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Abstract—Remote assistance provides a communication 

bridge for users engaged in different locations. However, 
understanding how to design such systems in IoT is a challenging 
issue given digital representations are not the same as sharing a 
physical space. In this paper, we present a Remote Assistance 
Platform (RAP) that is designed to facilitate task guidance 
between an instructor and one or more remote operators. This 
includes the support of visual communication using annotation 
tools that augment information from a live video stream. Two 
user studies were performed to evaluate co-located and remote 
interaction. In the first study, dyads interacted with paper-based 
instructions while situated in the same location. In the second 
study, different dyads remotely performed the same tasks, 
assisted by using a smartphone or smart glass display. Overall, 
our findings found significant differences in communication 
behaviour based on the type of collaborative environment and 
information modality used. A short review of these results is 
discussed.  

Keywords—human-computer interaction; remote assistance; 
head-mounted display; communication behaviour; industrial IoT  

I. INTRODUCTION  
The term remote assistance offers the ability to collaborate 

at a distance to other end users via a digital network. Reflective 
of modern day changes in the working practices and 
organisation of businesses, remote communication systems 
have the potential to help reduce operational costs, train and 
develop skills, and analyse performance and resources. In 
particular, the ability to remotely solve problems is seen to be 
important in sectors such as mining and agriculture that may 
lack local amenities [1], while advanced manufacturing is 
driven towards ubiquitous solutions that can access operations 
across different geographical locations [2].  

According to the World Economic Forum, over the coming 
years, Industrial IoT will play an important role in augmenting 
the workforce [1]. As part of this infrastructure, wearable and 
head-mounted displays are increasingly being utilised in 
industries such as aerospace, healthcare and logistics to 
connect and streamline workflow processes. Likewise, a 
growing number of commercial applications are targeted 
towards facilitating aspects of remote support, such as for 
maintenance or technical servicing [e.g. 3, 4, 5, 6].  

In turn, digital remote assistance presents a number of 
important human factors challenges in the absence of face-to-
face communication. Not only in terms of how systems can 

help enable the matching of mental representations to 
procedural tasks, but also facilitate attention and awareness 
outside a user’s field-of-view. This includes being able to 
successfully mediate interaction from a limited camera 
viewpoint, or display resolution.  

Building on our prior work [7], in this paper we report on 
the performance of a Remote Assistance Platform (RAP). This 
platform allows for the communication between two or more 
users over the Internet, or via a local Wi-Fi connection. A 
remote user wears a pair of smart glasses or a hand-held 
smartphone with a forward-facing camera to capture the input 
video, which is transmitted to a web-based application that an 
expert/instructor can see. A set of tools in the web-based 
application then enables the expert to convey instructions.  

Two user studies were conducted to understand the dyadic 
interaction between what we describe as an instructor and 
operator. In the first study, we investigated the interaction 
between pairs in the same co-located workspace using paper-
based instructions. In the second study, we then compared their 
remote interaction using a smartphone and a pair of smart 
glasses. Primarily focusing on the human aspects of engaging 
with a remote assistance system, the main contributions of this 
paper are two-fold: 1) to report on the dyadic behaviour in co-
located and remote interaction, and 2) to analyse and compare 
these differences in relation to the collaborative environment 
and information modality used. We perceive the novelty of this 
work in reporting on the task performance and the 
communication differences identified between the two studies, 
as we hope this research will generate interest for practitioners 
working in remote guidance systems and broader application 
areas of IoT.  

II. RELATED WORK 
Situational awareness can be described as a clear 

understanding of an environment, with the ability to translate 
information to (near) future actions [8]. According to Kraut et 
al. “visual information can help people communicate about 
the task, by aiding conversational grounding, or the 
development of mutual understanding between conversational 
participants” [9, p. 15]. In environments where users are co-
located, situational awareness is attained via a wealth of visual 
information (including body language), compared to remote 
collaboration, where associated cues are largely dictated by 
the technology used [9]. Thus, understanding how visual 
information can direct attention in the completion of 



procedural tasks is an important aspect of helping to facilitate 
remote communication.  

In remote assistance systems, visual annotations are one 
solution that have been reported to enhance the information 
shared, improve the identification of objects in the workplace, 
and reduce the amount of verbal communication needed to 
express instructions [10]. As such, the types of visual 
annotations studied have varied from the use of screen-based 
drawings [e.g. 10, 11, 12, 13], to laser guided projection [14]. 
Fussell et al. [10] found that annotations were most frequently 
used to highlight locations and objects in a scene. On the other 
hand, it has been reported that graphical annotations can have 
a negative effect in cluttering the display [11], with freehand 
drawings difficult to interpret due to poor legibility [12], and 
annotating directly onto paused video and snapshot images 
disorienting when returning back to a live scene [11, 13].  

In terms of the development of related systems, nearly 30 
years ago, Tang and Minneman [15] investigated a two-way 
drawing tool using whiteboard markers and video cameras to 
capture gestures that were visualised to a second party. Over a 
decade later, gesture-based interaction was further investigated 
on video displays [10]. While more recently, a few studies 
have compared hand-held and wearable devices. For example, 
Johnson et al. [16] found the use of a head-mounted display 
performed better than a tablet when engaged across multiple 
workstations, and Fakourfar et al. [13] reported an advantage in 
facilitating hands-free interaction. The roles of remote 
assistance have also been investigated to support assistive 
needs [17, 18], while other studies have explored performance 
criteria for remote assistance systems [19], but lack empirical 
comparisons in user interaction. 

Yet, despite these works, research in remote assistance has 
not been exhaustively investigated. In some ways, this is 
unsurprising given the range of potential uses in industrial 
applications. For example, consider the potential of remote 
assistance systems to assist in the re-training of the older 
workforce, and the virtual monitoring of systems and processes 
at a distance to the shop floor [2]. At the same time, while there 
are recognised opportunities in industrial IoT for novel 
technologies to help bridge skill gaps in workers [20], 
relatively few known studies have empirically reported cross-
device comparisons. Therefore, a strong motivational factor for 
undertaking this work is to understand the human components 
of developing a remote assistance platform, in leading to better 
user experience, and future commercial deployment. 

III. THE COMMUNICATION PLATFORM 
As previously described [21], our system architecture 

consists of a signalling server, a Kurento media server that 
implements the WebRTC communications protocol [22], and a 
media exchange server (see Figure 1). Using either a camera-
enabled smartphone or head-mounted display, a field operator 
captures an input scene. In real-time, the video data generated 
is streamed to a web-based application to be viewed by an 
expert. Using this application, annotations are added to 
snapshot images, which are extracted from a live video view, 

before being sent to the operator’s device to assist in task 
completion.  

Devices are typically connected to the platform using Wi-
Fi, although a workable alternative is to use a SIM-compatible 
device on a fast 4G network. Video streams by default are 
encoded from each end point using a VP8 format, while the 
platform sends and receives data using pre-defined JSON 
commands. Communication can be established by any end-
point, although it is generally invoked from devices where an 
operator requires assistance. These commands are sent using 
web socket connections to a signalling server to request 
resources, such as URLs to media, as well as to establish a 
video link to the platform. 

 
Fig. 1. Overview of the platform structure. 

A. Device integration  
The RAP platform is designed to accommodate for 

information based on different display sizes of mobile and 
wearable devices. The UI and UX aspect of the platform takes 
into account available control schemes that may be hardware 
specific. For example, the Epson Moverio BT-200 has a 
tethered controller with a touchpad, while the Vuzix M300 
uses a touchpad with control buttons on the headset, and the 
Microsoft HoloLens, voice and gesture input. This is achieved 
by abstracting core protocol implementation away from the UI 
elements based on a design pattern of the ‘model-view-
controller’. The resulting client components and their 
respective input can then be freely re-designed to suit different 
supporting devices, while maintaining a consistent model to 
execute functions on the platform. 

B. User interfaces 
 The user interfaces are developed in Google Android. 
Specifically, the instructor interface is a web-based 
application, displayed on a desktop or laptop with a built-in or 
separate web camera. The UI consists of a live video stream 
sent via the remote operator’s device camera.  Right clicking 
on the video creates a snapshot image that is automatically 
displayed in a separate window (Figure 2). Separating these 
views is designed to reduce interference when watching the 
video stream. The instructor can then annotate this information 
by inserting symbols, text and freehand drawings, and dragging 
and dropping from a set of customised icons representative of 
the tasks performed. These objects can be replaced, moved, or 
deleted. Sizes and colours can also be changed. When ready, 



 
Fig. 2. Illustration of the RAP interfaces. (Left), the instructor interface, and (right), the operator interface for hand-held and head-mounted displays. 

 
this information is uploaded to the operator as an annotated 
image. 

 Alternatively, for the remote operator interface, interactive 
features are divided in three areas: a main window containing 
the annotated image sent from the instructor, a live view of the 
instructor (or expert), and a camera view from the device. 
Swiping left or right on an annotated image allows for the 
toggling between different images received, which are 
sequentially ordered and time stamped. 

IV. STUDY 1 - CO-LOCATED INTERACTION USING PAPER 
INSTRUCTIONS  

A baseline study was first conducted to identify the ability 
of dyads to complete two assembly tasks, unaided by the use of 
any assistive technology. A total of 20 participants (10 males 
and 10 females) with an average age of 21 years were 
recruited. Participants were randomly assigned to either be an 
instructor or operator. As the names may suggest, the 
instructor’s role was to guide the completion of the tasks, while 
the operator, to assemble them.  

A. Tasks  
The Arduino platform was used for the tasks [23]. Arduino 

offers the ability to combine electrical components in a number 
of interesting ways, and learn basic features quickly. The tasks 
required multiple parts: micro-controllers, wires, diodes and 
resistors, and a laptop to run the pre-loaded software. 
Instructions were designed to walk the instructor through the 
procedural steps, with visual examples given. Specifically, the 
two tasks were a construction task that involved building a 
pinwheel circuit, and a troubleshooting task that required re-
connecting three misaligned wires, and three resistor errors in a 
traffic light circuit.  

B. Procedure and data analysis  
To begin, the instructor was given 15 minutes to familiarise 

themselves with the tasks. Once ready, pairs were seated next 
to each other, and asked to complete the two tasks, the order of 
which was counterbalanced in the study. During this time, the 
instructor was able to give verbal instructions, and physically 
reference by pointing to objects in the workspace (Figure 3). 
However, they were not allowed to show instructions to the 
operator, or physically manipulate the objects themselves. Pairs 
were given 20 minutes to complete each task. If they failed to 
complete one or more of the tasks within the time allocated, 
these were marked as incomplete.  

All sessions were video recorded. Error counts and task 
completion times were gathered from two independent 
researchers. Given the sample size, non-parametric tests were 
used for statistical analysis.  

 
Fig. 3. Workspace set-up and illustrations of the paired interaction.  

C. Results  
Overall, we identified a significant difference in the task 

completion times, z(n = 10) = -2.60, p < .01, with the 
troubleshooting task (Mdn = 247 sec) taking less than half the 
time to complete compared to the construction task (Mdn = 670 
sec). In contrast, for assembly errors, while the number of 
instances was higher for the construction task, this was 
statistically non-significant, z(n = 10) = -1.28, p > .05 (Figure 
4).  

 
Fig. 4. Boxplots of the completion time and error rate for each task.  

To account for these differences, a review of the video data 
indicated that the construction task required more precision and 
search time to locate and assemble individual components 
compared to the troubleshooting task, where the pre- 
positioning of electrical components on the breadboard acted 
as useful reference points to orientate towards. For example, in 
the construction task, to place an electrical switch, the operator 
had to first determine the orientation of the pins, which had to 
be precisely aligned to the circuit. Alternatively, in the 
troubleshooting task, they only needed to verify that the fitting 
was secure. Despite these differences, all participants 
completed the tasks in the time allocated. 



V. STUDY 2: REMOTE INTERACTION USING HAND-HELD AND 
HEAD-MOUNTED DISPLAYS  

Having identified participant abilities to complete the 
assembly tasks, a second study was undertaken to evaluate the 
RAP platform. Specifically, the study focused on comparing 
task performance across two different display modalities - a 
smartphone and a pair of smart glasses, to understand if they 
had any measurable impact on user interaction. Using a 
between-subjects design, a total of 40 participants (25 males 
and 15 females), with an approximate age of 29 years were 
recruited. Randomly assigned, for the operator, this consisted 
of using one of the display technologies. None of the 
participants were involved in the previous study, with no 
known experience using Arduino.   

A. Tasks and devices   
The two experimental tasks were the same as the first 

study, with an additional practice task that required the subject 
pairs to build a simple circuit with a single LED light. For the 
mobile device, a commercial smartphone was used, consisting 
of a 2560 x 1440 screen resolution, and 16 MP camera. In 
contrast, a pair of see-through binocular glasses was used for 
the head-mounted display, operated via a track pad, with a 960 
x 540 display resolution, and VGA camera (Figure 5).  

B. Procedure and data analysis  
     After giving their informed consent, both the instructor and 
operator were separately briefed on how to use the interfaces. 
Once they acknowledged their understanding of the interface 
usage, each pair completed a practice task together. To provide 
a realistic set-up, participants interacted in separate rooms, 
using headphones to ensure audio information was clearly 
understood. Tasks were counter-balanced, with a similar cut-
off time of 20 minutes to the baseline study. During this time, 
the instructor could refer to, but not show the paper instructions 
to their partner. All sessions were video recorded, and non-
parametric tests were largely used for statistical analysis. For 
those participants who did not complete the tasks in the time 
allocated, they were still counted in the analysis under the 
maximum time limit allowed.  

 
Fig. 5. Workplace set-up. (Left) instructor with display, (middle) operator 
wearing a pair of smart glasses, and (right) operator using a smartphone.  

C. Results  
     In examining the effect of display-type on task completion 
time, no significant difference was found, U(n1 = 10, n2 = 10)  
= 32, p > .05. Only one participant in each condition completed 
the construction task in the time allocated, compared to all the 
participants completing the troubleshooting task in time. For 
task errors made, a few types were found. These included 
identifying wrong components and their placement on the 

breadboard for the construction task, and missing out 
procedural steps in the troubleshooting task. However, the type 
of display did not have a statistical effect on the number of 
errors made, U(n1 = 10, n2 = 10)  = 38, p > .05 (Figure 6). 

 
Fig. 6. Boxplots of the combined task completion times and error rates 
comparing hand-held (smartphone) and head-mounted (smart glass) displays. 

     Based on a review of the video data, a lack of statistical 
differences in display performance, and problems completing 
the arguably more complex construction task, appear to be 
attributed to hardware, software or practical limitations in the 
devices used. For the smart glasses, low video quality was a 
noticeable constraint in completing the tasks. Similarly, the 
camera’s head-mounted position was often not aligned with a 
user’s viewing perspective. This resulted in participants 
having to adjust their head position to capture an aspect of the 
task for the instructor to see, before re-adjusting back to 
complete an assembly. In contrast, for the smartphone, 
limitations were identified in two areas. First, the need to hold 
the smartphone with one hand, which slowed down the task. 
Second, poor camera auto-focus at a close distance, causing 
problems in seeing board components, and obtaining a clear 
image from which the instructor could modify. As a result, 
several design suggestions were provided to improve the user 
interaction. These included the following: 

• Ensure the use of a high-resolution camera, or 
include post-image processing to enable the viewing 
of fine detail.  

• Consider the deployment of a second camera to 
provide a more holistic view of the operator’s 
actions, with options to switch views.  

• Provide a highlighting tool that allows the instructor 
to pinpoint areas of interest on the live video stream.  

• Enable the operator to annotate information back to 
the instructor.   

 In facilitating the two tasks, on average, a similar number 
of visual annotations were generated for the smartphone (M = 
26.9, S.D. = 13.9) and smart glass (M = 28.4, S.D. = 17.4) 
conditions. Specifically, annotations were either used to 
illustrate the placement or the identification of objects on the 
breadboard. Although statistically non-significant between 
conditions (p > .05), placement annotations (smartphone, M = 
20.9, S.D. = 12.8; smart glass, M = 21.0, S.D. = 17.0) were 
used more often than identification annotations (smartphone, 
M = 6.0, S.D. = 1.9; smart glass, M = 7.4, S.D. = 3.2).  

Further, the use of annotations was incremental in the tasks. 
Multiple variations were often sent using the same snapshot 
image. This avoided the need for unnecessary repetition. 



Commonly, lines were colour coded to replicate the wires used, 
freehand dots and arrows for placement positions, and 
graphical objects to illustrate what to connect too. Variations in 
these drawing styles are illustrated in Figure 7.  

 
Fig. 7. Examples of the annotations created. Notice the difference in style, 
particularly the use of a graphical object to depict the breadboard, compared 
to using a captured image through the camera, as well as arrows compared to 
wire lines to illustrate their placement. 

VI. STUDY COMPARISONS 
For additional analysis, we compared the quantitative 

results from the two studies to get an overview of the potential 
differences between the co-located and remote interaction.  

In examining the effects of collaboration-type for task 
completion times, co-located interaction (Mdn = 1135.5 sec) 
was significantly quicker than remote interaction (Mdn = 1763 
sec), U(n1 = 20, n2 = 10) = 4, p < .001. Similarly, in comparing 
the task completion times across the type of modality used, a 
significant difference was identified, H(2) = 18.67, p < .001. 
Namely, completion times took significantly longer using the 
smartphone (U(n1 = 10, n2 = 10) = 2, p < .001) and smart glass 
(U(n1 = 10, n2 = 10) = 2, p < .001) compared to the paper only 
instructions (Figure 8). Alternatively, there were no statistical 
differences in the number of errors made across the conditions 
(p > .05). 

 
Fig. 8. Boxplots comparing the combined task completion times for co-located 
and remote interaction, and for paper only instructions, hand-held (smartphone) 
and head-mounted (smart glass) displays. 

To further understand these differences, we reviewed 
actions related to the collaboration between the instructors and 
operators. Based on video analysis, these actions were enacted 
for task explanation and clarification, and to understand the 
attentional direction towards specific areas of the breadboard.  
In summary:  

• Co-located instructors and operators tended to employ 
verbal communication more exclusively for task 
explanation and clarification, while instructors in the 
remote interaction also employ verbal communication 
for directing attention. However, verbal 
communication was rarely used for directing attention 

in co-located interaction as the instructor could readily 
direct the attention of the operator through pointing 
gestures.  

• In the co-located condition, directing attention was 
often performed in synchrony with a task explanation 
(i.e. an instructor pointed to the relevant area while 
they explained the task). Comparatively, these two 
functions were often performed asynchronously in the 
remote condition, with task explanation occurring 
sequentially after directing attention.  

• While the RAP platform allowed for a live-view of the 
instructor, this was often not sufficient to allow high 
quality non-verbal communication to be transmitted. 
For example, in the co-located condition, instructors 
often demonstrated how the task should be completed 
through gesturing (i.e. without touching the 
breadboard). This non-verbal form of information was 
naturally absent from the remote condition.  

VII. DISCUSSION  
In relation to digital remote assistance, our findings support 

recent arguments for user-centred approaches in IoT [24], as 
we identified how environments, interactions and technologies 
play important roles in adoption and use. Drawing a number of 
parallels to the earlier work of Kraut et al. [9] and Fussell et al. 
[10], we found the ability to monitor actions improved when 
located side-by-side. Like Kraut et al. [9], we identified that 
limitations in the viewing of visual information in remote 
assistance imposed time and conversational resources.  

To help explain differences in the collaborative interactions 
observed, one possible explanation is the multiple resource 
model posited by Wickens [25]. That is, in both co-located and 
remote conditions, task explanation requires cognitive 
resources from the instructor. Directing attention via pointing 
(in the co-located condition) draws from spatial cognitive 
resources, while doing so via annotations (in the remote 
condition) draws from verbal cognitive resources. As each type 
of resource is limited [25], the instructor may be unable to 
annotate to direct attention, while explaining the task 
concurrently, as both actions are competing from the same pool 
of processing resources. Subsequently, the asynchronous 
nature of both attentional direction and task explanation in the 
remote condition may have affected the quality of interaction 
between the dyads, which is reflected in the slower task 
completion time in the remote condition.  

Thus, our results reinforce the importance of ensuring a 
clear representation of the task environment between the 
operator and the instructor. Segmented and low fidelity 
representations in a wearable or mobile display will 
undoubtedly mismatch with real-world scene representations. 
Examples of this included the low image quality captured by 
the smart glass camera, and problems auto-focusing with the 
smartphone at a close proximity to objects. These problems 
appear to be exacerbated by working with small electrical 
components that require good image resolution, and highlight 
the importance of testing across a range of wearable and hand-
held devices to find the optimal hardware solution.  



In addition, as other researchers have commented on user 
strategies to accommodate for viewpoint limitations in remote 
assistance [e.g. 16], we believe it would be useful to establish a 
set of human factors design guidelines that can help match 
device capabilities with task and environmental requirements 
of the workplace. In particular, our results indicate that task 
stimuli and environment representation should leverage on 
technological products that can create an immersive and high-
fidelity representation.  

Regarding the visual annotations created, they benefited in 
helping to discriminate from uniformed features that can take 
time to verbally describe. The drawing gestures were often 
used as specific placement markers, and flexibility in how they 
are utilised is an important aspect of the platform, given the 
different ways the users articulated procedural steps and 
instructions. Consequently, we believe the inclusion of design 
tools need to accommodate for these different styles of 
drawing, including giving the remote operator more control in 
the capture and manipulation of content that can be directed 
back to an expert. Given the different ways these annotation 
tools could be used in industrial IoT, this raises further 
questions in how annotations are to be intuitively drawn by an 
operator when using a wearable display.  

To extend the platform further, there is a possibility of 
combining with other types of sensory data for diagnostics, 
decision-making and event tracking. However, as our system is 
primarily visual, we are particularly interested in developing 
more visual intelligence through the deployment of machine 
learning and computer vision algorithms that can interpret 
aspects of the video stream. Recent studies have successfully 
combined eye tracking with smart glass displays to measure 
aspects of cognition [26], in addition to demonstrating how 
unsupervised learning approaches can detect scene objects 
from egocentric videos [27]. Therefore, being able to automate 
the detection of task errors, and infer an operator’s attentional 
demands from a first-person view, raises the question over the 
extend machine intervention may substitute, or help reinforce 
the role of the expert in inspection and field services - 
particularly for procedural steps that require repetitive actions 
from which a computational model could systematically learn. 

Finally, as none of the participants in this study were 
experts in a domain area, we acknowledge that in the real-
world, tasks may be far more complex, involve more users, and 
potentially operate over a much larger workspace. Future 
studies would therefore benefit from focusing on specific 
domain areas (e.g. in MRO, transportation, logistics, etc.), 
using use cases that can evaluate the platform in practical 
settings, and gather representative data in situations they may 
be deployed for. 
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