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Abstract—Early detection of locomotion intention is highly
relevant to the development of intelligent rehabilitation/assistive
robotics. While surface electromyography(sEMG) has been a
promising tool, it is often challenged by the shear variability of
sEMG patterns in contrast to only a handful of sEMG training
samples per discrete motion intention class for each individual
user to begin with. To address this issue, we introduce a deep con-
volutional generative adversarial networks (DCGANs), including
dynamic time warping (DTW) and fast Fourier transform mean
square error (FFT MSE) for artificial signal quality assessment.
On a preliminary sEMG data set of 3-class directional lower-limb
movement, the proposed method yielded an average accuracy rate
of 89.31% ± 6.52. While this is a feasibility study using healthy
human subjects, the result warrants extended study to further
establish the generative adversarial network learning for EMG
intention detection in real-world rehabilitation/assistive system
applications.

Index Terms—rehabilitation, electromyography, generative ad-
versarial networks

I. INTRODUCTION

Surface electromyography (sEMG) has been among major
sensor modalities in the field of motion intention detection.
By capturing intrinsic neuromuscular electrical activities, it
can offer robots with the ability to understand human motion
intentions and facilitate safe interactions between humans and
robots [1]. Most of the EMG studies in this field thus far
are focused on either the estimation of kinematic parameters
of the classification or prediction of human motion state
transition. Various machine learning tools have been proposed.
For instance, an Encoder-Decoder Temporal Convolutional
Network (ED-TCN) Betthauser et al. [2] was proposed for
sEMG motion prediction with a relatively lower prediction
latency. Two streams of convolutional networks were em-
ployed in Hajian and Morin [3] to learn informative features
from raw sEMG data using different scales and estimate
the motion generated during elbow flexion and extension. In
Pew and Klute [4], the authors used support vector machine

(SVM), K nearest neighbor (KNN) and bagged decision tree
ensemble (Ensemble) as classifiers, integrated inertial motion
unit (IMU) and sEMG signals, and predicted the subject’s
turning intention 400ms in advance. In Côté-Allard et al. [5],
a migration learning method was introduced to learn general
and information-rich features from a large amount of data
generated by aggregating signals from multiple users.

Applications of EMG for intention detection usually employ
the subject-dependent model training approach to resolve the
issue of sheer data variability due to various intrinsic (e.g.
disability condition of the exoskeleton user) or extrinsic factors
(such as the sensor array configuration). The collection of
individual motion intention samples (especially when using
real assistive devices like an exoskeleton) can be expensive.

On the other hand, data augmentation has been widely used
to address various small training data problems, especially
in the fields of computer vision (CV) and natural language
processing (NLP) and has achieved remarkable results [6].
For the biomedical signal of electroencephalography (EEG),
Lashgari et al. [7] compared different data augmentation .
For sEMG, Anicet Zanini and Luna Colombini [8] proposed
a generative adversarial network using multiple features in
sEMG to simulate Parkinson’s disease (PD) sEMG signals.
Gunasar et al. [9] proposed a ”find valid augmented samples”
algorithm, which considers the validity of the generated sEMG
signal and significantly improves the accuracy of using sEMG
for gesture classification.

In the work, we propose a deep convolutional generative ad-
versarial networks (DCGANs) to learn and classify EMG data
from 3-class directional lower-limb movement. The training
method uses dynamic time warping (DTW) and fast Fourier
transform mean square error (FFT MSE) for artificial signal
quality assessment. the proposed method is tested on a data set
of 5 human subjects, and yielded an average accuracy rate of
89.31% ± 6.52. While this is a feasibility study using healthy



human subjects, the result warrants extended study to further
establish the generative adversarial network learning for EMG
intention detection in real-world rehabilitation/assistive system
applications.

II. MATERIALS AND METHODS

In this section, we show the sEMG signal processing
process and a data augmentation method based on Deep
Convolutional Generative Adversarial Networks (DCGANs)
and introduce the signal quality evaluation method, and finally
use the discriminator in the model to predict the signal motion
intention. The architecture of the model is shown in Fig. 1. In
the first step, the input sEMG signal is high-pass filtered to
remove noise and artifacts in the signal. The second step is to
divide the data into two categories according to the different
classification labels in the data set. The first category is input
into DCGANs to update the network parameters, and the
second category does not participate in updating parameters
but is directly input into the discriminator to judge whether
it is similar to the first category. Meanwhile, a set of one-
dimensional random signals is input to DCGANs to generate
a set of generated signals. Finally, the prediction results of the
discriminator are analyzed, and the quality of the generated
signal is analyzed using dynamic time warping (DTW) and
fast Fourier transform mean square error (FFT MSE).

Fig. 1: Architecture of the data augmentation and motion
prediction model

A. Data Collection and Pre-processing

We designed a VR game to obtain data when the subjects
were in motion. Here we provide a concise description of
the data collection process because it is a complex process
and will be reported in a separate full paper. Five healthy
male individuals were enlisted as volunteers for the study.
A wearable sensor array system consisting of three parts in-
cluding sEMG, kinematics, and insole pressures was equipped
in each experiment subject during data collection. Among
them, for the sEMG part, four muscles that included Biceps
Femoris (BF), Vastus Medialis (VM), Tibialis Anterior (TA),
and Gastrocnemius Medialis (GM) were selected. For each
subject, the process was divided into a total of 3 phases all on

the same day. Each session had subjects perform right kicks in
three designated directions: left, center, and right. The process
is controlled by a computer that pseudo-randomly chooses the
direction of the next kick and then informs the subjects with
audiovisual cues. When prompted, the subjects were asked to
quickly perform a specific directional kick. On the other hand,
the subjects did not know the specific direction before the cue,
but only started to move when the cue appeared. The study
was conducted in compliance with the guidelines outlined in
the research protocol, which was approved by the ethics review
board of the Agency for Science, Technology and Research,
Singapore, with reference to IRB Ref. No. 2020-006.

Since we want to study the movement of the legs of the
disabled, especially the other healthy leg when the movement
of one leg is limited, in this experiment, the right leg is uni-
formly used to simulate the limited movement of the disabled
leg The sEMG movement and intention generated during the
body movement, the left leg is used as the standing leg, and the
sEMG signal of the healthy leg of the disabled is simulated.
The aim of this study is to perform motion prediction on the
kicking leg (right leg), specifically, the kicking direction based
on stance leg sEMG signals. At the same time, in order to
test whether the difference in the movement direction of the
subject’s right leg can be predicted and accurately described,
in the signal generation, all the data of the subject kicking
to the left are used for sEMG signal generation, and the data
of kicking to the right are used for prediction verification. In
order to make the collected data more consistent, we define
two-time nodes tcue and tonset. Where tcue refers to the time
when the target appeared on the subject’s screen, and tonset
refers to the time when the subject began to attack the target,
which was determined by the pressure sensor in the leg. Since
we are interested in the sEMG signal when the movement has
not started, the first 500ms before tonset is intercepted as the
signal to be learned during preprocessing. We define this time
point as tbefore onset 500ms.

The amplitude of the acquired sEMG signal is very weak
(0-10mV), the noise will be introduced during the acquisition
process. To fit the data requirements of machine learning,
the filtered signal needs to be normalized. Fig. 2 shows the
preprocessing of a four-channel sEMG signal, where each row
represents one of the channels in the signal.

B. The Deep Convolutional Generative Adversarial Networks
Model

The architectures of the generator and discriminator in
DCGANs are shown in Fig. 3 and Fig. 4 respectively. For the
generator input, it is a set of random one-dimensional vectors.
for the discriminator, it is a set of signals generated by the
generator. The output of the discriminator is a probability in
the range [0,1]. When the probability is 0, it means that the dis-
criminator believes that the generated signal is very different
from the real signal in the training set. When the probability
is 1, it means that the discriminator believes that the generated
signal is consistent with the real signal. For DCGANs, we hope
that this probability can approach 0.5 because it means that the



Fig. 2: sEMG signal preprocessing flow

discriminator has half the probability that the generated signal
is real, which means that the generated signal is enough to
”fool” the discriminator.

Fig. 3: Generator structure in DCGANs

Fig. 4: Discriminator structure in DCGANs

For the input of the generator, the length of the random
vector determines that the generator can generate diverse
outputs. In this paper, the length of this vector is determined to
be 8, which is determined by the input sample size, network
structure, and sEMG signal characteristics. After generating
random noise in the input layer, it is fed into the projection
layer. The projection layer refers to a fully connected layer, and
its function is to map the random noise input of the generator

to a latent space similar to the real data distribution. After
the transformation of the projection layer, the input vector is
converted into an (8*1024) matrix for subsequent processing.

Transposed convolution is originally an operation in convo-
lutional neural networks to upsample the feature map output
by the convolutional layer for processing in subsequent layers.
In the task of DCGANs generating signals, we need to restore
the full-scale data after the projection layer to the size of the
original signal before further calculation. The size calculation
formula of transposed convolution is shown in (1). Among
them, I is the size of the input signal, O is the size of the
output signal, s is the convolution straddle size, k is the size
of the convolution kernel, and p is the padding of the input
signal to align the size of the output signal.

O = s(I − 1) + k − 2p (1)

For a one-dimensional signal, the calculation process of the
transposed convolution is: 1. First calculate the size of the
output signal according to (1) and initialize it. 2. Padding the
input vector, that is, filling the corresponding number of zeros
on both sides of the vector according to the specific value of
padding to align it. 3. Perform convolution calculation, Let
the input be X = [X1, X2, ...XN ], the convolution kernel be
K = [K1,K2, ...KM ],the output be

Y =
[
P Q

]T
(2)

.At the same time, the convolution kernel is expanded into a
sparse matrix according to the step size, assuming a straddle
size of 2, a sparse matrix is

CT =


K1 0
. 0
. K1

KN .
0 .
0 KN

 (3)

The result of the transposed convolution is

PK1

PK2

PK3 +QK1

PK4 +QK2

.

.
QKN−1

QKN


(4)

another way of expressing is shown in formula (5).

X = CTY ′ (5)

There are four transposed convolution layers in Fig. 3,
where the convolution kernel size of the first layer is 13, and
the convolution kernel size of the last three layers is 9. The
number of convolution kernels decreases in each layer, which
is 256, 128, 64, and 4 respectively.



The architecture of the discriminator is similar to that of
the generator, the difference is that the transposed convolution
layer in the generator is replaced by a convolution layer, batch
regularization is removed, the dropout layer is used instead,
and the activation function is replaced.

The transposed convolution corresponds to upsampling the
input to generate a higher-dimensional signal, and the con-
volutional layer is equivalent to downsampling the signal to
obtain signal features. For the convolutional layers, in layer 1,
we use convolution kernels with a length of 9 and a number
of 256 in order to obtain a larger field of view. In layers 2
and 3, the length of kernels is 5, and the number is 128 and
64 respectively. In layer 4, we use a convolution kernel with
a length of 8 to reduce the feature signal dimension to 1 to
obtain the final classification output.

The specific network parameters are as follows: a total of
5000 epochs are trained, the mini-batch size is set to 16, the
learning rate is 0.0002, and the Adaptive Moment Estimation
(Adam) optimizer is used to update the network parameters.

C. Model Evaluation

In order to quantitatively evaluate the quality of the signal
generated by the generator, we analyze the signal from two
perspectives of time domain and frequency domain. In the
time domain, we use Dynamic Time Warping (DTW) to
calculate the distance between generated and real signals.
In the frequency domain, we propose to use Fast Fourier
Transform Mean Square Error(FFT MSE), which performs a
fast Fourier transform on the generated signal and the real
signal to obtain the spectrum, and calculate the mean square
error between them.

DTW is a method for comparing the similarity of two-time
series. In practical applications, because time series data may
have problems such as time axis offset, noise, missing, etc.,
common similarity measurement methods such as traditional
Euclidean distance or correlation coefficient are not applicable,
but DTW method can effectively deal with these questions.
DTW was originally applied to measure the similarity of
speech signals. Specifically, the sound length of the same
syllable uttered by the same person may be different, and
DTW can be used to measure the similarity of speech signals
very well. Similarly, in the sEMG signal, the same subject’s
movement in the same direction may also take a different time
to be reflected on the sEMG signal. Therefore, we use DTW
in the sEMG signal to measure their similarity.

The calculation process of DTW can be described as:
1. Suppose the two signals to be compared are P =
{P1, P2, ...PN}, Q = {Q1, Q2, ...QM}, initialize an M*N
matrix dp, for each element in the matrixdp(i, j), calculate
the length of the euclidean distance between them to initialize
the matrix, that is

dp(i, j) =
√
(P 2

i −Q2
j ) (6)

2. Using the idea of dynamic programming, traverse from the
upper left corner of the matrix to the lower right corner, for
each dp(i, j), it represents the minimum distance of the (i, j)

position in the matrix. Therefore, it needs to be compared with
the elements in the right, bottom, and lower right positions
of the matrix, select the minimum distance among them, and
accumulate them. That is,

dp(i, j) = min(dp(i−1, j), dp(i, j−1), dp(i−1, j−1))+dp(i, j)
(7)

3. Traverse each element in P,Q to get the element in the
lower right corner of the final matrix, which is the distance
between the two signals after DTW calculation.

Since sEMG signals also contain rich information in the
frequency domain, we need to measure their similarity again
from the perspective of the frequency domain. We use FFT
MSE to measure this similarity, and the specific calculation
process is as follows:

1. Perform FFT on the two signals separately to obtain their
representation in the frequency domain.

2. Perform a difference operation on each point represented
by the two frequency domains to obtain their difference.

3. Square the difference to get the mean square error.
4. The mean square error is weighted and averaged to obtain

the mean square error of the entire frequency domain.
Finally, what we want to compare is the similarity between

the generated signal and the original signal. We use a ratio to
measure this similarity, that is, the value of the DTW and FFT
MSE of the generated signal is divided by the original signal.
The closer the ratio is to 1, It means that the generated signal
is more similar to the original signal.

III. RESULTS AND DISCUSSIONS

We evaluate the models from two perspectives of classifi-
cation accuracy and signal quality. We use the sEMG signal
of the subject’s standce leg in the dataset for experiments.
We train the model with signals of subjects kicking in a
certain direction (left or right), causing the model to generate
some generated signals. Then, we test the module with these
generated signals versus the real signal of the subject kicking
in different directions. At the same time, we also compare
the accuracy of the model and the long short-term memory
network (LSTM) under the original data set. Finally, we
quantitatively evaluate the quality of the generated signal with
two indicators.

In this model, we don’t have a classifier to classify each
class of the data. But notice that in the DCGANs network,
the output of the discriminator already contains classification
information. Specifically, for a binary classification problem,
the DCGANs network only learns the features of a certain
class and generates signals of this class, where the output of
the discriminator is a probability value representing the prob-
ability that the discriminator thinks the signal is generated or
fake. Therefore, ideally, for another type of signal, the output
given by the discriminator should approach 1, which means
that the discriminator has learned the difference between the
two types of data. For the class used for training, the output
of the discriminator should tend to be 0.5, which means that
the discriminator cannot distinguish the difference between the



signal generated by the generator and the original signal of this
class. We combine these two probabilities as an indicator of
the model’s predictive accuracy and use the test set mentioned
above for evaluation.

We use the signal kicked in the same direction for training,
use the same direction signal generated by the generator, and
the real signal of the user kicking in a different direction for
testing. These two types of signals are fake signals for the
model, and we hope to observe the accuracy of the model to
identify these two types of signals. Table 2 shows the accuracy
of the model to identify these two types of signals, where
the first column is the same direction signal generated by the
generator, and the second column is the real signal from a
different direction. The results show that the accuracy of the
model for the first type of signal is in the interval of 0.5351-
0.6835, and the accuracy of the second type of signal is in the
interval of 0.8184-0.9832.

TABLE I: Accuracy of the model identifying fake signals

same direction different direction

subject 1 0.6835 0.8641
subject 2 0.5351 0.9832
subject 3 0.5911 0.9575
subject 4 0.6489 0.8423
subject 5 0.6322 0.8184

At the same time, we compared the effect of traditional deep
learning methods on this binary classification problem. We
trained an LSTM network with 20 hidden neurons, input the
data of kicks in the same direction and different directions into
the network as the training set, and obtained the classification
accuracy results as shown in Table 2 Due to the very small
size of the data set, the LSTM network has an overfitting
phenomenon, and the accuracy on the test set is between 0.6-
0.8. Since our method does not directly classify the data, we
compare the accuracy of the model’s output when correctly
identifying kicks in different directions as a measure of
accuracy.

TABLE II: Accuracy of Motion Prediction

LSTM Our method

subject 1 0.7079 0.8641
subject 2 0.7229 0.9832
subject 3 0.8242 0.9575
subject 4 0.7614 0.8423
subject 5 0.6437 0.8184

In general, the model can well identify sEMG signals in
different directions on each subject. For signals in the same
direction, due to the small amount of data, a slight overfitting is
caused, but the probability is generally maintained at 0.5 Left
and right, it can be considered that the discriminator cannot
distinguish between the real signal and the generated signal.

Next, we evaluate the signal quality generated by the gener-
ator. Figure 4.5 shows the process of the generator iteratively
generating a signal from random noise, and Fig. 5 visually
compares the final generated signal with the real signal. Each

sub-figure is a complete 4-channel signal, and different colors
distinguish different channels. In order to distinguish each
channel conveniently, the ordinate in the figure has no actual
physical meaning.

(a) real signal (b) generated signal

Fig. 5: Comparison of real and generated signals

Since the two methods of DTW and FFT MSE are to
compare the similarity between two signals, it is impossible to
compare two sets of signals with multiple channels. Therefore,
our approach is to verify after every 50 iterations and randomly
select two from the training set. Signals, calculate the DTW
and FFT MSE between each of their channels, and let the
generator generate a generated signal, and calculate the DTW
and FFT MSE between them.

For comparison, we draw the ratio between the generated
signal and the original signal DTW and FFT MSE, as shown
in Fig. 6. It can be seen that at the beginning of the training,
the generator generates random noise, and the two ratios
are relatively large, which are 4.92 and 2.48 respectively.
As the training progresses, the two ratios converge to close
to 1 respectively and reach respectively at the end of the
training 1.04 and 0.87. During the training process, the two
ratios fluctuate to a certain extent, because the parameters
in the network learning process are constantly updated, and
at the same time, the signal extracted by each epoch does
not understand the vibration. In general, the two ratios are
very close to 1, indicating that the time domain and frequency
domain characteristics of the generated signal are very close
to the original signal.

In addition, we found that the generated signals are prone
to mode collapse during training, that is, the samples gener-
ated by the generator are mostly very similar. Although the
originally generated signals all belong to the same category,
considering the diversity of generated samples, it is necessary
to avoid mode collapse as much as possible. In this experiment,
we avoid mode collapse by randomly inverting sample labels
between each mini-batch. Specifically, we invert the sample
labels with a probability of 0.2, i.e. swap labels of a part of
the real signal with the generated signal. This inversion does
not affect the forward propagation of the gradient, that is, the
output of the discriminator for the classification probability
of the sample, and only updates the parameters when the net
loss is backward propagated. Figure 4.8 shows the advantages



(a) FFT MSE (b) DTW

Fig. 6: The Proportion of DTW and FFT MSE between
generated and raw signals, proportion represents the ratio of
DTW and FFT MSE of the generated signal to the original
signal

of doing this, where the picture on the left of 4.8 is the four
sample outputs of the generator before inverting the labels,
and the right is the sample output after inversion. It can be
seen that the data on the right is obviously messier than the
data on the left, which means that the diversity of generated
signals is greatly increased. However, reversing labels will also
increase the learning difficulty of the discriminator, so it is not
advisable to set the reversing probability too high, but to adjust
it according to the size and category of the dataset.

IV. CONCLUSION

In this paper, a novel sEMG signal data-augmented model
for motion prediction has been proposed to address the small
training data set problem in individual data-driven machine
learning of predictive EMG models. We have shown that
the deep convolutional generative adversarial networks can
learn to generate EMG motion initiation process samples
of a given motion class, and this can translate to improved
prediction performance compared with LSTM. On the other
hand, this preliminary study is limited in sample size (only 5
subjects) and in the characteristics of the data (only healthy
adults and simple leg kick tasks). Future studies in real-world
use scenarios (involving real patient users while considering
multiple variables including gender and disability condition)
are needed to further develop and establish the proposed
methodology.
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