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Abstract

Aspect-Based Argument Mining (ABAM) is
a critical task in computational argumenta-
tion. Existing methods have primarily treated
ABAM as a nested named entity recognition
task, overlooking the need for tailored strate-
gies to effectively address the specific chal-
lenges of ABAM tasks. To this end, we pro-
pose a layer-based Hierarchical Enhancement
Framework (HEF) for ABAM, and introduce
three novel components: the Semantic and
Syntactic Fusion (SSF) component, the Batch-
level Heterogeneous Graph Attention Network
(BHGAT) component, and the Span Mask In-
teractive Attention (SMIA) component. These
components serve the purposes of optimiz-
ing underlying representations, detecting ar-
gument unit stances, and constraining aspect
term recognition boundaries, respectively. By
incorporating these components, our frame-
work enables better handling of the challenges
and improves the performance and accuracy
in argument unit and aspect term recognition.
Experiments on multiple datasets and various
tasks verify the effectiveness of the proposed
framework and components. 1

1 Introduction

Argument mining, a critical task within computa-
tional argumentation, has gained considerable at-
tention, evident from available datasets (Stab et al.,
2018; Trautmann et al., 2020), emerging tasks
(Wachsmuth et al., 2017; Al-Khatib et al., 2020),
and machine learning models associated to this do-
main (Kuribayashi et al., 2019; Chakrabarty et al.,
2019). As aspect-level sentiment analysis tasks
have flourished, Aspect-Based Argument Mining
(ABAM) has recognized the need to decompose
argument units into smaller attributes and define
aspect terms as components with specific meanings
in arguments (Trautmann, 2020).

∗Corresponding author. Email: wsg@sxu.edu.cn.
1Codes available at https://github.com/sxu-fyj/ABAM.

Topic: School Uniforms

Example 4: Students not wearing the latest fashions may feel inadequate 

if their parents cannot afford to purchase them or some students may 

become targets of bullying for the same reason. 

Topic: Nuclear Energy

Example 1: Although the initial capital cost of building a nuclear plant 

is high, the maintenance and running costs are relatively low. 

Example 2: Granted, the initial construction costs of a nuclear plant are 

huge, but the ongoing maintenance and fuel costs have proven to be far 

lower than that of other energy sources. 

Example 3: While uniforms may help limit bullying within a school, 

they can also cause bullying by students from other schools. 

Figure 1: Example annotation of the argument units,
the corresponding stances (yellow: supporting/pro;
blue: opposing/con) and the aspect term (italics framed
in red) for the topics nuclear energy and school uni-
forms.

Previous works have attempted to combine as-
pects and arguments, but they often lack a clear
definition of the relevant task. For instance, Fu-
jii and Ishikawa (2006) primarily focuses on sum-
marizing viewpoints and defining auguring points.
Similarly, Misra et al. (2015) further groups the
arguments under discussion into aspects of the ar-
gument. Furthermore, Gemechu and Reed (2019)
considers aspects in argument relations as part of
four functional components. Only recently, a study
by Trautmann (2020) specifically addresses aspect
term extraction and emphasizes the definition, in-
troducing the concept of Aspect-Based Argument
Mining (ABAM). The main objective of ABAM is
to identify the argument units that support corre-
sponding stances under a controversial topic, along
with the aspect terms mentioned within these ar-
gument units. In this context, an argument unit is
typically defined as a short text or span, providing
evidence or reasoning about the topic, supporting
or opposing it (Stab et al., 2018). On the other hand,
an aspect term is defined as the crucial facet/part
the argument unit is trying to address, representing
a core aspect of the argument (Trautmann, 2020).



Figure 1 illustrates four examples within the
topic of nuclear energy and school uniforms. For
the first set of examples (example 1 and example
2), argument unit (yellow or blue) opinion are ex-
pressed around aspect terms (italics framed in red),
such as cost, nuclear plant, and maintenance. Sim-
ilarly, the second set of examples (example 3 and
example 4) revolves around several aspect terms
such as students, and bullying. This targeted ap-
proach enables a more precise analysis by zooming
in on specific aspects that are essential to the ar-
gument unit. Moreover, these aspect terms enable
the comparison of support or opposing opinions at
the aspect level, thereby facilitating the acquisition
of more nuanced and fine-grained conclusions.

ABAM, as defined by Trautmann (2020), is
treated as a Nested Named Entity Recognition
(NNER) task which presents three key challenges:
1) How to construct a robust underlying repre-
sentation to effectively encode contextual informa-
tion? In the realm of Natural Language Process-
ing (NLP), the significance of a robust underlying
representation serves as a cornerstone for achiev-
ing excellent model performance. 2) How to mine
the correlation between opinion expressions corre-
sponding to different stances under the same topic?
Since different users may give different expres-
sions of viewpoints on same stances within a given
topic. As shown in Figure 1, authors express dif-
ferent opinions around similar aspect terms under
the same topic. Exploring the relationship between
these opinion expressions can greatly assist in de-
termining the corresponding stances of different
argument units accurately. 3) How to leverage
task-specific features to improve the extraction of
argument units and aspect terms? By investigating
the unique task characteristics and data properties
of the ABAM task, we aim to enhance the model’s
performance significantly.

Overall, we propose a novel Hierarchical
Enhancement Framework (HEF), consisting of
four modules: basic module, argument unit en-
hancement module, aspect term enhancement mod-
ule, and decision module. With regard to the three
challenges above, the paper presents three key com-
ponents accordingly. In the basic module, we pro-
pose the Semantic and Syntactic Fusion (SSF) com-
ponent to fine-tune the representation of the pre-
trained language model. This fine-tuning helps us
complete the initial recognition stage of argument
units and aspect terms. Next, in the argument unit

enhancement module, we leverage the argument
unit boundary information provided by the basic
module. By integrating a span-based method and
utilizing the proposed Batch-Level Heterogeneous
Graph Attention Network (BHGAT) component,
we are able to judge the stance of the argument
unit, thereby refining the categorization of the ini-
tially recognized argument units. Moving on to the
aspect term enhancement module, we introduce the
Span Mask Interactive Attention (SMIA) compo-
nent. By incorporating span masks and interactive
guidance through attention mechanisms, we can
better capture and identify aspect terms within the
specified boundaries. Finally, in the decision mod-
ule, we combine the initial recognition results with
the enhancement results to produce the final output.
Our contribution can be summarized as follows:

• We propose a general SSF component to en-
hancing underlying representations, which
can simultaneously capture both semantic and
syntactic information.

• We propose a novel framework BHGAT,
which can seamlessly integrates the strengths
of two distinct types of Graph Neural Net-
works (GNNs) within a batch-level setting.

• We propose a task-special SMIA component,
which used to effectively constrain the recog-
nition range of aspect terms.

• Experiments on multiple datasets and various
tasks verify the effectiveness of the proposed
framework and components.

2 Related Work

The objective of Misra et al. (2015) is to identify
specific arguments and counter-arguments in social
media texts, categorize them into different aspects,
and utilize this aspect information to generate argu-
ment summaries. Similarly, Misra et al. (2016)
focus on inducing and identifying argument as-
pects across multiple conversations, ranking the
extracted arguments based on their similarity, and
generating corresponding summaries. However,
these earlier works have been limited to a few spe-
cific topics. In recent research, the approach has
been extended to cover a broader range of 28 top-
ics, introducing a novel corpus for aspect-based
argument clustering (Reimers et al., 2019). Fur-
thermore, Gemechu and Reed (2019) decompose
propositions into four functional components: as-
pects, target concepts, and opinions on aspects and
target concepts. By leveraging the relationships



among these components, they infer argument re-
lations and gain a deeper understanding of the ar-
gument structure. In a different study, Bar-Haim
et al. (2020) focus on summarizing the arguments,
supporting each side of a debate, mapping them to
a concise list of key points, which are similar to the
aspect terms highlighted earlier. Lastly, Trautmann
(2020) redefines the aspect-based argument mining
task based on clause-level argument unit recogni-
tion and classification in heterogeneous document
collections (Trautmann et al., 2020).

3 Framework

This paper proposes a HEF for aspect-based argu-
ment mining task, which consists of four modules:
basic module, argument unit enhancement mod-
ule, aspect term enhancement module and decision
module. The architecture of the HEF is visually
depicted in figure 2.

3.1 Task Definition
Following Trautmann (2020), we formulate the
ABAM task as a nested named entity recog-
nition task with a two-level nested structure.
Given an input sentence of n tokens W text =
[wtext

1 , wtext
2 , ..., wtext

n ], the topic is W topic =
[wtopic

1 , ..., wtopic
m ], the target argument unit (AU)

label sequence is Y AU = [yAU
1 , yAU

2 , ..., yAU
n ]

and the target aspect term (AT) label sequence is
Y AT = [yAT

1 , yAT
2 , ..., yAT

n ], where yAU ∈ {Bcon,
Icon, Econ, Bpro, Ipro, Epro, O} and yAT ∈ {Basp,
Iasp, Easp, O}.

3.2 Basic Module
The sentence and topic are concatenated as
the input to BERT: [CLS], wtext

1 , ..., wtext
n ,

[SEP], wtopic
1 , ..., wtopic

m , [SEP], where [CLS] and
[SEP] are special tokens. The contextualized repre-
sentations of each token X = [xw1 , x

w
2 , ..., x

w
n ] can

be given as:
xwt = BERT(wtext

t ) (1)
Note we also incorporate orthographic and mor-

phological features of words by combining charac-
ter representations (Xu et al., 2021). The characters
representation with in wtext

i as wchar
i . Then we use

LSTM to learn the final hidden state xct as the char-
acter representation of wtext

i :

xct = LSTM(wchar
t ) (2)

The final token representation is obtained as fol-
lows:

xt = [xwt ;x
c
t ;x

p
t ] (3)

where [; ] denotes concatenation, and xpt is the part-
of-speech tagging of wtext

t .
Encoder. The LSTM is widely used for captur-

ing sequential information in either the forward or
backward direction. However, it faces challenges
when dealing with excessively long sentences, as
it may struggle to retain long-distance dependen-
cies between words. To address this limitation and
exploit syntactic information, we propose the Se-
mantic and Syntactic Fusion (SSF) component by
sentence-level GNNs, aiming to bridge the gap be-
tween distant words by effectively encoding both
sequential semantic information and spatial syntac-
tic information.

The input of SSF: previous cell state ct−1, previ-
ous hidden state ht−1, current cell input xt, and an
additional graph-encoded representation gt, where
c0 and h0 are initialized to zero vectors, g(l)t is
a graph-encoded representation generated using
Graph Attention Network (GAT), which are capa-
ble of bringing in structured information through
graph structure (Hamilton et al., 2017).

The hidden state ht of SSF are computed as fol-
lows:

ft = σ(W (f)xt + U (f)ht−1 + b(f)) (4)

it = σ(W (i)xt + U (i)ht−1 + b(i)) (5)

ot = σ(W (o)xt + U (o)ht−1 + b(o)) (6)

c̃t = tanh(W (c)xt + U (c)ht−1 + b(c)) (7)

ct = ft ∗ ct−1 + it ∗ c̃t (8)

mt = σ(W (m)xt + U (m)ht−1 +Q(m)g
(l)
t + b(m)) (9)

st = tanh(W (s)xt + U (s)ht−1 +Q(s)g
(l)
t + b(s)) (10)

ht = ot ∗ tanh(ct) +mt ∗ tanh(st) (11)

where, ft, it, ot, ct are equivalent to the forget
gate, input gate, output gate, and cell unit in the
traditional LSTM respectively, mt and st are used
to control the information flow of g(l)t . Finally ht
is the output of SSF.

Star-Transformer (Guo et al., 2019) can mea-
sure the position information more explicitly and
is more sensitive to the order of the input sequence.
Building upon this insight, we use the output of
SSF component as the input of Star-Transformer to
re-encode the context to complete the encoder part.

hstart = Star-Transformer(ht) (12)
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[SEP]
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Figure 2: The overall architecture of HEF for ABAM.

Decoder. CRF has been widely used in NER
task (Xu et al., 2021; Li et al., 2021). For an input
sentence, the probability scores zAU

t and zAT
t for

all tokens xi ∈ X over the argument unit tags and
aspect term tags are calculated by CRF decoder:

zAU
t = p(yAU

t |hstar
t ) = CRF (WAUhstar

t + bAU ) (13)

zAT
t = p(yAT

t |hstar
t ) = CRF (WAThstar

t + bAT ) (14)

3.3 Argument Unit Enhancement Module

Motivated by span-based methods, we utilize ar-
gument unit labels zAU

t that predicted by the basic
module to obtain boundary information of argu-
ment unit spans, and re-evaluating the stance of
each span, thereby correcting the zAU

t labels, which
is argument unit enhancement module (AUE). We
observe that different users often express similar
opinions, when discussing similar aspect terms.
Learning these similar opinion expressions can as-
sist in distinguishing the corresponding stances of
argument units. Furthermore, pre-trained language
models are widely adopted due to their ability to
generate robust contextual representations. How-
ever, different contexts can yield different represen-
tations for the same word. Exploring the correla-
tion between different context representations of
the same word can aid in optimizing the underly-
ing representations. To this end, we propose the
Batch-level Heterogeneous Graph Attention Net-
work (BHGAT) component. BHGAT combines

the strengths of sentence-level GNNs (Zhang et al.,
2019; Wang et al., 2020) and corpus-level GNNs
(Wang et al., 2019; Yao et al., 2019; Linmei et al.,
2019). While utilizing the deep contextual word
representations generated by pre-trained language
models, BHGAT facilitates communication of opin-
ion expressions among different samples and es-
tablishes correlations between different represen-
tations of the same word. This enables the opti-
mization of the representations of various hetero-
geneous nodes within the graph. Constructing a
Graph Neural Network involves defining an initial
representation for each node, an adjacency matrix,
and a node update method.

Node initialization. In our proposed BHGAT,
we distinguish between two types of nodes: argu-
ment unit nodes haui and word nodes hstart . The
specific operation is as follows:

haui = [hstarstarti ;h
star
endi

; aui(topic)] (15)

where hstarstarti and hstarendi
are the starting and ending

word representation of i-th argument unit aui, and
aui(topic) is the topic of aui.

HG(0) = [hau1 , ..., haunau
, hstar1 , ..., hstarnw

] (16)

where HG(0) is initial representation of nodes in
BHGAT, nau is the number of argument units, and
nw is the number of words.

Adjacency matrix. The adjacency matrix A of
BHGAT includes 4 parts: [au, au] part, [au, word]



part, [word, au] part, [word, word] part.

A =

[
[au, au] [au,word]

[word, au] [word,word]

]
(17)

The (aui, auj) captures the relationships be-
tween argument units within a batch, facilitating
communication and understanding among argu-
ment units that share the same topic, and allowing
us to learn similar opinion expressions:

(aui, auj) =

{
1, if aui(topic) = auj(topic)

0, otherwise
(18)

The (aui, wordj) represents the association be-
tween argument units and words, using the atten-
tion mechanism between nodes to complete the
update of argument unit nodes and word nodes,
which is:

(aui, wordj) =

{
1, if wordj in aui
0, otherwise

(19)

Similarly, the (wordi, auj) is denoted as:

(wordi, auj) =

{
1, if wordi in auj
0, otherwise

(20)

The (wordi, wordj) focuses on node represen-
tations of the same word in different contexts. This
part facilitates the information interaction of word
nodes between different argument units, which is
conducive to optimize the dynamic representations
of the underlying words.

(wordi, wordj) =

{
1, if wordi = wordj in different AU
0, otherwise

(21)

Furthermore, the diagonal values of A are all
ones.

Node update. We adopt the method of informa-
tion aggregation to complete node updates, similar
to GAT (Veličković et al., 2018). The specific oper-
ation is as follows:

αij =
exp(LeakyReLU(aT [Whgi‖Whgj ]))∑

k∈Ni
exp(LeakyReLU(aT [Whgi‖Whgj ]))

(22)

hg
(l+1)
i = σ(

1

K

K∑
k=1

∑
j∈Ni

αk
ijW

khg
(l)
j ) (23)

where hg(l)i is the representation of nodes for l-th
layer.

Finally, we perform stance classification on the
representations of argument unit nodes. The prob-
ability paui of different stance belonging to aui is
calculated as follows:

paui = softmax(Whghg
(l)
i +bhg), i ∈ {1, ..., nau} (24)

where paui = [pconaui
, pproaui , p

non
aui

] is the stance prob-
ability distribution of the argument unit aui.

Through BHGAT, we first obtain the stance
classes of the corresponding argument units. Then,
we map the obtained stance classes to the enhanced
argument unit recognition space, resulting in the
vector zAUE

t . zAUE
t can be divided into two parts:

the boundary part and the stance part. In the map-
ping process, first, according to the boundary of
the argument unit label zAU

t , it is judged whether
the boundary of zAUE

t corresponding to the tokent
is B-*, I-*, E-* or O. Then according to pconsi , pprosi ,
pnonsi , we determine the stance part in zAUE

t (*-con,
*-pro, O) as follows:

zAUE
t =


[pconaui

, 0, 0, pproaui
, 0, 0, pnon

aui
], t = saui

[0, pconaui
, 0, 0, pproaui

, 0, pnon
aui

], saui < t < eaui

[0, 0, pconaui
, 0, 0, pproaui

, pnon
aui

], t = eaui

[0, 0, 0, 0, 0, 0, 1], otherwise
(25)

where saui is the start position of argument unit
aui and eaui is the end position.

3.4 Aspect Term Enhancement Module
To enhance the label sequence results zAT

t of ini-
tially identified aspect terms, we introduce the As-
pect Term Enhancement (ATE) module. Since an
aspect term is specific to a corresponding argument
unit, it is essential to establish a component that
constrains the recognition range of aspect terms
within the text. Building upon this concept, we pro-
pose the Span Mask Interactive Attention (SMIA)
component, which ensures that the attention mech-
anism focuses on the relevant argument unit spans
while effectively disregarding irrelevant text. The
overall process can be formulated as:

Hmask = Att(HstarWQ, HstarWK , HstarWV ) (26)

Att(Q,K, V ) = softmax(MASK +
QKT

√
dk

)·V (27)

maskt =

{
−∞, yAU

t = O

0, yAU
t 6= O

(28)

Once we obtain the new context representation,
we proceed to feed it into the decoder model, which



is responsible for generating the aspect term en-
hanced label sequence zATE

t .

zATE
t = p(yAT

t |hmask
t ) = CRF (WATEhmask

t + bATE)
(29)

3.5 Decision Module

Through the AUE and ATE module, we can ob-
tain the enhanced argument unit label probability
zAUE
t and the enhanced aspect term label proba-

bility zATE
t . Finally, we fuse the probabilities in

the two label spaces (initial, enhanced) as the final
output.

z̃AT
t = zATE

t + zAT
t (30)

z̃AU
t = zAUE

t + zAU
t (31)

3.6 Objective Function

The first part aims to minimize two negative log-
probability of the correct sequence of labels in ba-
sic module.

LNER = −
T∑

t=1

log(p(yAT
t |zAT

t ))−
T∑

t=1

log(p(yAU
t |zAU

t ))

(32)

where zAU
t and zAT

t represent the predicted se-
quence, yAU

t and yAT
t represent the correct se-

quence.
The second part loss is the cross-entropy loss for

stance classification of argument unit span in AUE
module, denoted as:

LAUE = −
n∑

i=1

m∑
j=1

y
stancej
aui log(p

stancej
aui ) (33)

where n is the number of argument units, and m is
the number of stance classes.

Similar to the first part, the third part uses the
negative log-likelihood loss in ATE module.

LATE = −
T∑
t=1

log(p(yAT
t |zATE

t )) (34)

Finally, the fourth part also aim to minimize neg-
ative log-likelihood for enhanced label probability
distribution.

LE = −
T∑

t=1

log(p(yAT
t |z̃AT

t ))−
T∑

t=1

log(p(yAU
t |z̃AU

t ))

(35)
The final loss function is defined as follows:

L = LNER + LAUE + LATE + LE (36)

4 Experiments

To evaluate the effectiveness of HEF framework
and the corresponding components, we conducted
experiments on four datasets.

4.1 Datasets
ABAM2. We employ the latest ABAM dataset,
which was released in 2020 and comprises 8 topics
(Trautmann, 2020). The statistics are presented in
the table 1. We followed the inner dataset split
(2268 / 307 / 636 for train / dev / test) defined in
the ABAM corpus (Trautmann, 2020).

Table 1: The proportion of ABAM.

topic #sentence #segment #aspect(total) #aspect(unique)
abortion 415 435 910 484
cloning 343 365 843 492
marijuana legalization 626 676 1889 887
minimum wage 624 689 1981 745
nuclear energy 615 671 1992 980
death penalty 588 637 1325 545
gun control 480 519 1081 429
school uniforms 705 800 2019 923
total 4396 4792 12040 4525

AURC-83. The argument unit recognition and
classification (AURC) dataset published in 2020,
consists of 8 topics (Trautmann et al., 2020). The
statistics are shown in the table 2. We used the
inner dataset split (4000 / 800 / 2000 for train / dev
/ test) given by Trautmann et al. (2020).

Table 2: The proportion of AURC-8.

topic #number #arg-sent #non-arg #arg-unit
abortion 1000 424 576 458
cloning 1000 353 647 380
marijuana legalization 1000 630 370 689
minimum wage 1000 630 370 703
nuclear energy 1000 623 377 684
death penalty 1000 598 402 651
gun control 1000 529 471 587
school uniforms 1000 713 287 821
total 8000 4500 3500 4973

SemEval-2016 Task 6A4. The dataset has been
divided into training and test set for each of the
five claims. Each sample can be classified three
categories: against, none and favor.

ABAM argument segment5. The dataset is a
collection of argument units in ABAM. Each ar-
gument unit can be classified into two categories:
PRO and CON.

Table 3 shows the distribution of SemEval-2016
Task 6A and ABAM argument segment.

2https://github.com/trtm/ABAM
3https://github.com/trtm/AURC
4https://github.com/sxu-fyj/stance
5https://github.com/trtm/ABAM



Table 3: The proportion of SemEval-2016 Task 6A and
ABAM argument segment.

Train Dev Test total
SemEval-2016 Task 6A 2914 - 1249 4163

ABAM argument segment 2447 333 693 3473

4.2 The experimental setup

Evaluation Metrics: For different tasks, we pro-
vide specific evaluation metrics to assess the perfor-
mance. For aspect-based argument mining task,
we conduct model evaluation using the ABAM
dataset at the segment-level and token-level. In
segment-level evaluation, we consider a prediction
as correct only if the model correctly identifies the
boundary and category of an entity. We use ex-
act matching F16 to measure the accuracy. At the
token-level, we proposed two evaluation methods:
Token-Nested evaluation and Token-Flat evalua-
tion. In the Token-Nested evaluation, we extend
the stance labels by incorporating aspect informa-
tion, resulting in six possible combinations: [NON,
O], [NON, ASP], [PRO, O], [PRO, ASP], [CON,
O], and [CON, ASP]. We report both Macro-F1
and Micro-F1 scores for this evaluation. In Token-
Flat evaluation, we concatenate the sequence la-
bels of aspect term recognition and argument unit
recognition to generate a label sequence twice the
sentence length, containing four label categories:
[ASP, PRO, CON, O]. We report both Macro-F1
and Micro-F1 scores for this evaluation. For the ar-
gument unit recognition and classification task,
we employ the segment-level evaluation metric on
the AURC-8 dataset. The Macro-F1, Micro-F1 and
separate F1 scores for each category are provided.
Finally, for the stance detection task, we report
the Macro-F1 score, Micro-F1 score, and F1 scores
on the SemEval-2016 Task 6A and ABAM argu-
ment segment datasets.

Compared Models: We compare the HEF
framework with the following state-of-the-art meth-
ods:

• CNN-NER (Yan et al., 2022) utilizes a con-
volutional neural network to capture the inter-
actions among neighboring entity spans.

• W2NER (Li et al., 2022) introduces a novel
approach to tackle named NER by framing
it as a word-word relation classification prob-
lem.

6https://github.com/chakki-works/seqeval

• Span, BPE, Word (Yan et al., 2021) present a
new formulation of the NER task as an entity-
span sequence generation problem.

4.3 Experimental results and analysis

4.3.1 Comparison results of different
methods for ABAM

We show the performance comparison of differ-
ent methods in table 4. All comparison methods
use the code provided by their respective original
papers, and undergo testing and evaluation on the
ABAM dataset.

Based on the results presented in Table 4, our
proposed method demonstrates superior perfor-
mance compared to all the existing methods, both
in segment-level and token-level evaluation met-
rics. This improvement can be attributed to the
inclusion of two key modules: Argument Unit En-
hancement (AUE) and Aspect Term Enhancement
(ATE). Specifically, our method shows substantial
improvements in MicF1, MacF1, Token-Flat, and
Token-Nested evaluation metrics, with gains of at
least 0.0767, 0.1274, 0.0647, and 0.0745, respec-
tively, compared to the other comparison methods.
The ATE module effectively constrains the recogni-
tion range of aspect terms, leading to a significant
improvement in the F1 score for aspect term recog-
nition (ASP column).

4.3.2 Ablation experiments for ABAM

To evaluate the individual impact of each functional
module or component within the HEF framework
on model performance, we conduct a series of abla-
tion experiments. The results of these experiments
are presented in Table 5. -w/o topic, -w/o SSF,
-w/o Star-Transformer, -w/o AUE and -w/o ATE
represents our model after removing the topic in
BERT, SSF, Star-Transformer, AUE module, and
ATE module, respectively.

The experimental results in the table above
clearly demonstrate that the removal of different
modules or components has a significant impact
on the performance of the HEF framework. In
particular, the absence of the AUE module has a
substantial negative effect on overall performance.
The utilization of BHGAT to re-judge the category
of argument unit spans has proven to be an effec-
tive strategy for correcting samples in the basic
module where the boundary is correctly identified
but the category judgment is incorrect. Moreover,
the inclusion of the topic information in BERT



Table 4: Performance comparison of different methods in ABAM.

Segment-Level Token-Level

ASP CON PRO MicF1 MacF1 Token-Flat Token-Nested
CNN-NER(Yan et al., 2022) 0.7480 0.4535 0.4491 0.6707 0.5502 - -
W2NER(Li et al., 2022) 0.7495 0.4618 0.4495 0.6727 0.5536 0.7587 0.5347
Word(Yan et al., 2021) 0.7191 0.4423 0.4650 0.6474 0.5421 0.7656 0.5438
Span(Yan et al., 2021) 0.7175 0.4657 0.4702 0.6516 0.5511 0.7680 0.5459
BPE(Yan et al., 2021) 0.7090 0.3695 0.3560 0.6265 0.4782 0.6676 0.4344
HEF 0.7969 0.6283 0.6176 0.7494 0.6810 0.8327 0.6204

Table 5: Performance comparison of results without different module or components.

Segment-Level Token-Level

ASP CON PRO MicF1 MacF1 Token-Flat Token-Nested
HEF 0.7969 0.6283 0.6176 0.7494 0.6810 0.8327 0.6204
-w/o topic 0.7921 0.6073 0.6083 0.7416 0.6693 0.8238 0.6096
-w/o SSF 0.7911 0.4460 0.4646 0.6963 0.5672 0.8008 0.5735
-w/o Star-Transformer 0.7851 0.4715 0.4823 0.6980 0.5797 0.7845 0.5574
-w/o AUE 0.7367 0.4276 0.4249 0.6525 0.5298 0.7716 0.5568
-w/o ATE 0.7399 0.4620 0.4843 0.6667 0.5621 0.7700 0.5462

contributes significantly to the framework’s per-
formance. The SSF and Star-Transformer compo-
nents also play crucial roles in generating high-
quality underlying representations. The absence of
these components has a detrimental impact on the
model’s performance. Lastly, due to aspect terms
only exist within the argument unit spans. The ad-
dition of the ATE module improves the accuracy of
aspect term range extraction.

4.3.3 Effectiveness of SSF component
To evaluate the effectiveness of SSF component, we
conducted experiments on two sequence labeling
datasets, AURC-8 and ABAM. For the sequence
labeling task, we use LSTM and SSF as the encoder
and CRF as the decoder. The experimental results
are presented in Table 6.

Based on the experimental results in Table 6, we
observe the scores on the ABAM dataset are signif-
icantly higher compared to those in the AURC-8
dataset. This discrepancy can be attributed to the in-
herent dissimilarities between the two datasets. In
the AURC-8 dataset, argument units may not exist
in every sample, while the ABAM dataset ensures
the presence of at least one argument unit in each
sample. By integrating spatial syntactic informa-
tion with the LSTM-encoded sequential semantic
information, the SSF component demonstrates a
clear performance advantage, leading to significant
improvements on both datasets.

4.3.4 Effectiveness of BHGAT component
To comprehensively assess the superiority of
this component, we conduct experiments on two
datasets: SemEval 2016 Task 6A and ABAM ar-

gument segment datasets. In our experiments, we
incorporate the BHGAT component into the BERT-
based framework and compare the experimental
results, as shown in Table 7.

Table 7 clearly demonstrate that the inclusion of
the BHGAT component has resulted in significant
performance improvements. This improvement can
be attributed to several key factors. Firstly, the BH-
GAT component has the ability to capture and lever-
age information from multiple samples that share
the same topic. By considering the expressions
of different stances and the embedding representa-
tions of words in different contexts, the BHGAT
component enhances the model’s discriminative
power and facilitates more accurate stance detec-
tion. Furthermore, the versatility of the BHGAT
component is noteworthy. It can be seamlessly in-
tegrated into various frameworks, enabling perfor-
mance enhancements across different models. This
flexibility makes the BHGAT component highly
adaptable, particularly in classification tasks that
involve topic information, such as stance detection.

4.3.5 Effectiveness of SMIA component

The SMIA component introduced in the ATE mod-
ule aims to restrict the range of aspect term recog-
nition. To assess its effectiveness, we present the
confusion matrix based on the Token-Nested evalu-
ation index in figure 3.

In figure 3, the confusion matrix is presented
with a dimension of 6x6. It is important to note that
in real data, there is no combination of the aspect la-
bel ASP and the stance label NON, as aspect terms
only exist within argument units. As a result, the



Table 6: Performance comparison of results in ABAM and AURC-8.

ABAM AURC-8

Segment-Level Token-Level Segment-Level

ASP CON PRO MicF1 MacF1 Token-Flat Token-Nested CON PRO MicF1 MacF1
LSTM-CRF 0.7456 0.3890 0.3879 0.6434 0.5075 0.7633 0.5373 0.3264 0.3350 0.3308 0.3307
SSF-CRF 0.7473 0.3995 0.3995 0.6485 0.5154 0.7762 0.5526 0.3329 0.3585 0.3458 0.3457

Table 7: Performance comparison of results in SemEval 2016 task 6A and ABAM argument segment.

SemEval 2016 task 6A ABAM argument segment

CON NONE PRO MicF1 MacF1 CON PRO MicF1 MacF1
BERT 0.7551 0.5885 0.6436 0.6942 0.6624 0.7989 0.7881 0.7937 0.7935
BERT-BHGAT 0.7541 0.6071 0.6591 0.6990 0.6734 0.8126 0.7908 0.8023 0.8017

Predict label

Predict label

Predict label

Predict labelPredict label

Figure 3: The confusion matrices for different models

fifth row of the confusion matrix is always zero. In
the confusion matrix, we focus on the fifth column
of each confusion matrix. The model identifies as-
pect terms and argument units separately, during
the prediction process, if the prediction range of
term is not constrained, it may generate a wrong
match between the aspect term label ASP and the
stance label NON. However, by observing the fifth
column of each confusion matrix, we can observe
a significant reduction in misjudgment after adding
the span mask constraints imposed by the SMIA
component. This outcome reinforces the effective-
ness of the SMIA component in constraining the
recognition of aspect terms.

5 Conclusion

This paper presents a novel layer-based approach
for the aspect-based argument mining task, utiliz-

ing a hierarchical enhancement framework consist-
ing of four modules: basic module, argument unit
enhancement module, aspect term enhancement
module, and decision module. The SSF component
plays a crucial role in optimizing underlying rep-
resentations, which can be utilized across various
tasks. It enhances the framework’s capability by
incorporating syntactic information into the encod-
ing process, improving performance on sequence
labeling tasks. The BHGAT component, effective
for classification tasks involving topic information,
enhances the framework’s generalization capabili-
ties. The SMIA component is specifically designed
for aspect-based argument mining tasks, aiming to
constrain the recognition range of aspect terms. It
effectively improves the accuracy of aspect term
recognition and contributes to the overall perfor-
mance of the framework.



Limitations

However, it should be noted that the proposed BH-
GAT is currently only suitable for classification
tasks with topic information. Its generalization to
more general tasks needs further investigation in
our future work. In addition, our current frame-
work has primarily focused on adopting a layer-
based method for Nested Named Entity Recogni-
tion (NNER), without extensively exploring how
to mine the correlation between argument units
and aspect terms. In future work, it is essential to
delve deeper into the correlation between these two
entities and fully utilize the guiding information
between them.
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