Amplitude 860 ~1500 1.16 × 10-5 - Dash 2014 [128]Graphene on silver 1.33-1.37 AmplitudeWavelength 2163700 ~200 4.6 × 10-5 2.7 × 10-5 - Dash 2015 [129]Graphene on silver 1.46-1.49 AmplitudeWavelength 4183000 ~100 2.39 × 10-53.33 × 10-5  - Rifat 2015 [130]
Graphene on silver 1.33-1.34 Wavelength 2520 ~100 3.97 × 10-5 - Yang 2016 [131]Graphene on copper 1.33-1.37 Amplitude 140 ~50 7.14 × 10-5 - Rifat 2016 [132]

                                                                                 
10 This work about a nanowire embedded PCF is included in the table to show the difference in loss as compared to metal coated PCF sensors.  
11 The sensor length was 1.4 cm to provide a 130 dB loss in the sensing region; a noise level of 0.2 degree was assumed for the sensor. 



 34

Wavelength 2000 5 × 10-5Liquid core PCFsAu-coated 1.33-1.42 Wavelength 42002600 ~550 2.38 × 10-5 3.85× 10-5 - Zhang 2011 [133]Au-coated 1.33-1.42 1.43-1.53 Wavelength 29299231 ~32 3.41 × 10-5 1.08 × 10-5 - Shuai 2012 [134]Ag-coated 1.33-1.42 AmplitudeWavelength 10134500 ~25 9.87 × 10-52.22 × 10-5 - Liu 2015 [135]Au-coated 1.45-1.46 1.52-1.53 Wavelength 3700-5500 ~70 2.7 × 10-5 1.82 × 10-5  -98.2 Shuai 2012 [136]
Au-coated 1.45-1.49 1.5-1.53 Wavelength 6000-4000 ~0.04 1.67 × 10-5 2.5 × 10-5  - Gandhi 2016 [138]
Au-coated 1.46-1.485 1.485-1.50 1.50-1.52 Wavelength -4354.3-3800 -4240 ~500 2.3 × 10-5 2.63 × 10-5 2.36 × 10-5 79.2- - Qin 2014 [137]
Ag-coated Au-coated 1.40-1.42 Wavelength -7017-7040 ~700 ~200 1.43 × 10-5 1.42 × 10-5  73.85.9  Fan 2015[139] Au-coated 1.38-1.46 Wavelength 3350 ~7 2.99 × 10-5 - Tan 2014 [140]Bandgap PCFsAu-coated Large solid core Bragg fiber 1.33-1.34 AmplitudeWavelength 2141900 ~8 4.7 × 10-5 5.3 × 10-5 - Gauvreau 2007 [141] Au-coated Small solid core Bragg fiber AmplitudeWavelength 2931020 ~5 3.4 × 10-5 9.8 × 10-6 -Au-coated Analyte filled  Bragg fiber AmplitudeWavelength 3657000  ~80 2.7 × 10-5 1.4 × 10-5 -

Au-coated honeycomb PCF AmplitudeWavelength 40013750 ~250 2.5 × 10-5 7.2 × 10-6 -Ag-coated All solid bandgap fiber 1.33-1.38 wavelength 7300 ~60 1.37 × 10-5 216 Tian 2012 [143]
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4.2 Dual or multi-analyte sensing Multichannel analyte detection by SPR sensors has witnessed development similar to that of SPR sensors for single analyte detection, from bulk prism-coupled configurations to miniaturized fiber optic structures (references on multi-analyte by previous effort). The presence and flexible design of air hole channels enable feasible developments for dual or multi-analyte sensing in PCF-based plasmonic devices, which are favoured by many applications such as clinical diagnostics, drug discovery and environmental monitoring.  The first PCF-based multichannel plasmonic sensor was proposed by Zhang et al. in 2011. Similar to an earlier proposed three-hole PCF structure [111], the proposed design introduced modifications of multilayers, e.g. cladding layers with lower refractive index than silica were introduced and subsequently gold layers were deposited uniformly. An overlay layer was introduced on gold coating in channels for sensing purpose. Dual analyte detection was proposed by incorporating two types of sensing layers in the channels, so that channels with different sensing layers exhibited a spectrally differentiable plasmonic loss peak. The numerical results showed average RI sensitivity of 1535 nm/RIU over a RI range of 1.33 to 1.36 for all channels [144]. Another multichannel plasmonic PCF design was proposed by Otupiri et al., with a central void in the core region, surrounded by four rotated elliptical air holes in the first layer and four large gold-coated analyte filled channels in the second cladding layer. Two channels in the horizontal axis were also coated by Ta2O5 overlayer underneath the gold coating layer. The Ta2O5 and gold coated channel pair were denoted as channel 1 and the gold coated channel pair were denoted as channel 2, which were filled by different analytes. Two plasmonic loss peaks were found and attributed to phase matching between core guide modes and plasmons at channel 1 and 2 for both polarizations. The phase matched wavelengths for x-polarized fundamental mode were 675 nm and 900 nm, and 645 nm and 836 nm for 
y-polarized fundamental mode. It was found that x-polarized mode had a dominant plasmonic loss peak due to channel 1, whereas the y-polarized mode had a dominating peak due to channel 2. By detecting the wavelength shifts of the two plasmonic peaks, dual analyte RI in either channel can be measured.  Wavelength interrogation method was used for dual analyte detection mode, showing sensor sensitivities up to 4600 nm/RIU and 2300 nm/RIU for x-polarized and y-polarized modes. In addition, the sensor can be operated in a self-referencing mode, i.e. in one channel the analyte was fixed, and changes in analyte RI can be measured in the other channel. The amplitude interrogation method was used for the self-referencing mode with RI sensitivities of 425 RIU-1 and 131 RIU-1 for x-polarized and y-polarized modes [145]. 
4.3 Temperature sensing and dual parameter sensing The high RI sensitivity of plasmonic PCF sensors has motivated researchers in designing and developing plasmonic PCF sensors for sensitive temperature measurement. In 2007, Florous et al. proposed to incorporate gold nanoparticles (NPs) in a PCF for temperature sensing. The PCF had a solid core surrounded by two layers of air holes. The localized surface plasmons (LSPs) excited by the propagating core mode, can be temperature tuned as the Au NPs were heated or cooled to result in a wavelength shift in plasmonic peak. The numerical simulations demonstrated the temperature sensitivities of spherical and ellipsoidal Au NP-deposited PCF sensor, showing 0.062 nm/oC and 0.046 nm/oC respectively [146]. The gold nanoparticle deposition could be achieved by techniques discussed in section 3.3.  To enhance the temperature sensitivity, a liquid with high thermos-optic coefficient can be used to completely or selectively fill air holes in the PCFs to induce temperature dependence of the plasmonic response. Depending on the interrogation method of the sensors, the temperature sensitivity can be evaluated by measuring the amplitude, wavelength or phase of the plasmonic resonance.  Silver nanowires filled PCFs were proposed for temperature sensing [147, 148, 57]. The air holes were filled with a mixture of ethanol and chloroform, with a high thermos-optic coefficient of -6.328 x 10-4 and -4 x 10-4 respectively. By controlling the mixing volume ratio for the infiltration into the air holes of the PCF structure, the desirable temperature sensing range can be tuned. Luan et al. proposed a grapefruit PCF filled with Ag nanowires based temperature sensor. The calculated temperature sensitivity was around 4 nm/oC [147]. The influence of the shapes of Ag nanowires was studied by Wang 
et al., using an octagon PCF structure. Three shapes were considered in the simulation, i.e. circle, ellipse and square, showing temperature sensitivities of 0.25, 0.4 and 0.2 nm/oC from -40-0 oC, respectively [148]. Yang et al. reported both theoretical and experimental investigation of Ag nanowires filled large mode area (LMA) PCF based SPR sensor for temperature sensing.  Using a commercially available LMA-10 PCF structure as the sensor platform, the mixing volume ratio of ethanol and chloroform was varied from 1:1 to 1:3, resulting redshift of peak wavelength as well as increase in peak loss for temperature 
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range 25-60 oC. The experimental results confirmed the high temperature sensitivity up to -2.0833 nm/oC with an FOM of 0.1572 oC-1 [57]. In 2012, Peng et al. reported a temperature sensor based on a selective coated SPR PCF. The PCF design contained a void in the central core region, surrounding by two layers of air holes. The second layer of air holes with larger diameters were filled with the sensing medium with large thermos-optic coefficient, i.e. -4 x 10-4, and selectively coated by gold. Numerical calculations suggested a spectral sensitivity of 0.72 nm/oC of the proposed sensor for 0-50 oC detection range. The gold film thickness played an important role in influencing the FWHM of the loss resonance peaks, while the sensitivity remained stable. Consequently, the FOM obtained by thinner gold film was higher. An optimal coating thickness of 35 nm was suggested by considering the sensor length, loss dynamic range and the FOM [149].  A multi-core PCF with gold-coated liquid filled core was proposed for temperature sensing, achieving good linearity of 0.99991, high sensitivity of -2.15 nm/oC and average FOM of -0.044 oC-1 in range of 20-80 oC [150]. More recently, Hameed et al. explored the combination of nematic liquid crystals (NLC) which is highly temperature dependent and PCFs filled with nanowires for temperature sensing. Compared with NLC-filled PCF devices without plasmonic couplings [151, 152], the proposed NLC core SPR PCF design offered a higher temperature sensitivity as well as broader sensing range with linear response [153]. Dual parameter sensing is an important and desirable capability especially for the purpose of differentiating the parameters or minimizing cross talks, e.g. RI and temperature. Most plasmonic PCF sensors for liquid analyte measurement with high RI sensitivity are prone to temperature induced cross talks. To address this challenge, Luan et al. used an exposed core PCF with silver layers coated on the exposed core and one air hole next to the core for dual parameters sensing. In the proposed design, a liquid mixture of ethanol and chloroform was filled in the silver coated air hole which was responsible for the temperature sensing; RI of the liquid analyte was measured external to the silver coated exposed core. Two resonance peaks were present for both orthogonal polarizations, with a major peak at 838 nm for x-polarized mode supported by the temperature sensing channel, and a major peak at 535 nm for y-polarized mode supported by the RI sensing channel. Each peak was shifted by temperature or variation  e of thanalyte RI respectively. The proposed sensor exhibited RI sensitivity of 1900 nm/RIU for RI range 1.33 to 1.34, and temperature sensitivity of 6.18 nm/oC for temperature range 26-43 oC [154]. A summary of the plasmonic PCF sensors for temperature measurement is shown in Table 5. 
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Table 5 The performance of the plasmonic PCF temperature sensors PCF characteristics Thermo-optic coefficient (oC-1) Temperature range (oC) Sensitivity (nm/oC) FOM (oC-1) ReferenceSolid core PCF with Au NPs deposition on the inner wall of the air holes - -173.15-226.85 0.062 (Spherical)0.046 (Ellipsoidal) - Florous 2007 [146]

Selectively Au-coated PCF with a central void -4 x 10-4 0-50 0.72 0.013-0.026 Peng 2012 [149]Multi-core PCF with an Au-coated liquid core -4.65 x 10-4 20-80 -2.15 -0.044 Liu 2015 [150]Grapefruit PCF with six holes filled with Ag nanowires Ethanol-6.328 x 10-4   Chloroform -4 x 10-4 
-4-15 4 - Luan 2014 [147]

Octagon PCF filled with Ag nanowires Ethanol-6.328 x 10-4   Chloroform -4 x 10-4 
-40-0 0.25 (Circle)0.5 (Ellipse) 0.4 (Square) - Wang 2015 [148]

LMA PCF filled with Ag nanowires Ethanol-6.328 x 10-4   Chloroform -4 x 10-4 
25-60 -2.08 0.135-0.1572 Yang 2016 [57] 

Liquid crystal core PCF with Au nanowire Temperature dependent Cauchy coefficient for NLC E7 [155] 30-50 10 - Hameed 2016 [153]
Ag-coated exposed core PCF with one Ag coated and liquid filled channel Ethanol-6.328 x 10-4   Chloroform -4 x 10-4 

26-43 6.18 - Luan 2016 [154]
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4.4 Polarization and birefringent devices Plasmonic PCFs exhibit high losses in the core modes at phase matched wavelengths due to strong power coupling to surface plasmon polaritons (SPP) modes, inviting substantial interest and effort in developing in fiber filter devices at specific communication wavelengths or broadband communication windows. Various designs of plasmonic PCF structures incorporating metal wires, coatings or nanoparticles (NPs) are reviewed based on the type of metal configuration, and PCF characteristics in this section.  
4.4.1 Metal wire filled PCFs  Mode coupling between two orthogonal polarization directions in plasmonic PCFs were studied for polarization splitting by Nagasaki et al. Their work investigated the polarization-dependent loss characteristics in a gold wire-filled solid core PCFs with triangular lattice of air holes in the cladding. The core mode could only be coupled to second or higher order surface plasmon polaritons (SPPs). It was found that PCFs with a single gold wire showed similar loss peak wavelengths and loss values for both polarizations. On the contrary, PCF structures with several gold wires selectively filled some air holes, were achieving high polarization extinction ratio desirable for polarization filter applications. The arrangement of the gold wires played an important role in the fiber’s polarization dependence. In addition, the diameter of gold wires was increased to achieve large polarization extinction ratio over wide range of wavelengths [38]. The birefringence is a key parameter to decrease the coupling length between the two orthogonal polarization states in order to enhance the polarization splitting. A polarization-maintaining (PM) PCF with triangular lattice of air holes in the cladding with one gold wire filled into one air hole was studied by Du et al. The study revealed the relative significance of design parameters namely gold wire positions, gold wire dimension, birefringence strength, and pitch of air holes, on the polarization splitting ratio. By optimizing the fiber geometry and the inclusion of two gold wires in the cladding, complete separation of two polarization dependent plasmonic resonances was demonstrated, thereby making it possible to realize polarization splitting filters operating at communication wavelengths. Two designs were proposed for polarization dependent wavelength filters as shown in Figure 20 (a,b) [156]. A D-shaped PM PCF with a gold nanowire, as shown in Figure 20(c), was used as a polarization filter. The device was operating at communication wavelengths, i.e. 1310 nm and 1550 nm, with crosstalk better than 30 dB and bandwidths at 88 and 150 nm, respectively [157]. Yogalakshimi et al. reduced the diameter of the air holes in the inner two layers compared to that of the outer two layers, and demonstrated polarization filtering by controlling the number of gold wires and changing the positions of the gold nanowires. In addition, gold coatings were also used to tune to the desirable peak resonance wavelength and control the absorption loss factor [158]. Ag-Au alloys have been proposed for developing plasmonic devices, utilizing the flexibility of controlling the composition to obtain desirable plasmonic resonance wavelength [159]. More recently, tunable narrowband polarization filters were designed based on PCFs with a solid core and the first layer air holes was filled by liquid crystal in the cladding, liquid crystal core or liquid core surrounded by triangular lattice of air holes and gold wires in the cladding. The tunability was achieved by temperature tuning [160], applying external electrical field to control the rotation angle of the liquid crystal as shown in Figure 20 (d) [161] or changing the filled liquid [162].  
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Table 6 Simulated performance figures of metal wire-based plasmonic PCF polarization splitters PCF characteristics Metal wire x-pol: Loss (dB/cm) y-pol: Loss (dB/cm) Wavelength (nm) Ref
PM-Solid core PCF with triangular lattice of air holes Design1. Au -~275  ~ 400 -  11251275  Du 2012 [156]

Design2. Au -~60 ~40 - 12951550 D-shaped PCF with PM triangular lattice Au 4.04.6 208.4 249.5 13101550 Fan 2014 [157]
Solid core PCF with triangular lattice Design1. Single Au wire 147.48302 348.55 140 15201560 Yogalakshmi 2016 [158] Design2. Two separate Au wires -352.84 451.16 - 15201560 Design3. Two adjacent Au wires 187.67 - 1400

Design4. Au coating <18.52 406.34 1640
Solid core PCF with triangular lattice Two Ag/Au alloy wires 24.42 309.14 ~1100 Shi 2014 [159]
Solid core PCF with triangular lattice and first layer filled with liquid crystal Au 0.81 446 1550 Chen 2015[160] Liquid crystal core PCF with triangular lattice Au 6000.092 0.0075 157.71 1300 Hameed 2015 [161]

Liquid core PCF with triangular lattice Two Au wires 443.36309.35 258.34 2.24 6.17 7.86 13101490 1550 Liu 2016 [162]
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Solid core with square lattice Two Au wires 279.1399.18 -- 10201550 Zhang 2014 [163]
Solid core with square lattice Two Au wires 231.6- -237.9 13101550 An 2016 [164]
Solid core with square lattice  Single Au wire 9.41214.31 373.9 3.88 13101550 Jiang 2016 [165]

Liquid crystal filled core with square lattice Single Au wire >248.95433.25 <0.21 0.0064 1250-21001300 Jiang 2016 [166]
Spiral PCF with elliptic core Design 1. Single Au wire 80.14- -63.23 9501183 Heikal 2015 [167]

Design 2. Multiple Au wire, e.g. 2 94.1- -56.42 9801400  
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Dual core PCFs with gold nanowires are widely explored for achieving polarization filtering characteristics utilizing the difference in resonance coupling characteristics of even and odd supermodes, high birefringence and high polarization dependence in transmission [168] [169] [170] [171] [172] [173] [174] [175] [176]. In a dual core PCF structure, the extinction ratio is defined as the power ratio between the undesired and the desired polarization states in each output port or core.  Zhang et al. used supermode theory and the coupled mode theory to confirm the enhancement of the power transfer between two fiber cores due to the presence of a silver wire in between and its associated resonant coupling between surface plasmons and fiber core modes. The coupling characteristics of a gold wire filled and gold coated PCF couplers were investigated, showing coupling ratio up to -30.54 dB between two fiber cores [168]. Li et al. investigated the difference in resonance coupling characteristics, dispersion and confinement loss properties for the even and odd supermodes in a dual core PCF with gold wire in between the two cores. Polarization dependent transmission was demonstrated and two orthogonally polarized components can be separated in the proposed gold-filled dual core PCF coupler. Specifically, at 1330 nm, the light is one core was purely x-polarized and the other core was purely y-polarized after an optimized propagating length, the power ratio of the orthogonal polarizations in each core was around -40 dB [169]. A polarization splitter was demonstrated using a silver wire filled dual core PCF of 63 mm length. The polarization splitting was achieved by designing a dual core plasmonic PCF with coupling length ratio of the two orthogonal polarization states of 2 or ½. The bandwidth of polarization splitting with extinction ratios below -20 dB was over 146 nm wavelength range for both polarizations [170]. Sun et al. improved the design to achieve a shorter device length and broader bandwidth of polarization splitting [171]. Khaleue et al. investigated highly birefringent PCF structures with two gold wires embedded in the cladding for ultra-broadband polarization splitters [172] [173]. An elliptical metal wire was used in the center of a dual core PCF structure for polarization splitting at 1310 and 1550 nm. The mode couplings occurred for the core guided modes and higher order, i.e. fourth or fifth SPR modes [174]. A broadband polarization splitting device with extinction ratios below -20 dB was over 400 nm wavelength range was demonstrated by Liu et al. [175]. A dual core PCF with cladding air holes in square lattice and a gold wire in the center was designed as an ultra-broadband polarization splitter with an extinction ration of -78.2 dB at 1550 nm and bandwidth of 430 nm of ER better than -20 dB [176].  The performance figures of the polarization splitters using dual core PCF structures containing metal wires are summarized in table 7. 
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Table 7 Performance  figures of dual core metal wire-based plasmonic PCFs for polarization splitters PCF characteristics Metal wire Length (mm) ERx (dB) ERy (dB) Wavelength(nm) Range (nm) (<-20 dB) Ref
Dual core triangular lattice PCF

Ag  - -30.54 - 1550 - Zhang 2012 [168]
Au 0.5942 ~-40 ~-40 1310 - Li 2013 [169]
Ag 63 -39.4 -35.2 1550 x-pol: 1441-1587

y-pol: 1430-1605  Sun 2013 [170]
Ag 0.5775 -34 -42 1596 x-pol: 1439-1689

y-pol: 1421-1700 Sun 2015 [171]
Au 0.2546 -111 - 1550 x-pol: 1420-1980 Khaleque 2015 [172]
Au 0.117 -100 - 1550 x-pol: 1250-1710  Khaleque 2015 [173]
Au 0.585 -50 - 1320 1270-1670 Liu 2015[175] Dual core triangular lattice PCF with elliptical metal wire in the core center
Au  2.937   0.827 

-70  -70 
- 1310  1550 

x-pol:~1290-1380  ~1475-1575 Fan 2016[174] 
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Ag 3.066   0.809 
-54  -66 

- 1310  1550 
x-pol:~1300-1366  ~1480-1570 Dual core PCF with square lattice

Au  4.036 -78.2 - 1550 1250-1680 Jiang 2015 [176]
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Besides polarization splitting devices, dual core PCF with a gold wire in the fiber center region and infiltration of nematic liquid crystal (NLC) of type E7 in the cladding air holes was designed and demonstrated as a polarization independent wavelength multiplexer and demultiplexer. The two polarized states at 1550 and 1300 nm can be separated [177]. A square lattice PCF with two defects, i.e. a smaller air hole in the first layer and a gold wire in the second layer of the holey cladding was proposed as polarization rotator. The design acted as a dual core plasmonic PCF, containing a silica core and gold wire core which support hybrid supermodes. Simulation results showed that an optimized structure could offer almost 100% polarization conversion ratio at 1550 nm [178]. 
4.4.2 Metal film coated PCFs and nanoparticles coated PCFs Compared with metal wire filled PCFs, metal-coated PCFs use less metal and exhibit stronger resonance strength. Therefore, considerable effort has been spent in developing metal coated PCFs for polarization splitter applications for communication wavelengths.  For polarization dependent devices, high birefringence in PCFs has been obtained by several techniques, such as introducing the asymmetry of cladding or modified air holes in size or liquid infiltration in the cladding etc. Dou et al. designed a PCF with rhombic lattice and different lattice pitch along x- and y- directions for achieving the high birefringence as well as two gold coated air holes in the cladding. By tuning the gold layer thickness, the fiber core mode was coupled to the second order SPP in y-polarization state at resonance wavelength 1550 nm with confinement loss of 630.2 dB/cm, whereas that of the x-polarization state was 36.9 dB/cm. A short device length such as 2mm was sufficient to split the polarizations with ER of -118.7 dB [179].  PCF with round lattice was explored for polarization splitter application, showing up to 364.8 dB/cm confinement loss in the y-polarization direction at 1550 nm wavelength [180]. Solid core PCFs with triangular lattice and gold coated holes have been proposed for polarization splitting devices, with modifications of one or two gold coated air holes [181] [182] , or liquid filled holes in the cladding [183].  Utilizing the high thermos-optic coefficient of the filled liquid such as glycerin, Wang et al. demonstrated a design for both the temperature sensing and polarization splitting [184]. FWHM of the loss curve can be controlled by varying PCF structural parameters or filling liquids, via which a broadband polarization filter can be designed [185] [186] [187] [188]. Liu et al. realized a broadband polarization filter from 1.25 µm to 2µm with ER smaller than -20 dB with a 1 mm fiber length. The flexibility of controlling the resonance wavelength was also demonstrated by varying gold layer thickness or gold wire diameters in the report [185]. Wang et al. designed a broadband polarization filter based on a PCF with a big gold coated hole in the holey cladding. A few other air holes in the cladding were modified in diameter to induce high birefringence and facilitate mode coupling between fiber core mode and SPP mode. The design was shown to exhibit ER lower than -20 dB from 1.26 to 2 µm for device length longer than 0.21 mm [186]. Han et al. reported a highly birefringent PCF based single polarization singe mode fiber with two gold coated holes filled with liquid in the cladding for broadband polarization splitting [187]. Chen et al. reported a D-shaped PM PCF with two big holes next to the solid core and gold coated on the surface for polarization splitter application. A cross section of the proposed fiber is shown in Figure 22 (c). Mode coupling between the fiber core mode and different higher order SPR modes in y-polarized states resulted in different phase matching wavelengths. Particularly for the seventh order SPR mode, the resonance wavelength was 1560 nm. The phase matching plots and corresponding confinement loss of the core mode are shown in Figure 22 (a, b). Considering a 4mm fiber device, an ultra-broadband polarization splitter exceeding 1 µm with ER<-20 dB was achieved as shown in Figure 22 (d) [188].    
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Table 8 The performance of gold-coated PCF based polarization splitters Au-coated PCF characteristics x-pol: 12Loss (dB/cm) y-pol: Loss (dB/cm) Wavelength (nm) Range (nm) (<-20 dB) Ref.
Solid core with rhombic lattice

- 630.2 36.9 1550 - Dou 2015 [179]
PM-solid core PCF with round lattice

PM ~25 364.8 1550 130 (0.8 mm) Hao 2016 [180]
Solid core with triangular lattice

A big gold-coated air hole -  1362.531676.07 13101550 - Wang 2016[181] Liquid filled ~20 508.6 1311 - Xue 2013 [183]
Liquid core,  two coated holes in the cladding 2.025.29 412.91536.25  13101550 - Jiang 2015 [182]

                                                                                 
12 Some of the values are not explicitly stated in the paper, we report an estimated value based on the graph presented in the work. The field is left empty if such information is not available from the 
paper. 
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One hole filled with glycerin ~100321.442 445.958~100 14001480 -  Wang 2016 [184] 
Au with different thickness ~20~10 ~10 377.19417.21 418.02 13101480 1550 1250-2000(loss in y- >350 dB/cm) 

Liu 2015 [185]
Modified triangular lattice and a big gold-coated air hole 857.8 - 1310 1260-2000(>0.21 mm) Wang 2016[186] Two holes filled with liquid - ~250 ~1450 1350-1700(30 dB/cm) Han 2015 [187]

D-shaped ~0.5 495.21 1560 1250-2500(4mm) Chen 2015[188] Dual core PCF with triangular lattice
D-shaped - - 1550 1530-1570(0.782 mm) Chen 2015[189] Coated hole in the center between dual core 384.6 444.1 1260 1380-1600(0.542 mm) Fan 2015[190]  Solid core with square lattice

PMPCF with four elliptical holes next to the core and two coated holes in the cladding 
102.61.7 3.5245 13101550 - Chen 2014 [191]

One coated hole in the cladding 123.46- -410.04 13101550 - Liu 2015 [192]
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Solid core with square lattice rotated by 45 ℃
Two coated holes in the cladding ~20 720 1310 1200-2000(>0.2mm) Wang 2015 [193]
Design 1: one large Au-coated hole - 517375 13101550 Zi 2015 [194]
Design 2: two large Au-coated holes on opposite corner - 701 1310
Design 3: two large Au-coated holes on orthogonal corner ~10369 475~20 13101550 181423  (1 mm) Zi 2015 [195]
Two coated holes in the cladding - - 452.4102 13101550 430(3 mm) Liu 2015 [196]

Squeezed square  1221 1.6 1310 - Khaleque 2015 [197]
Two Au coated holes, modified squeezed square lattice  771.5 2.7 1310 - Li 2015[198] Metal nanoparticles (NPs)

PM PCF, the two large holes filled by NPs and PDMS 1200 119 442 - Poudereux 2015 [199]
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4.5 Others  Unlike pure silica glass in which the nonlinear coefficient is a real number and almost constant, composite materials such as gold-silver nanoparticles have complex nonlinear coefficients. The inclusion of composite materials in PCFs leads to unusual nonlinear properties, which is favourable for the study of ultrashort pulse and soliton dynamics [200]. Metal coated silicon nanowire embedded plasmonic PCFs have been shown to support efficient propagation of SPP modes in the nanowire and to have a high threshold power for undesirable free carrier effects, showing potential in Kerr-related nonlinear applications with relative high power [201]. Different from utilizing the plasmonic effects, PCFs with metal nanowire arrays surrounded by a dielectric have been proposed for electromagnetic invisibility. Such metamaterial based fibers possess a refractive index that can be matched to the surroundings [202]. 
5. Conclusion Over the past several years, there has been substantial growth in the design, fabrication, and application development of plasmonic PCF devices. The idea is to build a novel class of plasmonic components with enhanced interaction between light and medium, by integrating the capabilities of plasmonics in a robust and flexible PCF platform for sensing and communication applications.  Firstly, substantial development has been made in the fabrication for plasmonic PCFs. Various technologies have been developed for fabrication of metal nanowires filled PCFs, such as modified process of stack-and-draw technique [42], high-pressure microfluidic chemical deposition technique [44], high temperature pressure cell technique [45, 46], pressure-assisted splicing technique [47], and capillary effect of filling nanowires in liquid mixture [56, 57]. The metal coated PCFs have been reported with fabrication techniques including high-pressure microfluidic chemical deposition technique [58], the silver mirror reaction for suspended core PCFs [59], two-stage draw technique for polymer PCFs [60], electroless plating [61], sputtering [62], and thermal evaporation for tapered PCF [67]. NP-coated PCF can be realized by techniques based on capillary effects [68], or assisted by high pressure injection [81, 82], low pressure chemical deposition using a combination of self-assembly and microfluidics [85] [86], high pressure chemical deposition [87] and stack-and-draw [89]. Continuing effort in improving and maturation of fabrication techniques is essential to advance the field and it will drive the realizations and advancements of plasmonic PCF devices and components with better quality, more robustness and higher reliability.  Secondly, diversity of plasmonic PCF designs has flourished in recent years, as can be seen from the wide range of device schemes specifically tailored for many applications including refractive index sensing and biosensing, multi-analyte sensing, temperature sensing, dual parameter sensing and polarization splitter etc. Rapid updates have been reported in the benchmarking of device performance, such as sensor sensitivity, polarization splitting extinction ratio and bandwidth etc. These efforts have provided a solid foundation for theoretical and experimental investigations, as well as guidance for future device development.  The realizations of the plasmonic PCF structures with intricate designs and features are limited due to the achievable metal structures in fabrication. Firstly, it is difficult to achieve small diameters and high aspect ratio wires in PCFs. Most fabrication methods reported so far produce micron or sub-micron size metal wires up to length scale of cm. Secondly, it remains a challenge for sputtering and evaporation techniques to achieve continuous uniformity of metal coatings inside and outside of the PCFs. Thirdly, better uniformity of metal layer in the PCF was achieved using chemical deposition methods with more complicated conditions, e.g. high pressure, high temperature etc. In addition, different fiber materials and structures require different fabrication techniques. For instance, polymer fibers have much lower drawing temperatures compared to silica fibers. PCFs with different fiber structures and metal structures, e.g. air hole size, air filling fraction, single or multiple wires, complete or selective coating, and internal or external fabrication of metal structure in the PCF, all contribute to different requirements or procedures in the fabrication. Lastly, the proposed designs of plasmonic fiber devices, e.g. sensors and polarization splitters are showing extremely high losses associated with very short device lengths of sub-millimeters. However, realization of such plasmonic fiber devices as in-fiber device would require more flexibility in the device length to millimeters or centimeters for practical development. All of the considerations discussed herein should be taken into account in the design process to ensure good feasibility of the plasmonic PCF structure. It is encouraging to see the vast possibilities in different designs of metallic PCF structures with desirable characteristics in numerous reports. Continuous development in fabrication technologies is the fundamental enabler to realize plasmonic PCF structures and devices with promised functionalities 
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and performance, which is also the key to drive development of practical applications based on plasmonic PCF devices.  
Funding. Funding support through the AoE schemes (AoE/P-02/12) from the Research Grants Council (RGC) of Hong Kong Special Administrative Region, and through an internal project (4930722) from The Chinese University of Hong Kong are gratefully acknowledged. 
 

Bibliography 
 
[1]  J. Homola, "Surface plasmon resonance sensors for detection of chemical and biological species," 

Chemical Reviews, vol. 108, pp. 462-493, 2008.  

[2]  W. L. Barnes, A. Dereux and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, vol. 424, 
pp. 824-830, 2003.  

[3]  R. C. Jorgenson and S. S. Yee, "A fiber-optic chemical sensor based on surface plasmon resonance," 
Sensors and Actuators B, vol. 12, pp. 213-230, 1993.  
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Although as thin as human hairs, optical fibers have revolutionized our life in 
many ways. It is exciting to use optical fibers to manipulate light and create 
solutions to address real-life problems.  
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