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SUMMARY

Although small-molecule targeting of EZH2 appears
to be effective in lymphomas carrying EZH2 acti-
vating mutations, finding similar approaches to
target EZH2-overexpressing epithelial tumors re-
mains challenging. In MYC-driven, but not PI3K-
driven prostate cancer, we show that interferon-g
receptor 1 (IFNGR1) is directly repressed by EZH2
in a MYC-dependent manner and is downregulated
in a subset of metastatic prostate cancers. EZH2
knockdown restored the expression of IFNGR1
and, when combined with IFN-g treatment, led to
strong activation of IFN-JAK-STAT1 tumor-suppres-
sor signaling and robust apoptosis. Pharmacologic
depletion of EZH2 by the histone-methylation inhibi-
tor DZNepmimicked the effects of EZH2 knockdown
on IFNGR1 induction and delivered a remarkable
synergistic antitumor effect with IFN-g. In contrast,
although they efficiently depleted histone Lysine 27
trimethylation, EZH2 catalytic inhibitors failed to
mimic EZH2 depletion. Thus, EZH2-inactivated IFN
signaling may represent a therapeutic target, and
patients with advanced prostate cancer driven by
MYC may benefit from the combination of EZH2
and IFN-g-targeted therapy.
INTRODUCTION

Polycomb repressor complex 2 (PRC2) is an important regulator

of cell growth, survival, and differentiation (Margueron and

Reinberg, 2011). Pathologic activation of one of its enzymatic

components, EZH2 histone methyltransferase, through either

overexpression (Bracken et al., 2003; Kleer et al., 2003; Varam-

bally et al., 2002) or activating mutations (McCabe et al.,

2012a; Morin et al., 2010; Nikoloski et al., 2010; Sneeringer
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et al., 2010; Yap et al., 2011) is among the most common genetic

alterations observed in human cancers and plays a crucial role in

disease progression by deregulating the transcriptional pro-

gram, which influences cell growth (Bracken et al., 2003; Bryant

et al., 2007; Qi et al., 2012), survival (Varambally et al., 2002), in-

vasion (Bracken et al., 2003; Bryant et al., 2007), and metastasis

(Bachmann et al., 2006; Ren et al., 2012; Varambally et al., 2002).

Validation of EZH2 as a therapeutic target is supported by

numerous lines of experimental evidence (Gonzalez et al.,

2009; Melnick, 2012; Popovic and Licht, 2012). As a key compo-

nent of PRC2, EZH2 mediates trimethylation on histone 3 lysine

27 (H3K27me3) and gene silencing, which have been recognized

as key mechanisms that contribute to oncogenesis (Chang and

Hung, 2012; Margueron and Reinberg, 2011). This seems to be

true particularly in non-Hodgkin’s lymphoma cells that carry

EZH2-activating mutations leading to hyper H3K27me3, as

small-molecule inhibitors targeting EZH2-mediated H3K27me3

are sufficient to induce loss of viability of these cells (Knutson

et al., 2012; McCabe et al., 2012b; Qi et al., 2012). However,

although these EZH2 catalytic inhibitors deplete H3K27me3

robustly, they do not seem to be potent in solid tumor cells

(Kim et al., 2013b). Thus, there is a continuing demand for a

potent therapeutic approach to target the majority of human

epithelial cancers in which EZH2 is often overexpressed but

not mutated.

Although a variety of EZH2 target genes have been identified in

various cancers (Cao et al., 2008; Kodach et al., 2010; Li et al.,

2012; Yu et al., 2007, 2010), a whole-genome analysis indicated

that EZH2-silenced genes appear to be moving targets and vary

from cancer to cancer (Kondo et al., 2008). An EZH2 target com-

mon to multiple cancers with both functional and therapeutic im-

plications has not been described to date. The absence of such

an EZH2 target has created a formidable obstacle against the

development of a biomarker strategy to guide EZH2-targeted

therapy that can be applied more generally in human cancers.

In this study, we report that Interferon gReceptor 1 (IFNGR1) is

a target that is directly silenced by EZH2 in MYC-driven prostate

cancer cells. EZH2 inhibition, either by genetic knockdown or by

pharmacologic depletion, restores the expression of IFNGR and
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Figure 1. Oncogenic Transformation by MYC- and PI3K-Induced Transcriptional Inactivation of the IFN-g-JAK-STAT1 Signaling Pathway

(A) Unsupervised hierarchical clustering showing 610 genes that were differentially regulated in either RWPE1-MYC or RWPE1-PI3K cells compared with

RWPE1-vector control cells (2-fold cutoff, p < 0.01). The colored scale bar represents the absolute fold change.

(B) IPA showing the IFN signaling pathway as the top gene network enriched in downregulated genes in transformed RWPE1 cells.

(C) Venn diagram (not drawn to scale) showing the overlapping of genes downregulated in RWPE1-MYC and RWPE1-PI3K cells with known IFN genes in the

Interferome database.

(D) Graphical depiction of representative IFN genes in the IFN-JAK-STAT1 pathway. Green molecules represent those that were downregulated.

(E) ELISA showing JAK2 phosphorylation and activation in RWPE cells treated with or without IFN-g. The Y1007/1008 phosphorylation level of JAK2 was

normalized and expressed as the fold change against the total JAK2 level. Sensitivity to IFN-gwas determined by comparing the phosphorylation status of JAK2

between IFN-g-treated and untreated control cells.

(F) STAT1-driven luciferase reporter activity of indicated RWPE1 cell lines treated with or without IFN-g.

(G) Western blotting showing the IFNGR1 and STAT1 phosphorylation in RWPE1 cell lines treated with or without IFN-g.

(H and I) qRT-PCR analysis of IFNGR1 and multiple IFN genes in (H) RWPE1-MYC and RWPE1-PI3K cells, as well as (I) prostate cancer cell lines normalized to

RWPE1 control counterparts.

All the data in the graph bars represent mean + SEM, n = 3. **p < 0.01, ***p < 0.001, n.s., not significant.

See also Figure S1 and Table S1.
thus activation of IFN-JAK-STAT1 signaling, leading to robust

antitumor effects in response to interferon g (IFN-g) treatment.

These results indicate that pharmacologic targeting of EZH2 in

combination with IFN-g may provide a treatment strategy for

advanced prostate cancers.

RESULTS

MYC- or PI3K-Mediated Oncogenic Transformation in
Prostate Epithelial Cells Induces Transcriptional
Inactivation of IFN-g-JAK-STAT1 Signaling
Gene amplification of MYC or constitutive activation of the PI3K

signaling pathway occurs frequently in advanced prostate can-

cer (Gurel et al., 2008; Jenkins et al., 1997; Majumder and

Sellers, 2005; Sato et al., 1999). To investigate the molecular
events induced by MYC or PI3K, we used immortalized prostate

epithelial RWPE cells and infected them with retroviral MYC or a

constitutively activating mutant of PIK3CA (E545K), resulting in

transformed cell lines that showed elevated levels of MYC

or AKT phosphorylation, designated as RWPE1-MYC and

RWPE1-PI3K, respectively (see Figures S1 and 2C). Because

oncogenic transformation is often coupled with epigenetic

gene silencing (Gazin et al., 2007), we performed gene-express-

ing profiling and focused on pathways and gene sets that are

downregulated upon oncogenic transformation. Among 610

genes that were differentially expressed (with a 2-fold cutoff,

p < 0.01), we identified a set of 344 genes that were downregu-

lated in both RWPE1-MYC and RWPE1-PI3K cells as compared

with the empty vector control RWPE1 cells (Figure 1A; Table S1).

An ingenuity pathway analysis (IPA) indicated that this gene set
Cell Reports 8, 204–216, July 10, 2014 ª2014 The Authors 205



was enriched for canonical IFN signaling as the top gene network

(p < 3 3 10�11) (Figure 1B). Furthermore, 63 out of 344 genes

commonly downregulated in MYC- and PI3K-activated cell lines

were identified as IFN-responsive genes (IFN genes) in the Inter-

ferome database (Figure 1C), which can be mapped at multiple

levels in the IFN-JAK-STAT1 signaling cascade (Figure 1D, high-

lighted in green). Notably, IFNGR1, which encodes IFNGR1, was

downregulated, whereas IFNAR1, which encodes IFN a1 recep-

tor (IFNAR1), was not (Figure 1D). Thus, these findings suggest

that MYC or PI3K activation in prostate epithelial cells may

have induced a transcriptional inactivation of IFN signaling,

which is specific for IFNGR1, but not IFNAR1.

Downregulation of IFNGR1 expression is expected to cause a

reduced response to IFN-g stimulation, leading to impaired acti-

vation of JAK-STAT1 activity. Indeed, IFN-g-induced phosphor-

ylation of JAK2 and STAT1 transcriptional activity, as measured

by an ELISA-based assay and a STAT1-mediated luciferase

reporter assay, respectively, were much reduced in both

RWPE1-MYC and RWPE1-PI3K cells as compared with the

control RWPE1 cells (Figures 1E and 1F). Consistently, western

blotting confirmed the downregulation of IFNGR1 protein

expression and dampened induction of STAT1 Tyr701 phos-

phorylation in response to IFN-g treatment in RWPE1-MYC

and RWPE1-PI3K cells as compared with the RWPE1 cells

(Figure 1G). A quantitative RT-PCR (qRT-PCR) analysis further

validated the gene-expression array data by showing the down-

regulation of IFNGR1 and various IFN downstream genes in both

MYC- and PI3K-transformed RWPE1 cells (Figure 1H). Impor-

tantly, the downregulation of IFNGR1 (but not IFNAR1) and the

downstream IFN-responsive genes was also found in a panel

of prostate cancer cell lines (Figure 1I).

IFNGR1 Is a Direct Target of EZH2 in MYC-Driven, but
Not PI3K-Driven, Prostate Cancer Cells
The mechanism of loss of IFNGR1 and its downstream IFN-

responsive genes could result from epigenetic modifications

such as DNA methylation or histone modifications. Given the

well-known role of EZH2 in advanced prostate cancer (Varam-

bally et al., 2002), and that both MYC and PI3K signaling

pathways were recently shown to regulate EZH2 expression or

activity (Cha et al., 2005; Koh et al., 2011; Sander et al., 2008),

we investigated a possible role of EZH2 in controlling IFN

signaling in MYC- and PI3K-transformed cells. We found that

the ectopic overexpression of EZH2 in RWPE1 cells was able

to selectively downregulate IFNGR1 (but not IFNAR1) and other

IFN-responsive genes (Figure 2A). Notably, in RWPE1-MYC

cells, EZH2 knockdown was able to restore the expression of

IFNGR1 (but not IFNAR1); however, this was not seen in

RWPE1-PI3K cells (Figure 2B). Thus, EZH2 appears to be

involved in IFNGR1 repression only in MYC-driven cells, and

not in PI3K-driven cells.

MYC is known to upregulate EZH2 expression by downregu-

lating miR-26a/b (Koh et al., 2011; Sander et al., 2008). It has

also been shown to affect EZH2 activity by antagonizing PI3K-

AKT-mediated phosphorylation of EZH2 on serine 21 (Cha

et al., 2005; Kaur and Cole, 2013). Akt-induced EZH2 phosphor-

ylation on serine 21 is inhibitory to EZH2 gene-silencing activity

(Cha et al., 2005) but promotes its Polycomb-independent onco-
206 Cell Reports 8, 204–216, July 10, 2014 ª2014 The Authors
genic activity (Kim et al., 2013a; Xu et al., 2012). Indeed, we

found that MYC-driven RWPE cells showed concurrent reduc-

tions of phosphorylation on both AKT (S473) and EZH2 (S21)

as compared with PI3K-driven cells (Figure 2C). Meanwhile,

MYC overexpression led to only a modest decrease in miR-

26a, and consistently a modest induction of EZH2 mRNA

(Figures S2A and S2B). These findings suggest that MYC over-

expression in our systemmore likelymodulates the EZH2 activity

by counteracting AKT-mediated EZH2 inhibition, rather than

through a miR-26a-mediated mechanism.

Next, we investigated whether EZH2 directly represses

IFNGR1 as well as the downstream IFN genes. Chromatin immu-

noprecipitation (ChIP) followed by qPCR analysis in the vicinity of

the promoter region of IFNGR1 (Figure 2D) showed a significant

EZH2 enrichment in RWPE1-MYC cells (Figure 2E) compared

with the positive control gene (CNR1), but not in RWPE1-PI3K

or the vector control RWPE cells (Figure 2E). In addition, no

EZH2 enrichment was found in genes downstream of IFNGR1

(Figure S2C). Therefore, the transcriptional inactivation of IFN-

JAK-STAT1 signaling seen in MYC-driven cells may stem from

a direct suppression of IFNGR1 by EZH2.

Similar to what we observed in transformed RWPE1-MYC

cells, we found a significant EZH2 enrichment in the IFNGR1 pro-

moter of two prostate cancer cell lines, DU145 and PC3, which

have been reported to carry MYC amplification or sensitivity to

MYC inhibition (Luoto et al., 2010; Supino et al., 2007), but not

in LNCaP and 22RV1 cells, which are less sensitive to MYC

knockdown and thus appear to be MYC independent (Figures

2F and S2D). Furthermore, MYC knockdown in DU145 cells

resulted in a much reduced enrichment of both EZH2 and

H3K27me3 at the IFNGR1 promoter (Figure 2G), but this was

not seen in LNCaP cells. These data further support the notion

that EZH2-mediated silencing of IFNGR1 is MYC-dependent.

In addition, we found partial DNA hypermethylation in the

IFNGR1 promoter in RWPE1-PI3K cells and LNCaP cells, but

not in RWPE1-MYC and DU145 cells (Figure S2E). Thus, based

on the results we obtained from both transformed RWPE1 cells

and prostate cancer cell lines, we conclude that EZH2-mediated

repression of IFNGR1 is restricted to MYC-associated prostate

cancer cells, whereas IFNGR1 downregulation in PI3K-trans-

formed RWPE1 or LNCaP cells is independent of EZH2 and

might be associated with the promoter DNA hypermethylation.

IFNGR1 Is Downregulated in a Subset of Metastatic
Prostate Tumors Associated with MYC

To validate the IFNGR1 downregulation observed in clinical

samples, we examined the expression of IFNGR1, as well as

MYC and EZH2, in a previously published prostate cancer

gene-expression data set that covers the disease progression

from benign prostatic epithelium to metastatic prostate cancer

(Jenkins et al., 1997; Varambally et al., 2002; Wolfer et al.,

2010). We found that a subset of metastatic tumors showed a

strong upregulation of MYC and EZH2, whereas IFNGR1 and

the downstream IFN geneswere downregulated toward themet-

astatic progression (Figure 3A). Moreover, when we stratified

these tumors based on the MYC levels, we found that high

MYC tumors tended to express higher levels of EZH2 and lower

levels of IFNGR1 (Figure 3B).
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Figure 2. IFNGR1 Is a Direct Target of EZH2 in MYC-Driven, but Not PI3K-Driven, Prostate Cancer Cells

(A) qRT-PCR analysis of IFNGR1 and other IFN genes upon ectopic EZH2 expression in RWPE1 cells.

(B) qRT-PCR showing the restoration of IFNGR1, but not IFNAR1, expression following EZH2 knockdown in RWPE1-MYC, but not RWPE1-PI3K, cells.

(C) Western blotting validating the overexpression of c-MYC and the constitutive active mutant of PI3K, and the phosphorylation status of AKT and EZH2 in

RWPE1 cell lines treated with or without IFN-g.

(D) Schematic showing the ChIP primer locations with respect to the transcriptional start site (TSS) of the IFNGR1 promoter.

(E) ChIP analysis showing the enrichment of EZH2 at the promoter of IFNGR1 in transformed cell lines as indicated. Shown are the fold enrichments over the

immunoglobulin G (IgG) control further normalized to the Actin promoter. TheCNR gene is a known target gene of EZH2. Hence, the promoter region ofCNRwas

used as a positive control for the detection of EZH2 binding.

(F) ChIP analysis of EZH2 enrichment at the promoter of IFNGR1 in the indicated prostate cancer cell lines.

(G) ChIP analysis showing the enrichment of EZH2 and H3K27me3 in the IFNGR1 promoter in DU145 and LNCaP cells before and after MYC knockdown.

All data in the graph bars represent mean + SEM, n = 3. *p < 0.05, **p < 0.01, ***p < 0.001, n.s., not significant. See also Figure S2.
Immunohistochemistry (IHC) analysis of a tissue microarray

(TMA) consisting of a set of 80 prostate tissues of different

grades and stages confirmed that higher MYC protein levels

were associated with higher EZH2 but lower IFNGR1 protein

expression (Figure 3C). Moreover, IFNGR1 was expressed in

much lower levels in high-grade advanced prostate tumors as

compared with low-grade tumors (Figure 3D). Among the high-

grade tumors, approximately one-third of the tumors had higher

MYC and EZH2 protein levels, which were negatively correlated

with the expression of IFNGR1 in these tumors (Figure 3E), as

shown in a set of representative tumors in different stages (Fig-

ure 3F). Thus, our findings suggest that IFNGR1 downregulation

by EZH2 may occur in a subset (�30%) of advanced prostate

tumors associated with MYC.
EZH2-Mediated Inactivation of IFN-g-JAK-STAT1
Signaling Pathway Confers Growth and Survival
Advantages in MYC-Dependent Prostate Cancer Cells
Activation of IFN-g-STAT1 signaling is known to be tumor sup-

pressive through the induction of a number of IFN-responsive

genes, including the apoptosis-promoting IRF1 (Park et al.,

2004). Loss of IFNGR1 expression by EZH2 is expected to cause

a reduced sensitivity to IFN-g treatment, resulting in defective

activation of JAK-STAT1 signaling and its downstream target

genes. Consistent with this hypothesis, EZH2 knockdown

resulted in robust activation of IFN genes in response to IFN-g

stimulation in MYC-dependent DU145 and PC3 cells, but not

in MYC-independent LNCap and 22RV1 cells (Figure 4A).

Consistently, EZH2 knockdown in DU145 cells restored IFNGR1
Cell Reports 8, 204–216, July 10, 2014 ª2014 The Authors 207
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Figure 3. Inverse Relationship between MYC/EZH2 and IFNGR1 Expression Levels in Advanced Prostate Cancer

(A) Scatterplot showing the mRNA expression (Log2) of EZH2,MYC, IFNGR1, and IFN-g responsive genes (MX1, IRF1, and IFI16), comparing metastatic (n = 35)

and localized (n = 59) prostate tumors with normal prostate tissue (n = 28) from the Grasso Prostate data set (Grasso et al., 2012).

(B) Scatterplot showing the mRNA expression (Log2) of IFNGR1 (left) and EZH2 (right) after stratifying all prostate cancer tumors in the Grasso Prostate data set

according to their MYC expression. Prostate tumors with MYC expression higher or lower than the median level were categorized as the ‘‘Hi-MYC’’ (n = 59) or

‘‘Low-MYC’’ (n = 61) group, respectively.

(C) IFNGR1 (left) and EZH2 (right) protein expression of the TMA performed in (C) as represented by the H-score. The prostate tumors are stratified into ‘‘Hi-MYC’’

(n = 39) and ‘‘Low-MYC’’ (n = 41) groups according to their MYC protein expression in a fashion similar to that described in (B).

(legend continued on next page)

208 Cell Reports 8, 204–216, July 10, 2014 ª2014 The Authors



protein expression and enhanced STAT1 phosphorylation and

the expression of IFI16, a downstream target gene of STAT1 (Fig-

ure 4B), as well as JAK2 phosphorylation in response to IFN-g

stimulation (Figure 4C). Consistent with MYC being upstream

of EZH2 (Kaur and Cole, 2013; Koh et al., 2011; Sander et al.,

2008), MYC knockdown in DU145 cells resulted in decreased

EZH2 expression, which gave rise to a similar increase in

IFNGR1 expression and STAT1 activation in response to IFN-g

stimulation (Figure 4D).

Phenotypically, either MYC or EZH2 knockdown, when com-

bined with IFN-g treatment, resulted in remarkable synergy in

cell-growth regression in MYC-dependent DU145 cells, indi-

cating an induction of cell death (Figure 4E, top). By contrast,

such an effect was not observed in MYC-independent LNCaP

cells (Figure 4E, bottom). Further assessment of cell death by

sub-G1 DNA suggested an apoptosis induction following EZH2

or MYC knockdown in combination with IFN-g treatment in

DU145, but not LNCaP, cells (Figure 4F). Crucially, the enhanced

apoptosis induced by the combination conditions was IFNGR1

dependent, as the addition of a specific IFNGR1-neutralizing

antibody, CD119, which presumably blocks binding of the

IFN-g ligand to IFNGR1, almost completely abolished the

apoptosis induced upon EZH2 or MYC knockdown (Figure 4F).

Because EZH2 has been linked to cancer stemness (Spar-

mann and van Lohuizen, 2006), we further assessed the effect

of EZH2 knockdown in tumorsphere formation in prostate

cancer cells (prostatosphere), a growth feature associated with

tumor-initiating cells (Crea et al., 2011; Duhagon et al., 2010).

As shown in Figure 4G, EZH2 knockdown in combination with

IFN-g efficiently inhibited tumorsphere formation inMYC-depen-

dent DU145 and PC3 cells, but not in MYC-independent LNCaP

and 22RV1 cells (Figure 4G). Taken together, these findings

support the notion that MYC and EZH2 act concertedly in the

same pathway to promote growth and survival through inactiva-

tion of the IFN-g-STAT1 tumor suppressor pathway. Restoration

of IFN-g-STAT1 signaling following EZH2 knockdown is able to

sensitize MYC-dependent prostate cancer cells to IFN-g

treatment.

Pharmacologic Depletion of EZH2 by DZNep Mimics
EZH2 Knockdown to Restore IFNGR1 Expression and
Sensitize Cells to IFN-g Treatment
To demonstrate the translational value of this finding, we next

asked whether a therapeutic benefit from restoring IFN signaling

could be achieved through a pharmacological approach. To this

end, we exploited two types of pharmacologic agents: (1) the

histone methylation inhibitor deazaneplanocin A (DZNep), which

is not specific but is able to effectively deplete EZH2/PRC2, lead-

ing to activation of EZH2 target genes (Tan et al., 2007), and (2)
(D) Pearson correlation analysis between MYC and IFNGR1 protein levels of the

negative correlation). The prostate tumors are stratified into low-grade tumors (%

Gleason score R 7, n = 66).

(E) Prostate tumors are stratified into low-grade tumors and a subset of high-gr

and -EZH2 prostate tumors are defined as high-grade tumors with MYC and E

(F) Representative images of the prostate cancer TMA-IHC staining showing the d

of EZH2 and MYC. Scale bars, 100 mm.

Unless stated otherwise, *p < 0.05, **p < 0.01, ***p < 0.001, n.s., not significant.
the recently reported catalytic inhibitors of EZH2, which can spe-

cifically inhibit H3K27me3 but do not affect EZH2 expression

(Knutson et al., 2012; McCabe et al., 2012b; Qi et al., 2012).

The results show that pharmacological depletion of EZH2 by

DZNep in DU145 cells was able to mimic EZH2 knockdown

and induced the expression of IFNGR1, which when combined

with IFN-g led to strong inductions of IFN genes (Figure 5A) as

well as STAT1 phosphorylation (Figure 5B). Again, in agreement

with the selective repression of IFNGR1 by EZH2, DZNep treat-

ment did not change IFNAR1 expression (Figures 5A and 5B).

Like EZH2 knockdown, DZNep was able to induce robust

apoptosis when combined with increasing doses of IFN-g in

DU145, but not LnCap, cells (Figure 5C). Similarly, consistent

with the MYC dependency, such an induction of apoptosis

was only seen in RWPE1-MYC cells, and not in RWPE1-PI3K

or control RWPE cells (Figure S3A). For comparison, we also

show that the other epigenetic compounds (e.g., the histone

deacetylase inhibitors SAHA and TSA, and the DNA methylation

inhibitor 50Aza) did not give rise to such a response (Figure S3B),

underscoring the unique ability of DZNep in this scenario. Again,

the apoptosis induced by the drug combination was inhibited by

the neutralizing antibody (CD119) of the IFN-g receptor (Fig-

ure 5D), which was accompanied by the abolished induction of

STAT1 phosphorylation and PARP cleavage (Figure 5E). We

also show that Axon 1588, a small-molecule inhibitor of JAK2,

could similarly rescue DU145 cells from apoptosis (Figure S3C).

Taken together, these findings demonstrate that the apoptosis

induced by the combination of DZNep and IFN-g is largely medi-

ated through the specific activation of IFN-g-STAT1 signaling

pathway.

Moreover, the cotreatment of DZNep and IFN-gwas also able

to show a combinatorial effect on growth inhibition in MYC-

dependent DU145 and PC3 cells, but not in MYC-independent

LNCaP and 22RV1 cells (Figure 5F). Most strikingly, this combi-

nation almost completely eliminated the formation of DU145 or

PC3-derived prostatospheres, but had no effect on LNCaP- or

22RV1-derived prostatospheres (Figure 5G). Consistently, we

detected a drastic increase in the expression of IFN genes in

DU145 prostatospheres upon the combination treatment (Fig-

ure S3D). These findings indicate that DZNep is able to recapit-

ulate the EZH2 knockdown and synergize with IFN-g to induce

apoptosis, cell proliferation, and tumorsphere inhibition in

MYC-dependent prostate cancer cells.

Therapeutic Effect of Combined DZNep and IFN-g
Treatment In Vivo
To confirm the above findings in vivo, we established DU145

xenografts in athymic mice and treated them with vehicle,

DZNep, IFN-g, or both DZNep and IFN-g. Treatment with DZNep
TMA performed in (C) as represented by the Pearson R score (R < 0 denotes

stage II, Gleason score < 7, n = 14) and high-grade tumors (stages III and IV,

ade tumors with high MYC and EZH2 protein expression (n = 20). High-MYC

ZH2 H-score above their respective median expression.

ownregulation of IFNGR1 in advanced prostate cancer tumors with high levels
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or IFN-g alone slowed down the tumor growth, while the combi-

nation treatment resulted in complete tumor growth arrest on

average (p < 0.01; Figure 6A) and a few of these tumors showed

tumor repression (data not shown). Throughout the study, both

single and combination treatments were well tolerated in mice

without overt signs of toxicity or weight loss of >10%, supporting

the potential application of this treatment in the clinic (Figure 6B).

IHC analyses of tumors resected from the mice confirmed the

downregulation of EZH2 and upregulation of IFNGR1 within the

tumors treated with DZNep or DZNep combined with IFN-g (Fig-

ure 6C). Thus, the combination of DZNep and IFN-g was also

effective in the xenograft tumor model and was able to induce

the expected molecular changes within the tumors. Collectively,

our data demonstrate a therapeutic approach that may be bene-

ficial for advanced prostate cancers that undergo EZH2-medi-

ated IFNGR1 silencing.

Catalytic Inhibitors of EZH2 Fail to Recapitulate the
EZH2 Knockdown Effects
Next, wewanted to testwhether the catalytic EZH2 inhibitors that

were recently developed to selectively inhibit EZH2-mediated

H3K27me3 and kill non-Hodgkin’s lymphomas harboring

EZH2-activating mutations (Knutson et al., 2012; McCabe

et al., 2012b; Qi et al., 2012; Verma et al., 2012) are able to mimic

the EZH2 knockdown. As shown in Figure 7A, DU145 cells

treated with such an EZH2 inhibitor (GSK343) at doses of up to

2.5 mM for 3 days did not show an induction of IFNGR1, despite

the efficient depletion of H3K27me3 to as low as 0.1 mM. Cells

treated with another EZH2 inhibitor, GSK126, at higher doses

(up to 10 mM) for 10 days showed only a modest induction of

IFNGR1 (Figures 7A and 7B). In contrast, DZNep, which depleted

EZH2, as well as two other PRC2 proteins (EED and SUZ12),

induced a marked expression of IFNGR1, but showed a much

lower efficiency in depleting H3K27me3 (Figures 7A and 7B). At

the IFNGR1 gene-promoter level, we saw that DZNep treatment

reduced both EZH2 and H3K27me3 enrichments, although

GSK126 depleted H3K27me3 more efficiently (Figure 7C). In

contrast, other repressive histone marks, such as H3K9me3

and H3K9me2, were not affected by DZNep or GSK126 treat-

ment (Figure S4A). Moreover, in addition to IFNGR1, the two

other known EZH2 targets, ADRB2 and DABIP2, were induced

only by DZNep, and not by GSK343 (Figure S4B), suggesting

that the inability of the catalytic inhibitors of EZH2 to induce

EZH2 target gene expression is not restricted to IFNGR1.
Figure 4. MYC/EZH2-Mediated Inactivation of IFN-g-JAK-STAT1 Signa

(A) qRT-PCR analysis of three IFN-responsive genes (MX1, IRF1, and IFI16) in D

(B) Western blot analysis of IFNGR1 expression and IFN-g signaling upon EZH2

(C) ELISA showing JAK2 phosphorylation and activation in DU145 cells treated wi

JAK2 was normalized and expressed as the fold change against the total JAK2

(D) Western blot analysis of IFNGR1 expression and IFN-g signaling upon MYC

(E) Cell proliferation assay in DU145 and LNCaP cells treatedwith either siMYC or s

the fold change after normalizing to the baseline Cell Titer Glow (CTG) signal on

(F) Left: sub-G1 DNA assessment by fluorescence-activated cell sorting (FACS) in

or absence of CD119, the IFNGR1 neutralizing antibody. Right: sub-G1 DNA an

with IFN-g.

(G) Left: prostatosphere formation assay after treatment of DU145, PC3, LNCaP,

phase-contrast microscopy images of the prostatospheres at 103 magnification

Unless stated otherwise, all of the data in the graphs represent mean +SEM, n =
Accordingly, unlike the DZNep and IFN-g treatment, GSK343

or GSK126 in combination with IFN-g failed to induce apoptosis

in DU145 cells treated for either 3 days or 10 days (Figure 7D).

Moreover, the GSK126 and IFN-g combination was also unable

to inhibit DU145 tumorsphere formation (Figure 7E). Taken

together, these findings suggest that although H3K27me3 has

been thought of as a repressive histone hallmark associated

with PRC2 activity, simply inhibiting H3K27me3without affecting

PRC2 abundance is insufficient to induce IFNGR1 expression

and thus is unable to mimic EZH2 knockdown. Therefore, addi-

tional mechanisms might be required to coordinate with

H3K27me3 to implement PRC2-mediated IFNGR1 silencing in

the absence of gain-of-function EZH2 mutations in epithelial

tumors. This result is consistentwith a very recent report showing

that a peptide that blocks EZH2-EED binding, which leads to

EZH2 downregulation, is able to induce the loss of cell viability

in solid tumor cells, whereas GSK126 is unable to do so despite

its high potency in inhibiting H3K27me3 (Kim et al., 2013b).

DISCUSSION

By analyzing the MYC-mediated transcriptional alteration in

prostate cancer cells, we uncovered a defective IFN-JAK-

STAT1 signaling pathway that is inactivated by EZH2 in a

MYC-dependent manner. We show that the direct silencing of

IFNGR1 by EZH2 mediates the inactivation of this pathway,

rendering the cancer cells insensitive to IFN-g treatment. As

such, restoration of IFNGR1 expression by EZH2 inhibition,

through gene knockdown or pharmacologic depletion, sensi-

tizes IFN-g to activate the downstreamSTAT1 tumor-suppressor

pathway, leading to robust apoptosis. We show that this sce-

nario is MYC dependent, which is consistent with MYC being

an upstream regulator of EZH2 (Kaur and Cole, 2013; Koh

et al., 2011; Sander et al., 2008). In contrast, EZH2 gene-

silencing activity may be antagonized by PI3K-AKT signaling

through inhibitory EZH2 phosphorylation on serine 21 (Cha

et al., 2005; Kaur and Cole, 2013). Indeed, MYC knockdown

mirrors EZH2 knockdown, and MYC is required for EZH2 and

H3K27me3 enrichment at the IFNGR1 promoter. We further

show that IFNGR1 downregulation is evident in a subset of

advanced prostate tumors where it inversely correlates with

MYC and EZH2 expression. Thus, given that MYC is overex-

pressed in up to 30% of advanced prostate cancer (Koh et al.,

2010; Sato et al., 1999) and that MYC overexpression confers
ling Confers Growth and Survival Advantages

U145, PC3, LNCaP, and 22RV1 cells.

knockdown in the presence of IFN-g at the doses as indicated.

th siEZH2, IFN-g, (25 ng/mL), or both. The Y1007/1008 phosphorylation level of

level.

knockdown in the presence of IFN-g at the indicted doses.

iEZH2 in combinationwith IFN-g. The proliferation of the cells is represented as

day 0 (T0). All of the data in the graphs represent mean ± SEM, n = 3.

DU145 cells treated with siEZH2 or siMYC together with IFN-g, in the presence

alysis by FACS in LnCap cells treated with siMYC or siEZH2 in combination

and 22RV1 with either IFN-g, siEZH2, or both for 7 days. Right: representative

after treatment with siEZH2 and IFN-g (25 ng/mL). Scale bars, 100 mm.

3. *p < 0.05, **p < 0.01, ***p < 0.001, n.s., not significant.
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Figure 5. DZNep Mimics EZH2 Knockdown to Restore IFN-g Response for Growth Inhibition and Apoptosis

(A) qPCR showing the increase in gene expression of IFNGR1 and various IFN-responsive genes, but not IFNAR1, after 72 hr of DZNep (2.5 mM) and IFN-g

treatment at the indicated doses.

(B) Western blot analysis of IFNGR1 expression and IFN-g signaling in DU145 cells treated with DZNep (2.5 mM), IFN-g, or both for 3 days.

(C) Sub-G1 DNA analysis in DU145 and LNCaP cells treated as in (B).

(D) Sub-G1 DNA analysis in DU145 cells treated with DZNep/IFN-g as above in the presence or absence of the IFNGR1-neutralizing antibody CD119 at the

indicated concentrations.

(E) Western blot analysis of EZH2, IFN signaling, and PARP cleavage in DU145 cells treated with DZNep and IFN-g under similar conditions as in (D).

(F) Cell proliferation assay of MYC-dependent cell lines (DU145 and PC3) andMYC-independent cell lines (LNCaP and 22RV1) after treatment with IFN-g, DZNep,

or both for days as indicated. The proliferation of the cells is represented as the fold change after normalizing to the baseline CTG signal on day 0 (T0).

(G) Left: prostatosphere formation assay showing the effectiveness of combining low doses of DZNepwith IFN-g to inhibit the formation of prostatospheres in the

indicated cell lines. Right: representative phase-contrast microscopy images of the prostatospheres of DU145 and PC3 taken at 103 magnification after

treatment with DZNep (0.5 mM) and IFN-g (25 ng/mL). Scale bars, 100 mm.

All of the data in the graph bars represent mean + SEM, n = 3. *p < 0.05, **p < 0.01, ***p < 0.001, n.s., not significant. See also Figure S3.
androgen independency (Bernard et al., 2003) and metastasis

(Bernard et al., 2003; Wolfer and Ramaswamy, 2011), these find-

ings support a potential clinical application for context-depen-

dent targeting of MYC-associated refractory prostate cancer,

for which there is currently a lack of effective therapy.

From a therapeutic point of view, our approach demonstrated

the ability of EZH2-targeted therapy to reconstitute a pathway

dependency that drives drug susceptibility. IFN-g has previously

been used to treat advanced prostate cancer, with disappointing

results (Bulbul et al., 1986; Hastie, 2008). Although the reason for

this is unknown, our findings suggest that the downregulation of

IFNGR1 might provide a possible explanation for the lack of
212 Cell Reports 8, 204–216, July 10, 2014 ª2014 The Authors
efficacy of IFN-g treatment. Thus, the combination approach

we identified in this study might have the potential to improve

IFN-g treatment in advanced prostate cancer. We found that a

subtoxic low dose of DZNep and IFN-g induced synergistic

antitumor activity in the DU145 xenograft model, but did not

result in any overt toxicity in the mice. In fact, we did not

observed any body weight loss with the use of DZNep even

when it was administered together with IFN-g daily for up to

5 weeks. Although DZNep is not an EZH2-H3K27me3-specific

inhibitor and may affect additional histone methylations or other

targets, the remarkable similarity between the results produced

by RNAi-mediated or chemical inhibition strongly suggests that
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BA Figure 6. Combinatorial Antitumor Effects

of DZNep and IFN-g In Vivo

(A) DU145 xenograft tumor growth in male athymic

nude mice treated with vehicle (n = 5), IFN-g (1 3

107 IU/kg, i.p.; n = 6), DZNep (1 mg/kg, s.c.; n = 7),

or both (n = 8). Mean tumor volume ± SEM is

shown; ***p < 0.001.

(B) Body weight change (± SEM) during the drug

treatment.

(C) IHC analysis of EZH2 and IFNGR1 expression

in tissue sections taken from DU145 xenograft

tumors after the treatment in (A). Insets are

zoomed-in images; scale bars, 100 mm.
DZNep in this scenario acts to recapitulate the EZH2 knockdown

to restore IFNGR1 expression and thus STAT1 activation. Inter-

estingly, IFNGR1 suppression by EZH2 may not be restricted to

prostate cancer and could occur in other human cancers, such

as breast, lung, and liver cancers, as revealed by an Oncomine

analysis (data not shown). Thus, it will be interesting to see

whether the combination strategy we identified in this study

may be applicable to other cancers as well. However, EZH2-

mediated IFNGR1 suppression in other cancer types may not

necessarily be linked to MYC overexpression, as MYC expres-

sion was weakly correlated with the EZH2 and IFNGR1 levels

in these cancers (data not shown). Thus, the MYC-mediated

EZH2 regulation of IFNGR1 expression could be cancer specific.

Moreover, the levels of EZH2 and IFNGR1 expression could

potentially be applied as biomarkers in a relevant context, such

as advanced prostate cancer, to identify patients who might

benefit from the combined EZH2 and IFN-g-based therapy.

Current efforts to design EZH2-targeted cancer therapies

are directed toward therapeutic targeting of H3K27me3.

Indeed, small-molecule inhibitors specific for EZH2-mediated

H3K27me3 have been reported to be selectively efficacious in

lymphomas carrying activating mutations of EZH2 that can

cause hyperactive H3K27me3 (Knutson et al., 2012; McCabe

et al., 2012b; Qi et al., 2012). To date, activating EZH2 mutations

have not been found in epithelial-derived solid tumors; thus, the

anticancer activity of the enzymatic inhibitor of EZH2 toward

these tumors has yet to be determined. Notably, in breast cancer

cells, it has been shown that the EC50 for growth inhibition is 200-

fold higher than that required to deplete cellular H3K27me3, indi-

cating that inhibiting H3K27me3 alone might be insufficient to

recapitulate the cellular effects of EZH2 knockdown (Verma

et al., 2012). Moreover, a recent study showed that a peptide
Cell Reports 8, 204–
that blocks EZH2-EED interaction can

result in EZH2 downregulation and target

gene activation, whereas the EZH2 cata-

lytic inhibitor GSK126 is unable to achieve

the same, but is much more effective in

blocking H3K27me3 (Kim et al., 2013b).

Taken together, it seems that disruption

of EZH2/PRC2 is required for effective

inhibition of EZH2 function in EZH2-over-

expressing tumors that do not carry acti-

vating mutations of EZH2, which can be
achieved by DZNep or a peptide targeting the EZH2-EED inter-

action, but not by catalytic inhibitors of EZH2. The mechanism

for this remains elusive, but one possible scenario is that

H3K27me3 may engage additional repressive factors to enforce

gene silencing. This idea warrants further investigation.

In addition to the canonical function of EZH2 in gene silencing,

recently described ‘‘noncanonical’’ roles of EZH2, independent

of histone methylations, such as in activation of NF-kB, AR, or

STAT3 signaling, may also contribute to oncogenesis (Lee

et al., 2011; Shi et al., 2007; Xu et al., 2012). In particular, in

advanced prostate cancer, serine 21 phosphorylation of EZH2

may switch the EZH2 gene-silencing activity to a Polycomb-

independent activity (Xu et al., 2012). Thus, we envision a model

in which both canonical and noncanonical activities of EZH2

contribute to oncogenesis (Figure 7F). As such, depletion of

EZH2, rather than inhibition of H3K27me3 alone, might be

necessary for a full phenotypic response. In this regard, IFN-g-

induced IFNGR1-STAT1 activation upon EZH2 knockdown or

DZNep treatment might be one of several crucial mechanisms

that contribute to a strong tumor-suppressive response.

EXPERIMENTAL PROCEDURES

Cell Cultures and Treatments

Weobtained epithelial cell lines from the American TypeCulture Collection and

cultured them according to the recommended protocols. Cells were grown to

80% confluence before they were treated with the indicated drugs. Additional

details regarding the cell culturemethods are provided in Supplemental Exper-

imental Procedures.

Gene-Expression Analysis

Total RNA was isolated with the use ofTrizol (Invitrogen) and purified with the

RNeasy Mini Kit (QIAGEN). Microarray hybridization was performed using the
216, July 10, 2014 ª2014 The Authors 213
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Figure 7. Catalytic Inhibitors of EZH2 Fail to Recapitulate the EZH2 Knockdown Effects

(A) Western blot analysis of IFNGR1, PRC2 proteins, and H3K27me3 in DU145 cells treated with DZNep, GSK343, or GSK126 at the indicated doses for 3 or

10 days.

(B) qRT-PCR analysis of IFNGR1 expression in DU145 cells treated with the indicated drugs for 3 or 10 days.

(C) ChIP analysis of EZH2 and H3K27me3 enrichments at IFNGR1 in DU145 cells treated with DMSO, DZNep (2.5 mM), or GSK126 (5 mM) for 3 days. Enrichments

were expressed as the percentage of total input used for ChIP.

(D) Sub-G1 DNA analysis in DU145 cells treated with DZNep or GSK343/GSK126 in combination with IFN-g as indicated.

(E) Prostatosphere-formation assay after treatment of DU145 cells with IFN-g (25 ng/mL) and GSK126 for 10 days at the indicated doses.

(F) Model for EZH2-mediated inactivation of IFN-JAK-STAT1 signaling regulated by MYC and PI3K-AKT. MYC overexpression leads to EZH2 activation by

antagonizing miR-26a and PI3K-AKT-mediated EZH2 inhibition, resulting in suppression of IFNGR1 and downstream JAK-STAT1 signaling. DZNep depletion of

EZH2/PRC2 restores IFNGR1 expression and synergizes with IFN-g to induce growth inhibition and apoptosis.

All of the data in the graph bars represent mean + SEM, n = 3. *p < 0.05, **p < 0.01, n.s., not significant. See also Figure S4.
Illumina Gene Expression Sentrix BeadChip HumanRef-8_V3, and data anal-

ysis was performed with GeneSpring software (Agilent Technologies) as

described previously (Lee et al., 2011). The gene sets analyzed by GeneSpring

were next subjected to IPA for Gene Ontology (GO) analysis. Additional assays

of transcript abundance to validate the microarray results were performed by

qRT-PCR (Supplemental Experimental Procedures).

IHC Analysis

Prostate TMA slides were purchased from US Biomax. Briefly, paraffin-

embedded tissue sections (5 mg thick) were cut, deparaffinized, and rehy-

drated, and antigens were retrieved using Proteinase K solution. The sections

were then incubated in 3% H2O2 at room temperature to block endogenous
214 Cell Reports 8, 204–216, July 10, 2014 ª2014 The Authors
peroxidase. The slides were incubated in anti-EZH2 clone D2C9 XP (Cell

Signaling), iFNGR1 antibody clone GIR-94 (SCBT), or Myc antibody (SCBT)

for 45 min, followed by a 30 min incubation with anti-mouse labeled polymer.

Additional details regarding the IHC analysis are provided in Supplemental

Experimental Procedures.

Mouse Experiments

For in vivo evaluation of DZNep and IFN-g treatment, experiments were

conducted in compliance with animal protocols approved by the ASTAR-Bio-

polis Institutional Animal Care and Use Committee of Singapore. DU145 cells

(53 106) were subcutaneously injected into 6- to 8-week-old male nude mice,

followed by treatment with vehicle, IFN-g (1 3 107 IU/kg) alone, or DZNep



(1 mg/kg) alone or combined DZNep (1 mg/kg) with IFN-g (1 3 107 IU/kg).

IFN-g was administered by intraperitoneal injection daily, and DZNep was

administered by subcutaneous injection on every alternating day over a period

of 38 days after the average tumor size reached �150 mm3. Tumors were

measured by vernier calliper at least twice per week and the tumor volume

was calculated with the following formula: V = W 3 W 3 L/2. Each xenograft

treatment arm comprised five to eight mice. Differences among groups and

treatments were determined by ANOVA followed by Student’s t test (***p <

0.001; n.s., not significant). Error bars represent means ± SEM.

Statistical Analyses

All in vitro experiments were repeated at least three times unless stated other-

wise, and data are reported as means + SEM. Differences among groups and

treatments were determined by Student’s t test and p% 0.05 was considered

significant unless stated otherwise.

Details regarding the methods used are provided in Supplemental Experi-

mental Procedures.
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