
1

Dynamic Multi-Bus Dispatching Strategy with
Boarding and Holding Control for Passenger Delay
Alleviation and Schedule Reliability: A Combined

Dispatching-Operation System
Yi Zhang, Member, IEEE, Rong Su, Senior Member, IEEE, Yicheng Zhang, Member, IEEE, Bohui

Wang, Member, IEEE

Abstract—The continuing increase of the on-road private cars
is contributing to a deterioration of the urban traffic system.
Public transportation is widely used to tackle this issue due to its
large ridership. In this paper, we propose a multi-bus dispatch-
ing strategy combined with the boarding and holding control
(MBDBH) to improve bus utilization and further decrease the
passenger excess delay. Dispatching adjustments and operation
control are taken into account in the system. At the dispatching
level, on the one hand, either a bus platoon or a single bus can
be dispatched for each trip to provide adaptive bus capacity
to match the highly-fluctuated stop demands, on the other
hand, we adjust the bus dispatching time based on the existing
timetable to minimize passenger excess waiting time to a large
extent. Meanwhile, the operation level incorporates both holding
strategy and boarding limit strategy to bring more flexible
adjustments in improving bus service. Besides the efficiency, we
also minimize the headway variation in order to maintain a high
system reliability. The problem is formulated as a Mixed Integer
Nonlinear Programming (MINP) problem, which is solved by the
commercial solver Gurobi. With the computational complexity
as a concern, we propose a distributed algorithm to implement
dual decomposition based on the partial Lagrangian relaxation.
Finally, numerical examples are investigated to illustrate the
significant time reduction of distributed algorithm and the
efficiency of our proposed strategy: The proposed MBDBH model
can reduce roughly 50% and 30% of remaining passenger volumes
when compared with the timetable-based fixed schedule and the
optimized single-bus dispatching schedule, respectively.

Index Terms – Public transport systems, Multi-bus dispatch-
ing, Boarding limit, Holding control, Mixed-integer nonlinear
programming, Lagrangian relaxation

I. INTRODUCTION

We are experiencing a remarkable urbanization process
around the world, resulting in a dramatic increase of the car
population, which makes traffic congestions a major obstacle
for effective traffic management. Public transportation, as a
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key component of city mobility, is an effective solution to
tackle the above issue due to its large ridership. However, the
heavy enroute traffic increases the interaction between buses
and cars, which leads to high uncertainty and low service
reliability for a bus system. To better improve the efficiency
of public bus management, a variety of studies for different
layers of the public planning system have been proposed in
the literature.

One of the essential problem in tactical level of the public
transportation system is the bus dispatching problem, which
discusses the timetable design by selecting proper dispatching
frequency or headway in order to not only minimize the
passenger delay from demands’ perspective but also keep the
operational cost in a proper limit. Many traditional methods
are proposed based on either historical data or some idealized
assumptions: By deriving an analytic model, Newell proposes
that the bus dispatching frequency is approximately propor-
tional to the square root of the passenger arrival rates, which is
under the assumption that the bus capacity can serve all wait-
ing passengers [31]. Based on the historical passenger demand
profile, Ceder [2][3] proposes the point check method and
the ride check method to solve bus timetable problem, which
are extended in [6][7] to achieve even-load level for all buses
meanwhile reduce the deviation from the desired headway by
determining bus dispatching times. Also, many mathematical
models are proposed to tackle the bus dispatching problem.
Han [23] and Furth [19] propose the bus allocation problem
under the constraints of fleet size and loading feasibility
by adopting the trip assignment model and formulating the
budget relationship, respectively, which is later extended as a
nonlinear programming problem in [33][34] incorporating the
route patterns and ridership elasticity. Ceder et al. also create a
timetable for a transit network by developing a mixed integer
linear programming problem with the aim to maximize the bus
synchronization [5][4]. Moreover, optimal dispatching time
and corresponding bus capacity are determined by presenting a
bi-objective optimization problem considering both passenger
waiting time and bus occupancy rate [24].

With the increasing application and perfection of telem-
atics (e.g., Automatic Vehicle Location (AVL), Automatic
Passenger Counting (APC), etc.) in the bus management
system [26][17][14], the collection of the real-time information
becomes possible, which leads to studies on the periodic
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optimization of dispatching control, and this also indicates the
trend of unclear boundary between the tactical studies and
the operation studies. Both Eberlein et al. [16] and Hickman
[25] propose a nonconvex quadratic programming problem
by optimizing bus dispatching time and holding control at
certain stops. However, their models fail to incorporate bus
capacity constraint and assume all incoming passengers are
allowed to board on the buses. Also, different from the
rolling horizon mechanism in [16], the model in [25] is
an event-based model and the bus dispatching or holding
time is determined separately without taking the following
buses into account to form a holistic optimization problem,
which may lead to myopic results from the perspective of a
long-horizon optimization. Moreover, Gkiotsalitis propose two
quadratic programming problems to minimize the headway
variation by adjusting bus dispatching time [21][20]: The dwell
time in [21] is adopted from the traditional loading model
without considering bus capacity limits, however, in [20], it
is approximated based on the inter-arrival headway from [9].
Both models have no operation control, also, as some buses
have already been dispatched and are operating on the road, the
question that whether bus quantity in the terminal is sufficient
to support all dispatching trips in the optimization horizon
remains undiscussed in the paper.

Besides, the traditional tactical planning cannot guarantee
a better service due to the highly stochastic demand patterns
and complicated enroute environments. Therefore, real-time
operational control strategies, e.g., holding, stop-skipping and
boarding limit strategies, are proposed in order to address the
issue. Eberlein et al. propose a mathematical model involving
a combined holding and stop-skipping strategy, where the
real data from Massachusetts Bay Transportation Authority
(MBTA) Green Line in Boston is adopted to test the model,
and results indicate that the cost reduction by combined control
is approximately 37%, which is larger than any of the single
strategies [15]. Compared with stop-skipping strategies (e.g.,
deadheading, short-turning and expressing), holding strate-
gy is more common since it is easier to be implemented
and relatively depresses passengers less than stop-skipping
as passengers may fail to alight bus due to the bus stop
skipping [16]. The holding problem can be divided into two
major categories [38]: adaptive feedback control methods
and rolling-horizon-based optimization methods. Daganzo [9]
proposes a forward-headway-based holding strategy with the
aim to stabilize the headway as well as maintain a high
commercial speed for buses, while the stability of the control
method is only guaranteed under small disturbances, which is
extended in [10] by considering both forward-headway and
backward-headway. Also, various adaptive control methods
considering bus holding are compared [1], which divides
different methods into three categories, naive methods, partial
holding methods and prediction-based holding methods, and
the paper finds that the prediction-based methods outperform
the other two in compromise between headway regularity
and holding time. On the other hand, iterative optimization
methods are also discussed in the literature. By formulating
a quadratic programming problem, a multiple control-point
strategy is proposed by Koehler et al. [27] in order to minimize

the total passenger delay by implementing holding control.
The onboard passenger variable is replaced by the estimated
fixed value and updated by iterations to change the nonconvex
cost into a convex quadratic cost, and guarantee a certain
level of accuracy. Moreover, combining the holding control
with the boarding limit method, Delgado et al. [13] propose a
mathematical programming model via rolling horizon mech-
anism and apply control every time when a bus reaches a
stop, which is later extended in [12] by connecting with the
simulator to fulfill a complete approach, and the paper finds
that the combination of the boarding limit and holding strategy
can reduce the cost more than 22% when compared with the
no control strategy. Moreover, passengers’ perceived delay is
discussed in [37] to incorporate the impacts of the passengers’
psychological perception.

Although the operation methods mentioned above provide
different perspectives for system reliability, most studies are
proposed based on known bus dispatching time or sched-
ule headways. Also, dispatching methods seldom consider
operation control for buses already operating on the road.
Meanwhile, more accurate passenger arrival patterns can be
learnt with the help of the increasingly advanced machine-
learning techniques [8][36]. Furthermore, the advanced com-
munication systems [26][17][14] enable the implementation
of the real-time control. In view of this, we fill the gap by
formulating a holistic mixed integer nonlinear programming
problem incorporating both dispatching adjustments and bus
on-road operation control. The contributions of our proposed
approach are listed as follows:

• Our strategy is a combined dispatching-operating opti-
mization method, not only the bus dispatching time but
also the holding and boarding control are applied to the
system with the aim to further minimize the passenger
delay.

• The traditional methods always dispatch one bus for each
trip, also, instead of dispatching buses with different bus
sizes, which requires multiple types of buses for each
bus line and potentially increases the operating cost,
we consider multi-bus dispatching to provide adaptive
bus capacity to match with the highly-fluctuated stop
demands.

• The re-dispatching mechanism is realistically captured
in the proposed model by introducing the new logic
constraint (constraint (11a) in Section II) even if the bus
on-road driving time and stopping time at each stop are
different for different trips.

• A distributed algorithm via Lagrangian decomposition is
presented with the aim to reduce the computational time
associated with a centralized approach and guarantee the
high quality results.

Before proposing our multi-bus dispatching strategy in next
section, the differences between the multi-bus dispatching and
bus bunching are firstly emphasized herein. The bus bunching
is a phenomenon resulting from the uncertainty of the road
traffic and the fluctuation of the waiting passenger demand.
The vacancy that the bunching buses bring does not match
the passenger demands at the stop. The platoon dispatching



3

Fig. 1: A one-way loop bus line

is a strategy applied to better serve the passengers, and it is
driven by the passenger demands, for example, the bus platoon
can serve more passengers if there are large amount of people
waiting at the stop, which is an impossible task for one single
bus to accomplish in one time. The bus platoon in our multi-
bus dispatching strategy is formed at the bus terminal, and
the platoon is determined by the controller based on predicted
travel demands at each bus stop.

Headway adjustment is just one way to schedule buses and
we do incorporate this property in our model, besides that,
the number of buses to be dispatched at each trip could also
be considered as another decision variable, which leads to the
result that the traditional single bus dispatching becomes a
special case of our method. Imagine a loop bus line operating
by a limited number of buses, optimizing bus frequency only
provides one degree of freedom for bus management, how-
ever, by applying multi-bus dispatching, we provide another
adjusting dimension to bring more flexibility and possibility
under the same prediction horizon. Especially when the bus
round trip distance is small, multi-bus dispatching could
play an effective role since the short distance can guarantee
enough bus quantity at the bus terminal to support the multi-
bus dispatching strategy, and this largely improves the bus
utilization, which is illustrated in Section IV-C in detail.

The paper is organized as follows: In Section II, our com-
bined dispatching-operation optimization model is formulated
to determine the optimal dispatching time and dispatching
sequence associated with the boarding limit and holding time.
In Section III, the transformation to MINP problem and dual
decomposition method are introduced. In Section IV, simu-
lation results on a specific bus line are analyzed to illustrate
the efficiency of the proposed method. Finally, conclusion and
future work are drawn in Section V.

II. PROBLEM FORMULATION OF A MULTI-BUS
DISPATCHING STRATEGY UNDER BOARDING AND

HOLDING CONTROL

In our model, we consider a system which involves a ring-
shaped bus line with Ns bus stops and Nb buses dispatched
from the terminal stop, as illustrated in Fig. 1. All buses
dispatched from the terminal stop visit all stops on the bus
line and wait to be re-dispatched once driving back to the
terminal. The index of the bus stop starts from the terminal
stop 1, and it increases monotonically till the last stop Ns.

A. Notations

In this section, we propose a Multi-Bus Dispatching strategy
under Boarding and Holding control (MBDBH) with the aim
to minimize the passenger delay time. In order to better de-
scribe the bus dispatching model, the parameters and decision
variables used in our optimization model are summarized in
Table I. To formally describe the model, a directed graph is

TABLE I: Notations and Definitions

Indices and Sets

i, j The index of the bus stop.
b The index of the bus.
k The index of the trip.
S The set of bus stops along the bus route, we have

i, j ∈ S.
B The set of buses, we have b ∈ B.
Parameters

Nb The number of buses for the bus line.
Ns The total number of bus stops along the bus line.
Hp Prediction horizon, Hp = N4, where N is the

number of the prediction steps.
Capb The capacity of the bus b.
DTmax The maximum dwell time at each stop.
Tmin The minimum gap time between two adjacent

trips.
α1 The average boarding time for each passenger.
α2 The average alighting time for each passenger.
toc The bus door opening and closing time.
Variables

Pi,j(k) The number of passengers waiting at stop i with
destination stop j when buses of trip k are com-
ing.

Vb,i,j(k) The number of passengers on bus b with destina-
tion stop j when bus b of trip k just reaches stop
i.

Ab,i(k) The number of alighting passengers of bus b of
trip k at stop i.

fi,j(a, b) The incoming passenger flow at stop i with des-
tination stop j between time a and time b.

ARi(k) The arrival time of buses of trip k at stop i, and
∀i ∈ [1, Nb].

DPi(k) The departure time of buses of trip k at stop i,
and ∀i ∈ [1, Nb].

LTb,i(k) The loading time of bus b of trip k at stop i.
DTi(k) The dwell time of buses of trip k at stop i, in

other words, the maximum of the loading time of
buses from trip k at stop i.

Ti,i+1(k) The traveling time between stops i and i+ 1 for
buses dispatched at trip k.

TA(k) The dispatching time of trip k specified in the
pre-defined timetable.

Hi(k) The headway between trips k + 1 and k at stop
i.

Dr Round-Trip Distance.
Decision Variables

Bb,i,j(k) The number of boarding passengers of bus b of
trip k at stop i with destination stop j.

xb(k) Dispatch indicator, which is a binary variable.
Whether bus b is dispatched at the trip k. = 1
represents bus b is dispatched at k. = 0 indicates
bus b is not dispatched at k.

DS(k) The dispatching time of buses of trip k at the
terminal.
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defined as G = {S,L}, where S is the set of bus stops along
the bus line, and L is the link set, and each link denotes the
bus path between two adjacent stops.

B. Assumptions
The following assumptions are considered:
• Bus overtaking and stop skipping are not allowed in the

system.
• A pre-defined timetable, passenger arrival rates at each

stop and estimated on-road traveling time are assumed to
be known in advance.

• Simultaneous departure from each stop is required for
buses in the same trip.

C. Problem Formulation
The MBDBH problem is formulated as a Mixed-Integer

NonLinear Programming (MINLP) problem, where the ob-
jective considers the passenger total excess delay from effi-
ciency perspective or the headway variation from reliability
perspective, and the constraints incorporates the stop and bus
volume dynamics, boarding and alighting flow constraints,
bus dispatching and reschedule constraints, bus dwell time
and travel time constraints, and bus arrival and departure
constraints.

1) Stop Volume Dynamics: The following constraint defines
the stop volume dynamic, the volume at stop i towards stop j
is updated by the number of arrival passengers fi,j(ARi(k +
1), ARi(k)) subtracting the sum of the all boarding passengers∑
b

Bb,i,j(k) towards stop j.

∀k ∈ [1, Hp], (∀i, j ∈ S ∧ j > i) ∧ (j = 1 ∧ i > 1)

Pi,j(k + 1) = Pi,j(k) + fi,j(ARi(k + 1), ARi(k))−∑
b∈B

Bb,i,j(k)
(1)

The passenger incoming flow rate is a time-variant variable,
and its value will become large during the high-peak hour
when commuters all wait at the bus stop to catch a bus,
therefore, the incoming flow rate depends on the time of
the day. However, the study of the relationship between the
passenger incoming flow rate and the time is beyond the scope
of this paper, thus, we assume the average passenger incoming
flow rate fij(k) is known during each discrete-time interval
in the model. Accordingly, constraint (1) can be reformulated
as follows:
Pi,j(k + 1) =Pi,j(k) + (ARi(k + 1)−ARi(k))fi,j(k)−∑

b∈B

Bb,i,j(k)

(2)
where fi,j(k) is the passenger arrival rate of trip interval k at
stop i with the destination stop j.

2) Bus Volume Dynamics:

∀k ∈ [1, Hp],

∀b ∈ B, (∀i, j ∈ S ∧ j > i) ∨ (j = 1 ∧ i > 1) ∧ (i 6= Ns)∑
j

Vb,i+1,j(k) =
∑
j

Vb,i,j(k) +
∑
j

Bb,i,j(k)−Ab,i(k)

(3)

Constraint (3) defines the bus volume dynamics, specifically,
the passenger volume on bus b of trip k when it reaches stop
i + 1 is determined by its passenger volume when it reaches
the adjacent upstream stop i, the boarding flow at stop i,∑
j

Bb,i,j(k), and the alighting flow at stop i, Ab,i(k).

3) Boarding and Alighting Constraints: Constraints (4a),
(4b) and (4c) describe the boarding flow and the alighting
flow.

∀k ∈ [1, Hp],∀b ∈ B
(∀i, j ∈ S ∧ j > i) ∨ (j = 1 ∧ i > 1)∑
j

Bb,i,j(k) ≤ Capb −
∑
j

Vb,i,j(k) (4a)∑
b

Bb,i,j(k) ≤ Pi,j(k) (4b)

(∀i, q ∈ S ∧ q < i)

Ab,i(k) =
∑
q

Vb,q,i(k) (4c)

Constraint (4a) illustrates that the total number of passengers
boarding bus b cannot exceed the remaining capacity of the bus
b. Constraint (4b) indicates that the total number of boarding
passengers at stop i with destination stop j cannot exceed
the number of waiting passengers at stop i with destination
stop j. The use of the inequalities in constraints (4a) and (4b)
makes the boarding control in our system become possible.
At the implementation stage, it is possible to control boarding
flows via recent advanced communication technology (ICT)
in the intelligent transportation system [14][29]. Imagine a
message via mobile apps or screen board located at the bus
stop could be sent or displayed to passengers when a bus is
approaching the stop, and only passengers at the front queue
will be selected to enter the designated boarding area at the
bus stop. The identification of the front-queue passenger can
be realized by the camera or Lidar installed at the bus stop.
When the bus reaches the bus stop, only passengers who are
waiting at the designated area are allowed to board the bus.
This requires infrastructural enhancement at the bus stop, not
only the area re-design but also the advanced sensors. By doing
so, the control of the boarding passengers can be effectively
realized. Fig. 2 gives an illustration for boarding control. In
our model, all boarding passengers are allowed to get off the
bus at their destination stop, thus, the passenger alighting flow
of bus b of trip k at stop i is equal to those passengers who
board from several upstream stops and prepare to alight at stop
i, as illustrated in constraint (4c).

4) Dispatching Constraints:

∀k ∈ [1, Hp], (∀i, j ∈ S ∧ j > i) ∨ (j = 1 ∧ i > 1),∀b ∈ B
Bb,i,j(k) ≤ xb(k)Capb (5a)
Ab,i(k) ≤ xb(k)Capb (5b)
Vb,i,j(k) ≤ xb(k)Capb (5c)
LTb,i(k) ≤ xb(k)DTmax (5d)∑
b

xb(k) ≥ 1 (5e)
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Fig. 2: Graphic illustration of boarding control at bus stop

Constraints (5a) - (5e) are dispatching constraints. Variables
Bb,i,j(k), Ab,i(k), Vb,i,j(k) and LTb,i(k) are all related to the
bus dispatching indicator xb(k), in other words, only if the
bus b is dispatched at trip k, the above mentioned variables
belonging to trip k could be active in the model, otherwise,
should be set as 0, as described in constraints (5a) - (5d). In
this model, the bus dispatching times are not fixed values or
known inputs of the specified timetable, but can be adaptive
and adjusted according to the passenger boarding and alighting
flows and the bus holding time. Also, every trip can dispatch
either single bus or several buses, in other words, at least one
bus is dispatched for each trip, as illustrated in constraint (5e).

5) Loading Time and Dwell Time Constraints:

∀k ∈ [1, Hp], (∀i, j ∈ S ∧ j > i) ∨ (j = 1 ∧ i > 1),∀b ∈ B

LTb,i(k) ≥ α1

∑
j

Bb,i,j(k) + tocxb(k) (6a)

LTb,i(k) ≥ α2Ab,i(k) + tocxb(k) (6b)
LTb,i(k) ≤ DTi(k) (6c)
DTi(k) ≤ DTmax (6d)

Loading time is defined as the time a bus spends at a stop
to allow passengers to alight and board. In this paper, we
adopt one of the simultaneous loading model recorded in
Highway Capacity Manual [28]: LT = max(α1B,α2A)+ toc,
where LT is the bus loading time at a stop (measured in
seconds), B and A are the number of boarding passengers and
alighting passengers at the stop, respectively. α1 and α2 are the
average boarding time and alighting time for each passenger,
respectively. toc is the door opening and closing time. Based
on the above relationship, we can develop our bus loading
time for bus b of trip k at stop i, LTb,i(k), as follows:

LTb,i(k) = max(α1

∑
j

Bb,i,j(k), α2Ab,i(k)) + toc (7)

To avoid conflicting with constraint (5d), the above equation
is modified as follows:

LTb,i(k) = max(α1

∑
j

Bb,i,j(k), α2Ab,i(k)) + tocxb(k) (8)

By converting the above equation, we can obtain the corre-
sponding linear constraints (6a) and (6b). The loading time of
each bus from the same trip at the same stop may be different.

In order to make them all act in concert, the bus which finishes
loading earlier will wait until the latest bus in the platoon
finish loading process. Then the whole stopping time at the
stop, which is called the dwell time DTi(k) in the paper, is
illustrated as follows:

DTi(k) = maxb∈B(LTb,i(k)) (9)

Similarly, the above constraint can be converted to correspond-
ing linear constraint (6c). Also, to guarantee the punctual
arrival, each bus has a dwell time upper bound, as indicated
in constraint (6d).

6) Arrival and Departure Constraints:

∀k ∈ [1, Hp]

ARi+1(k) = DPi(k) + Ti,i+1(k), ∀i ∈ {S\Ns} (10a)
AR1(k) = DPi(k) + Ti,1(k), for i = Ns (10b)
DPi(k) ≥ ARi(k) +DTi(k), ∀i ∈ {S\1} (10c)
DPi(k) ≥ DS(k) +DTi(k), for i = 1 (10d)
ARi(k) + Tmin ≤ ARi(k + 1), for i ∈ S (10e)
DPi(k) + Tmin ≤ DPi(k + 1), for i ∈ S (10f)
DS(k) + Tmin ≤ DS(k + 1) (10g)

Constraints (10a) - (10f) describe the bus movement dynamics
on the road. Constraints (10a) and (10b) illustrate that the
bus arrival time of trip k at stop i + 1 is equal to the
bus departure time of trip k at stop i plus the travel time
between stops i and i + 1. Similarly, constraints (10c) and
(10d) depict the bus departure time of trip k at stop i is
no less than the summation of the bus arrival time of trip
k at stop i and the dwell time of trip k at stop i. The
reason why inequality is used in (10c) and (10d) is that the
holding control can be incorporated as long as DPi(k) is not
equal to ARi(k) +DTi(k) or DS(k) +DTi(k), on the other
hand, fewer variables lead to higher computational efficiency.
Tmin is the minimum gap time between two adjacent trips,
which can avoid the overtaking phenomenon and thereby be
consistent with the assumption. The gap of two adjacent trip
arrival times, ARi(k + 1) − ARi(k), is required to maintain
at least a minimum value Tmin, as enforced by constraints
(10e) and (10f), which is also regarded as the layover time
and is added in constraint (10g). As the study of travel time is
beyond the scope of this paper, we assume the traveling time
Ti,i+1(k) is known in advance during the period of interest.

7) Reschedule Constraints:

∀k ∈ [2, Hp],∀m ∈ [1, k − 1],∀b ∈ B
xb(k) = 1→ DS(k) ≥ max

m<k
{AR1(m)−M(1− xb(m))}

(11a)
DS(k) ≥ TA(k) (11b)

Constraint (11a) discusses the re-schedule of the buses once
they return back to the terminal. Constraint (11a) illustrates
that a new trip of bus b can be generated only if the dispatching
time of bus b at the terminal is no smaller than the latest arrival
time of bus b at the terminal, and M is a large value as long
as satisfying M ≥ max

m<k
AR1(m) for ∀k ∈ [2, Hp]. Also, our

dispatching is tuned based on the pre-defined timetable, and
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the buses for a certain trip cannot be dispatched earlier than
the specified timetable of that trip, as described in constraint
(11b).

8) Objective cost for the entire ring road: In this model, our
main objective is to minimize the total passenger excess delay
for whole planning trips, on the other hand, the minimization
on the headway gap is also considered in order to guarantee
the system’s reliability. Accordingly, the objective function is
captured as follows:

Jcost = β1Jtd + β2Jhg (12)

where Jtd is the passengers’ total excess delay, and Jhg is
the summation of the headway gap of any adjacent trips. β1
and β2 are binary variables, and they can activate different
objectives to be achieved in the system.

a) Passengers’ total excess delay: Compared with in-
vehicle traveling time, stop waiting time is more suffering for
passengers. Also, overlong waiting time could easily frustrates
passengers. Therefore, we formulate the objective as the pas-
sengers’ total excess delay, which is the multiplication of the
remaining passenger volume and corresponding arrival time
gap (or dispatching time gap at the terminal stop 1) for two
adjacent trips through entire bus stops and planning horizon:

Jtd =

Hp∑
k=1

{

[
∑

i∈{S\1}

∑
j∈S∧

(j>i∧j=1)

(Pi,j(k)−
∑
b∈B

Bb,i,j(k))(ARi(k + 1)−ARi(k))]

+ [
∑

j∈S∧j>i

(P1,j(k)−
∑
b∈B

Bb,1,j(k))(DS(k + 1)−DS(k))]}

(13)
Many studies use

∑Hp

k=1

∑
i∈{S}(

∑
j>i

fij
2 )(ARi(k +

1) − ARi(k))2 to capture the total passenger delay
[16][27][13][12], which is under the assumption that there is
no residue queue at each bus stop, in other words, all waiting
passengers are allowed to board on the bus, which neglects
the delay of those passengers who fail to board the bus,
and this is actually the important delay significantly affecting
the passengers’ emotions [18][32][35], which is the reason
why we use the multiplication of the remaining passenger
volume Pi,j(k)−

∑
b∈B Bb,i,j(k) and corresponding headway

to represent the passenger waiting excess delay.
b) Headway gap minimization: In order to maintain

the system reliability, the sum of headway gaps of any two
adjacent trips is formulated as follows:

Jhg =

Hp−2∑
k=1

∑
i∈S
|Hi(k + 1)−Hi(k)| (14)

where

Hi(k) =

{
ARi(k + 1)−ARi(k), ∀i ∈ {S\1}
DS(k + 1)−DS(k), otherwise

III. SOLUTION ALGORITHM - MIXED INTEGER
NONLINEAR PROGRAMMING

In this section, we propose two different algorithms to
solve our optimization problem, that is, a centralized method
and a distributed method, respectively. The proposed model

described in Section II incorporates some logic constraints,
which are converted into the corresponding linear constraints
and change the mixed-logic problem into a MINP problem
in subsection III-A. Due to the large computation complexity
involved in the centralized MINP problem, we partition our
model into subsystems and solve the problem by adopting the
Lagrangian relaxation in Section III-B.

A. Mixed Integer Nonlinear Programming

The MBDBH problem has been formulated as a mixed log-
ical dynamic model, which involves a nonlinear cost function
(12) with mixed logic constraints, e.g., the stop and bus volume
dynamics (1)-(3), boarding and alighting flow constraints (4a)-
(4c), bus dispatching constraints (5a)-(5e), bus dwell time and
travel time constraints (6a)-(6d), bus arrival and departure
constraints (10a)-(10g), and bus reschedule constraints (11a)-
(11b). Among all these constraints and objective, the logic
constraints include bus reschedule constraint (11a), also, the
objective (14) involve the absolute variables in the expression.

Let M
′

be sufficiently large, and satisfies M
′ ≥

max
m<k
{AR1(m) − DS(k)} for ∀k ∈ [2, Hp], then the logic

constraint (11a) can be converted into the following linear
constraints:

∀k ∈ [2, Hp],∀m ∈ [1, k − 1],∀b ∈ B
DS(k)−AR1(m) +M

′
(1− xb(m)) ≥ −M

′
(1− xb(k))

(15)
Proposition 1: Replacing constraint (11a) with Inequality

(15) in the model leads to the same solution.
The headway gap formulation (14) involves absolute value,

and can be converted into the linear cost by introducing an
auxiliary variable δi(k), then the cost can be equivalently
transmitted into the following linear cost and linear con-
straints:

J
′

hg =

Hp−2∑
k=1

∑
i∈S

δi(k) (16)

s.t.
∀k ∈ [1, Hp − 2],∀i ∈ {S\1}
2ARi(k + 1)−ARi(k)−ARi(k + 2) ≤ δi(k) (17)
− 2ARi(k + 1) +ARi(k) +ARi(k + 2) ≤ δi(k)

(18)
∀k ∈ [1, Hp − 2]

2DS(k + 1)−DS(k)−DS(k + 2) ≤ δ1(k) (19)
− 2DS(k + 1) +DS(k) +DS(k + 2) ≤ δ1(k) (20)

Proposition 2: Replacing objective (14) with objective (16)
and inequalities (17)-(20) in the model leads to the same
solution.

Finally, we can transform our MBDBH problem as a MINP
problem below:
• Minimize β1Jtd + β2J

′

hg

• subject to
C1: stop volume dynamics: (1)
C2: bus volume dynamics: (3)
C3: boarding flow constraints: (4a)-(4b)
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Fig. 3: Distributed optimization on a partitioned bus line

C4: alighting flow constraint: (4c)
C5: bus dispatching constraints: (5a)-(5e)
C6: bus loading time constraints: (6a)-(6b)
C7: bus dwell time constraint: (6c)-(6d)
C8: bus arrival and departure constraints: (10a)-(10g)
C9: bus reschedule constraints: (11b) and (15)
C10: auxiliary constraints for objective (16): (17)-

(20)
After converting into a MINP problem, the proposed MBDBH
problem is solved by a commercial optimization solver, Gurobi
[22], whose latest version supports solving a MINP problem.

B. Dual Decomposition

Obviously, our model includes many variables and con-
straints, and involves multiple decision judgements, such
as bus dispatching indicator xb(k), boarding flow volume
Bb,i,j(k) and trip dispatching time DS(k). To overcome the
computational complexity, we partition our bus line into sev-
eral line segments, as shown in Fig. 3, and conduct distributed
optimization on each sub-system individually.

The original bus line in our paper is defined as a directed
graph G = {S,L}, where S is the set of stops along the
bus route, and L is the link set, and each link denotes the
bus route between two adjacent stops. The bus line in the
distributed optimization is divided into several line segments
and is defined as G̃ = {S̃, L̃}, where S̃ = S ∪ R, and r ∈ R
is the artificial stop located at the boundary of two adjacent
line segments, which is also drawn as a blue circle in Fig.
3. Each original bus stop s in set S belongs to only one line
segment, while each additional bus stop in set R is shared
by two connected line segments. The link set is denoted as
L̃ ⊆ S̃ × S̃ − R × R, e.g., each one-way link (s̃, s̃

′
) ∈ L̃

represents a bus route either from an internal bus stop s̃ to
another internal bus stop s̃

′
, or from the boundary stop s̃ = r

to an internal bus stop s̃
′
, or from the internal bus stop s̃ to

the boundary stop s̃
′

= r. To formally develop the relationship
between the boundary artificial stop and its connected original
bus stops, we use rs,s′ denote the boundary stop r connected
with bus stops s and s

′
, where s, s

′ ∈ S and they both are
from different line segments.

Assume the current bus line is partitioned into O line
segments, we have {P̃o ∈ P̃|o ∈ {1, 2, · · · , O}}, and let
L(P̃o) denote all edges in P̃o, and S(P̃o) denote all stops
existing in P̃o. The constraints for the boundary stops should
be defined to keep the consistency with the original central-
ized system. Accordingly, the boarding and alighting process
should not be considered at boundary stops. Meanwhile,
stop and bus volume dynamics are also omitted at boundary
stops. Only the departure and arrival time at the boundary
stop should be added, since no stopping is required at the
boundary stop, we will have the constraints described as:
ARr

ss
′ (k) = DPs(k) + Ts,r

ss
′ (k), DPr

ss
′ (k) = ARr

ss
′ (k)

and ARs′ (k) = DPr
ss
′ (k) + Tr

ss
′ ,s
′ (k), where (s, rss′ ) ∈

L(P̃o) and (rss′ , s
′
) ∈ L(P̃o′ ). We assume the terminal stop

1 is partitioned into the line segment P̃1 and is the first original
stop in P̃1. Based on the above description, the previous
centralized model can be reformulated as follows:

min
∑
P̃o∈P̃

J(P̃o)

s.t. Φ(P̃1)

∀P̃o ∈ {P̃ \ P̃1} : Φ(P̃o) \ (11a) and (11b)

∀ rss′ ∈ R,∀k ∈ [1, Hp] :

ARr
ss
′ (k) = DPs(k) + Ts,r

ss
′ (k) (21)

DPr
ss
′ (k) = ARr

ss
′ (k) (22)

ARs′ (k) = DPr
ss
′ (k) + Tr

ss
′ ,s
′ (k) (23)

∀k ∈ [1, Hp],∀b ∈ B,∀o ∈ [2, O]

xP̃o

b (k) = xP̃1

b (k) (24)
∀k ∈ [1, Hp],∀b ∈ B,∀o ∈ [2, O]

V P̃o

b,1,j(k) = V
P̃o−1

b,Nsubo−1
,j(k) (25)

where Φ(P̃o) is a set of constraints associated with subsystem
P̃o. Since terminal stop 1 is partitioned into the subsystem
1, reschedule constraints (11a) and (11b) only exist in P̃1.
Accordingly, the obtained bus dispatching sequence from P̃1

is the input of the other subsystems, as shown in equation (24).
Also, the bus volume at incoming boundary stop is the output
from the upstream line segment, indicated as equation (25),
where Nsubo−1 is the last internal bus stop of subsystem o−1.
To simply the notations, we define the new symbol Ω(P̃o)
indicating all constraints uniquely belonged to subsystem
P̃o. Accordingly, the only remaining constraints shared by
both subsystems are (22), (24) and (25). To simplify the
Lagrangian dual function explained in the later content, both
equations (24) and (25) are incorporated into the subsystem
o, since results V P̃o−1

b,Nsubo−1
,j(k) can be regarded as the inputs

of subsystem o after optimizing subsystem o − 1, similarly,
results xP̃1

b (k) can also be regarded as the inputs of sub-
system o after optimizing the first subsystem. All passengers
must be cleared after the buses drive back to the terminal,
namely, the capacity of the newly dispatched buses from the
terminal must equal to Capb, and because of this, the bus
volume of the last subsystem is not a necessary knowledge
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for optimizing subsystem 1 which includes the terminal stop,
and this make the steps to sequentially solve each subsystem
become possible. However, this cannot be applied for equation
(22), as the returning times of buses from the last subsystem
are the essential information for the first subsystem to make
the dispatching decision, which is introduced into our partial
Lagrangian dual function addressed in upcoming content. By
doing so, we can obtain the simplified formulation as follows:

min
∑
P̃o∈P̃

J(P̃o)

s.t. ∀P̃o ∈ P̃ : Ω(P̃o)

∀ rss′ ∈ R,∀k ∈ [1, Hp] :

DPr
ss
′ (k) = ARr

ss
′ (k) (26)

Let λr
ss
′ be a vector associated with different trips, after

applying Lagrangian transformation, we can obtain the cor-
responding Lagrangian dual function and constraints:

min
∑
P̃o∈P̃

J(P̃o) +
∑

∀r
ss
′∈R

(λr
ss
′ARr

ss
′ − λr

ss
′DPr

ss
′ )

s.t. ∀P̃o ∈ P̃ : Ω(P̃o)

Define λP̃o
= [λr

ss
′ λr

s
′′

s
′′′ ], where s ∈ S(P̃o−1), s

′
, s
′′ ∈

S(P̃o) and s
′′′ ∈ S(P̃o+1). Then the separated Lagrangian

dual function G(λ) is illustrated as follows:

min
∑
P̃o∈P̃

s′ ,s′′∈S(P̃o)

J(P̃o) + λP̃o
[ARr

ss
′ −DPr

s
′′

s
′′′ ]

T

Finally, the partial Lagrangian dual problem is depicted in the
following formulation:

max
λ∈R

G(λ)

s.t. ∀P̃o ∈ P̃ : Ω(P̃o)

To solve the above problem, the traditional subgradient
method [11][30] is adopted. The corresponding algorithm is
illustrated in Algorithm 1, where αmr

ss
′ is the stepsize at mth

iteration. The reason why solving problem sequentially instead
of parallelly is that our partitioned subsystem requires the
knowledge of the upstream subsystem as the inputs of current
subsystem, namely, the dispatching sequence xb(k) and bus
volume Vb,i,j(k). Using xb(k) of subsystem 1 as the inputs
of other subsystems is because the dispatching determination
happens at the terminal in our model, in other words, we
cannot completely separate each subsystem since they all
share the same dispatching information. As for regarding
bus volume Vb,i,j(k) as the inputs of next subsystem, the
purpose is to simplify the Lagrangian dual structure, which
may become harder to find the results if too many constraints
are relaxed. Moreover, due to the relaxation of boundary
constraints illustrated in (22), satisfying (22) may not be
achieved, which means the obtained cost for the Lagrangian
dual problem only serves as a lower bound of the original
primal problem illustrated in Section IV-A.

Algorithm 1 Subgradient method for Lagrangian dual problem
Select λ0 ≥ 0
Repeat until λr

ss
′ converges or reaches the maximum iteration

1 solve each subsystem sequentially for iteration m
2 update subgradient for each boundary stop, e.g.,
h(λmr

ss
′ ) = ARmr

ss
′ −DPmr

ss
′

3 update Lagrangian multiplier: λm+1
r
ss
′ = λmr

ss
′ +

αmr
ss
′ h(λmr

ss
′ )

IV. SIMULATION RESULTS

In this section, we provide the simulation results to illustrate
the efficiency of our proposed model: Firstly, we compare the
computation time and results of proposed dual decomposition
method and the centralized solver. Secondly, we test our model
on a specific bus line and compare it with other methods from
many perspectives to depict the advantages of our proposed
model. Thirdly, sensitivity analysis of our model on different
round-trip distances and time-variant demands is conducted to
further illustrate the multi-bus dispatching strategy.

A. Computational complexity for centralized and distributed
algorithms

In order to see the computational efficiency of our proposed
method, we test our model with various bus sizes, stop
numbers and trip horizons. After converting into a mixed
integer problem, the model is solved by the optimization
solver, Gurobi, coded in MATLAB under a PC with an Intel(R)
Core(TM) CPU i7-10510U @2.30GHz and RAM 16GB. We
only compare the linear cost, Jpv =

∑Hp

k=1

∑
i,j∈S Pi,j(k),

total passenger volume, in this section for simplicity. Table
II illustrates the potential complexity involved in the model
under different scales, which lists the total number of decision
variables and the total number of constraints of 8 cases under
different network sizes. Also, the corresponding computational
time and the optimal results are included to further illustrate
the computational complexity of the centralized algorithm.

TABLE II: Problem scale and processing time under central-
ized algorithm

Nb Ns Hp # of Constraints # of Variables Cost Jpv
Computation

Time(s)
Case 1 5 10 5 3700 5553 3586 28.5920
Case 2 5 15 5 7600 10868 6383 66.1740
Case 3 5 20 5 12875 17933 10994 1046.6000
Case 4 7 10 7 7014 10345 4900 624.8500
Case 5 7 15 7 14434 20030 8454 3316.3000
Case 6 7 20 7 24479 32865 14034 4060.6000
Case 7 7 15 10 20620 28835 * *
Case 8 10 10 10 13950 20428 * *

* The computation time is more than 8 hours.

Clearly, the computational time of the centralized algorithm
exponentially increases with the increase of the problem scale.
We can find that Gurobi can solve a MBDBH problem under
a bus line with 10 bus stops, 5 buses and 5 trip horizons
in only 28.5920 second, which is equivalent to solving a
mixed integer problem with 5553 integer and binary variables
and 3700 constraints. This is definitely workable in practical
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scheduling environment. However, when the problem scale
becomes larger, the probability of successfully solving the
dispatching-operation problem in short time becomes lower,
e.g., a bus line with 7 buses, 20 bus stops and 7 trip horizons
needs more than 3 hours to obtain a (near-)optimal signal pro-
file, thus, the computational challenge requires more efficient
algorithms. The star symbol in Table II means that MATLAB
fails to run Gurobi due to memory insufficiency. By checking
the Table II, we can also find that the computational time
is not always monotonically increasing as the problem scale
increases, e.g., Case 6 requires 14034 second to obtain the final
results, however, Cases 7 and 8 need even more time to solve
the problem even if their constraints and variables are smaller
than that of Case 6. This is because of the predominant role
of dispatching sequence xb(k) and dispatching time DS(k)
in determining computational time. Clearly, both dimensions
of xb(k) and DS(k) in Cases 7 and 8 are larger than that of
Case 6. Just because of the dispatching pattern introduced into
the operation control problem, our model leads to such higher
computational complexity, which is also proofed in Section
IV-B5. In view of this, we apply our distributed algorithm
to test the corresponding computation time and performance
results, as shown in Table III.

TABLE III: A comparison between the centralized algorithm
and distributed algorithm

Centralized Algorithm Distributed Algorithm Gap proportion
Cost Jpv

Computation
Time(s)

Computed lower
bound Gλ

Computation
Time(s)

Case 3 10994 1046.6000 10115 694.7400 7.9953%
Case 4 4900 624.8500 4795 134.0600 2.1428%
Case 5 8454 3316.3000 7961 506.6100 5.8316%
Case 6 14034 4060.6000 10995 1107.2000 21.6546%

The computational time of centralized algorithm for Cases
1 and 2 are small, and it is redundant to partition the bus
line when the problem scale is not large. Also, the results for
Cases 7 and 8 cannot be obtained from the centralized way.
Thus, we only compare the processing time and the result Jpv
from Case 3 to Case 6, as shown in Table III. For all four
cases, the bus line is partitioned into three sub-line segments.
Cases clearly indicate that the proposed distributed approach
significantly reduce the computational time of the larger-scale
problems with longer prediction horizons. For example, the
processing time for solving a 15 bus-stop system with 7 buses
and 7 trip horizons is more than 50 minutes in centralized ap-
proach, which is reduced to roughly 8 minutes when adopting
distributed approach. Moreover, the gap between the distribute
algorithm and the centralized algorithm is still below 25%
for all cases, which indicates that the proposed distributed
algorithm provides a significant decrease of computation time
meanwhile ensuring an acceptable degree of performance gap,
especially when the problem scale is large.

B. Case study on a specific bus line

We test and compare the proposed strategy with three other
methods. All four methods are applied on a loop bus line with
10 bus stops evenly spaced every 800 m, and the bus line

operates 7 buses with capacity of 80 passengers per bus. The
pre-defined timetable TA starts from 360s towards 2520s with
6-min increments. Other initial parameters can be found from
Table IV. The passenger arrival rate at each stop is shown
in Fig. 4, which clearly illustrates the demand increases to
the highest volume at the sixth stop and gradually decreases
afterwards.

TABLE IV: Parameters used in case study

Parameters Descriptions Associated Values
Nb Total serving buses 7
Ns Bus stop number 10
Hp Planning trips 7

TA Pre-defined timetable [360 720 1080 1440
1800 2160 2520]

Capb Bus capacity 80
toc Door open and close time 2s
α1 Average boarding time for each passenger 2s
α2 Average alighting time for each passenger 1s
Tmin Bus layover time 180s
DTmax Maximum dwell time at each stop 180s

Fig. 4: The Passenger Arrival Rate at Each Stop

To clearly figure out the compared methods, we summarize
four methods as follows:
• MBDBH: the objective function considers only the pas-

sengers’ total delay, namely, β1 = 1, β2 = 0 for this
method, and we consider dispatching time adjustment,
boarding control and holding control in this method, also,
the multi-bus dispatching is allowed to make full use of
available buses.

• MBDBH + Headway Control: similar to MBDBH, the
only difference is that the objective function considers
both the passengers’ total delay and the minimization of
the headway gap, and β1, β2 are set to 1 to fulfill this
implementation.

• Single Bus Dispatching with Boarding and Holding
control (SBDBH): the objective is the same as the MB-
DBH, and this method also incorporates the dispatching
time adjustment, boarding control and holding control.
However, only one bus is allowed to be dispatched for
each trip.

• Timetable-based Fixed Dispatching (TFD): there is
no control applied on this test case, the dispatching
time strictly follows the pre-defined timetable, and each
trip only dispatch one bus without applying boarding
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and holding control, in other words, all dynamics are
spontaneous evolution of the system.

1) Passengers’ Total Delay and Remaining Volume: The
total passenger excess delay of entire planning trips and total
remaining passenger volume after entire planning trips for four
different methods are summarized in Table V. The perfor-
mance results respectively illustrate the total passenger delay
Jpd and total remaining passenger volume Jrpv . By comparing
with the TFD, the reduced proportion of the performance
results when applying other methods is also listed. Clearly,
MBDBH outperforms all other methods in both Jpd and Jrpv,
and Jpd decreases roughly 77% compared to TFD. Jrpv also
significantly drop 56% relatively to TFD. These all indicate
that the efficient utilization of buses in MBDBH and the
efficiency of the boarding and holding control. However, the
advantages of MBDBH on minimizing Jpd and Jrpv decline
a bit when headway control is also applied, which indicates
that maintaining the system reliability enlarges a certain level
of passenger excess delay, and this is really different with
the results obtained from the traditional literature: the use of∑Hp

k=1

∑
i∈{S}(

∑
j>i

fij
2 )(ARi(k+ 1)−ARi(k))2 to capture

the passenger total delay, instead of passenger excess delay
in our paper, normally concludes that a positive correlation
between the passenger delay and the headway variation.
However, once incorporating on-board passenger delay, this
positive correlation may not always be correct [38], which
indicates that the relationship between the passenger delay and
the headway variation depends on the type of the passenger
delay. Also, the reduced proportions once considering headway
variation are still significant compared to TFD, which are
approximately 69% and 51%, respectively. With single-bus
dispatching only, reductions of 38% and 31% are found when
compared to TFD, which are roughly half improvement of the
MBDBH, and this again indicates the proper utilization of the
bus capacity when applying multi-bus dispatching.

TABLE V: Total passenger delay and remaining passenger
volume under different methods

Different Methods Performance Results Reduced Proportion

Total Passenger Delay (s)
Jpd

Total Remaining
Passenger Volume

Jrpv

Jothers
pd −JTFD

pd

JTFD
pd

Jothers
rpv −JTFD

rpv

JTFD
rpv

MBDBH 571200 955 -77.0137% -56.3528%
MBDBH +

Headway Control 755200 1072 -69.6092% -51.0055%

SBDBH 1530500 1508 -38.4095% -31.0786%
TFD 2484960 2188 - -

2) Bus Dispatching Time: Fig. 5 depicts the gap between
the actual dispatching time DS(k) and the pre-defined dis-
patching time TA(k) for each trip k. The first trip is assigned
equal to the timetable in the simulation which leads to no gap
value, thus, we only draw the gap from the second trip to the
last trip. The blue bar, red bar and yellow bar respectively illus-
trate the dispatching time deviations under strategies MBDBH,
MBDBH with headway control and SBDBH. Since strategy
TFD strictly dispatches buses according to the timetable, only
the other three methods are captured in Fig. 5. The time
deviation of SBDBH is always the smallest one, and this
is because the adjustment of the bus dispatching time has
no need to consider the permutation and combination of the
buses, and the phenomenon that at least one bus is waiting

at the terminal is very easy to be realized every time when
corresponding dispatching time TA(k) is reaching. However,
this may not be applicable to MBDBH and MBDBH with
headway control. Both multi-bus dispatching methods need to
adjust the bus dispatching time by considering the permutation
and combination of the buses so that the passenger total delay
can be minimized, and the dispatching time could be increased
in order to make sure that the terminal does have sufficient
number of buses to be dispatched. By checking the figure, the
time deviation reaches the maximum value at the third trip
under MBDBH, to clearly find out the reason, the optimal
results of the decision variables, dispatching indicator xb(k),
for both MBDBH and MBDBH with headway control are
listed in Table VI. The dispatched bus in each corresponding
trip is highlighted in light blue in the table. By checking the
Table VI(a), we can find that the first trip dispatches 4 buses
and the second trip dispatches 3 buses, which indicates that
all buses are released for the first two trips, and this leads
to the large time deviation for the dispatching time of the
third trip under MBDBH. Interestingly, the red bar in Fig. 5
increases monotonically with the increase of the trip index,
and this phenomenon results from the minimization of the
headway variation. The specific dispatching time of MBDBH
with headway control can be found in Fig. 6, which clearly
shows that the dispatching headway under headway control is
fixed at 400s, however, the dispatching headway of timetable
is fixed at 360s, and just because of this, the gap between
pre-defined dispatching time and the actual dispatching time
is becoming increasingly large.

Fig. 5: The Gap between the Real Dispatching Time and the
pre-defined Dispatching Time under Different Methods

3) Bus Trajectories: Fig. 7 illustrates the bus trajectories of
different trips for four methods. Under the strategy of MBDB-
H, the distribution of bus trajectories is relatively messy, and
a large gap can be found between the second trip and the third
trip, and the reason has been explained in section IV-B2, as
the previous two trips release out all buses from the terminal,
which leads to a late allowed dispatching moment, since this
moment must be larger than the arrival time of buses. Also, the
uncertain dwell times at downstream several stops make the
headway gap from trip three to trip seven deviate significantly,
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TABLE VI: Bus Dispatching Sequence for Two Different
Methods

b k 1 2 3 4 5 6 7
1 1 0 1 0 0 0 0
2 1 0 1 0 0 0 1
3 0 1 0 0 0 1 0
4 1 0 0 1 0 0 0
5 0 1 0 0 1 0 0
6 0 1 0 0 1 0 0
7 1 0 1 0 0 0 0

(a) Bus Dispatching Sequence for
MBDBH

b k 1 2 3 4 5 6 7
1 1 0 0 1 0 0 0
2 1 0 0 1 0 0 0
3 1 0 0 1 0 0 0
4 0 1 0 0 1 0 0
5 0 0 1 0 0 1 0
6 1 0 0 1 0 0 1
7 0 1 0 0 1 0 0

(b) Bus Dispatching Sequence for
MBDBH + Headway Control

Fig. 6: The pre-defined Dispatching Time and the Actual
Dispatching Time for MBDBH + Headway Control

which leads to low system reliability. We can also find that
the large dwell time always appear after several stops, and this
is consistent with the demand arrival rate in Fig. 4: A higher
arrival volume starts from stop 5 and reaches the peak at stop
6, accordingly, which leads to relatively high boarding volume
and dwell time at these stops. However, the dwell time can also
be determined by the alighting process: the further downstream
the stop located, the relatively larger alighting passengers the
bus have, as the alighting flow is contributed by the sum of
boarding flows in all upstream stops. Because of this, we can
also find large dwell time after stop 6. To maintain a better

(a) MBDBH (b) MBDBH + Headway Con-
trol

(c) SBDBH (d) TFD

Fig. 7: Bus Trajectories under Different Methods

reliability, the headway control is applied in the objective
function, and corresponding bus trajectories are shown in Fig.
7b. The headway distribution of bus trajectories is much more
orderly compared to Fig. 7a. Also, the boarding process plays
a dominant role in buses’ dwell time relative to the alighting
process, as the larger dwell time always can be found in stop 6
for each trip. For the strategy of SBDBH, the shape of its bus
trajectories feels like an act of collaboration between Fig. 7a
and Fig. 7b. Since the headway variation is not as obvious as
trajectories under MBDBH, but it is also not so tidy as Fig. 7b,
and this can be explained by its different dispatching way and
the system objective function: On the one hand, the sufficient
bus stock in the terminal determines a relatively low variation
of headway at the initial dispatching stage under SBDBH,
on the other hand, the bus movement dynamics will become
efficiency-driven as the objective function only considers the
total passenger delay without control of the headway, which
leads to a relative messy distribution at several downstream
stops. While for the last strategy, its bus trajectories also seem
orderly. Since no control is applied in TFD, large dwell times
are all found from first several stops, and after that, dwell
times are small for remaining stops, and this is because the
bus becomes full at very early stage and has no space to
allow passengers at downstream stops to board. Although the
distribution of bus trajectories looks quite tidy, the improper
boarding arrangement largely wastes the resources and leads
to much higher total passenger delay in the system.

4) Boarding Volume: Fig. 8 shows the boarding volume∑
j Bb,i,j(k) of each bus at different trips and stops under

four different methods. For all subfigures in Fig. 8, the red
bold line is the maximum value of all boarding volumes and
the green bold line is the trip-based average boarding volume
at different stops, namely,

∑
k

∑
b

∑
j Bb,i,j(k)

Hp
. Due to multi-bus

(a) MBDBH (b) MBDBH + Headway Control

(c) SBDBH (d) TFD

Fig. 8: Boarding Volume at Different Stops under Different
Methods

dispatching is allowed in the first two methods, more lines are
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drawn in Fig. 8a and Fig. 8b. For both strategies of MBDBH
and MBDBH with headway control, most lines reaches the
highest value at stop 6, which results in the average boarding
volume, the bold green line, also reaches the largest value at
stop 6, and this is consistent with the passenger arrival rate in
Fig. 4. Also, it can be found that the largest average boarding
volume on the bold green line in Fig. 8b has already exceeded
the bus capacity, 80. Also, both average green lines in Fig.
8a and Fig. 8b are almost above all the other lines, and this
is because the current average boarding volume is trip-based
average and each trip can allow multi-bus dispatching in these
two methods, while the other lines (those thin lines) drawn in
the figure are the boarding volume targeted to each bus, which
leads to this phenomenon in the figures. The average boarding
volume in Fig.8b is slightly larger than that in Fig. 8a, which
means the strategy of MBDBH with headway control leads
to larger boarding volume compared with MBDBH, but the
total passenger delay of MBDBH in Table V is the smallest
one. This may seem quite conflict but the reason behind is
that although MBDBH with headway control brings larger
boarding flow, it also leads to larger ending time for the same
trip horizon, which can be clearly found from the x-axis of
the bus trajectories figure. The finishing time of the last trip
in Fig. 7b is larger than 3500s while the finishing time in
Fig. 7a is less than 3500s, and under the same planning trips,
the longer the total finishing time, the larger the introduced
passenger volume into system, which leads to larger delay
even if the boarding volume is relatively higher in MBDBH
with headway control, and this also indicates that the addition
of the headway control decreases the bus operating speed. For
the strategy of SBDBH, the green bold line truly reflects the
average of all other fine lines, as each trip only allows one
bus to be dispatched. Although the convergent property of
these fine lines is not obvious as the lines in Fig. 8a and
Fig. 8b, they can still illustrate a certain level of consistency
with the passenger arrival rate in Fig. 4. While for boarding
volumes under TFD, we can find that the boarding volume
reaches the largest value at the second stop and leads to low
bus space for remaining downstream stops, especially missed
the opportunity to board more passengers at stops with larger
passenger volume, and it increases gradually at final several
stops due to the spared space by moving out the alighting
passengers at those middle stops. Remarkably, the largest
boarding volume, 66, for each bus appears in both MBDBH
with headway control and SBDBH, by checking all red bold
lines of four subfigures, while the smallest value, 45, is found
in TFD strategy, and this also reflects the efficient utilization
of the buses in optimization methods. Also, the largest value
appeared in boarding volume of each bus under SBDBH does
not indicate that the SBDBH will have more total boarding
volumes compared to MBDBH, since MBDBH allows multi-
bus dispatching and it fails in the bus-based average but
successes in the trip-based average compared to SBDBH.

5) Computational Time for Different Optimization Strate-
gies: Table VII illustrates the computational time of three
optimization methods: MBDBH, MBDBH + Headway Control
and SBDBH. Both MBDBH and SBDBH have the same
number of constraints and variables, the only difference is that

the constraint (5e) in MBDBH is an inequality but change
to equality in SBDBH. The reduction on the dimension of
dispatching sequence xb(k) significantly decrease the compu-
tational time for SBDBH, which is roughly 3 min listed in
Table VII. On the other hand, the addition of the headway
control introduces new variables and constraints, and make
the solver spend much more time on trade-off between the
efficiency and reliability. In our future work, we will try to
enhance the current distributed algorithm or design new algo-
rithms to solve the current problem in a more efficient way.
On the other hand, the bus initial states (bus initial position
and initial volume) shall be introduced into current model to
make the rolling-horizon mechanism become possible. Under
the structure of the model-predictive control, there is no need
to consider a very long trip horizon, and this could largely
reduce our constraints and decision variables involved in the
model to enable the real-time control implementation.

TABLE VII: Computation time for different optimization
methods

Different Methods # of Constraints # of Variables Computation Time
(s)

MBDBH 10345 7014 649.7100
MBDBH +

Headway Control 10439 7064 1659.1880

SBDBH 10345 7014 193.709

C. Sensitivity Analysis

In this section, we provide the sensitivity analysis of multi-
bus dispatching strategy when different round-trip distances
and time-variant passenger demands are applied, with the aim
to further understand the multi-bus dispatching strategy.

1) Round-Trip Distance: We test on a loop bus line with
10 bus stops evenly spaced, and the bus line is operating by
7 buses under the same capacity, passenger arrival rate and
pre-defined timetable in Section IV-B, however, the round-
trip distances vary from 8 km to 20 km. Fig. 9 illustrates the
total passenger delay of MBDBH and SBDBH under different
round-trip distances. Clearly, the passenger delay increases
with the increase of the round-trip distance Dr for both
methods, since longer loop distance leads to larger round-trip
travel time and larger dispatching time interval even under the
same number of dispatching trips. Interestingly, the delay gap
between MBDBH and SBDBH becomes increasingly small
as the round-trip distance increases, which indicates that the
advantages of MBDBH is shrinking under a larger-loop bus
line. This is also clearly reflected in the bus dispatching
sequences xb(k) shown in Fig. VIII, which illustrates the value
of xb(k) of MBDBH under four different round-trip distances.
Trips with multi-bus services are highlighted in red. We can
find that the number of multi-bus trips decreases from 4 to 2
as Dr increases from 8 km to 12 km. Although the number
of multi-bus trips keep the same as Dr increases from 12
km to 20 km, the total number of dispatched buses in all
multi-bus trips reduces from 7 when Dr is 12 km to 5 when
Dr is 20 km. Due to the increase of the round-trip distance,
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Fig. 9: Total Passenger Delay of MBDBH and SBDBH under
Different Round-Trip Distances

the chance to dispatch multiple buses for one trip becomes
increasingly small under the same number of trip horizons, and
this indicates that the advantage of MBDBH is more noticeable
when the bus line is a short-distance loop, which makes the
efficient utilization of bus capacity feasible.

TABLE VIII: Bus Dispatching Sequence under Different
Round-Trip Distances

b k 1 2 3 4 5 6 7
1 1 0 1 0 0 0 0
2 1 0 1 0 0 0 1
3 0 1 0 0 0 1 0
4 1 0 0 1 0 0 0
5 0 1 0 0 1 0 0
6 0 1 0 0 1 0 0
7 1 0 1 0 0 0 0

(a) Dr is 8km

b k 1 2 3 4 5 6 7
1 1 0 0 0 0 1 0
2 0 1 0 0 0 0 1
3 0 0 0 1 0 0 0
4 0 0 1 0 0 0 0
5 1 0 0 0 1 0 0
6 1 0 0 0 1 0 0
7 1 0 0 0 1 0 0

(b) Dr is 12km

b k 1 2 3 4 5 6 7
1 1 0 0 0 0 1 0
2 0 0 1 0 0 0 0
3 0 0 0 1 0 0 0
4 1 0 0 0 1 0 0
5 0 1 0 0 0 0 1
6 1 0 0 0 1 0 0
7 1 0 0 0 1 0 0

(c) Dr is 16km

b k 1 2 3 4 5 6 7
1 0 0 0 1 0 0 0
2 0 0 0 0 1 0 0
3 1 0 0 0 0 1 0
4 1 0 0 0 0 1 0
5 1 0 0 0 0 0 1
6 0 0 1 0 0 0 0
7 0 1 0 0 0 0 0

(d) Dr is 20km

2) Time-variant Demand: The advantage of MBDBH be-
comes prominent especially when the passenger arrival de-
mands are timely fluctuated. The daily passenger arrival
pattern can be learnt from the massive accumulated traffic
historical data, accordingly, function fij(ARi(k+1), ARi(k))
in constraint (1) can be found to realistically describe the
passenger arrival rate. Since the passenger arrival pattern, as
a known input of our optimization model, is not the study
emphasis of this paper, we use a constant arrival rate fij
to test the proposed strategy in the above case study, which
leads fij(ARi(k+1), ARi(k)) to (ARi(k+1)−ARi(k))fij .
However, we do want to see how MBDBH dispatches buses
when the demands are time-variant. Thus, we assume the
passenger arrival rate changes according to the dispatching
trip for simplicity, with the aim to see whether the number of
dispatched buses at a certain trip will change with the changes

of passenger demands at that trip.

(a) First time-variant demand pat-
tern

(b) Second time-variant demand
pattern

Fig. 10: Demand Patterns for Two Different Cases

TABLE IX: Bus Dispatching Sequence under Time-Variant
Demands

b k 1 2 3 4 5 6 7
1 1 0 0 0 0 1 0
2 0 1 0 0 0 0 1
3 0 0 1 0 0 0 0
4 0 0 1 0 0 0 0
5 0 0 0 0 1 0 0
6 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0

(a) xb(k) under first time-variant
demand pattern

b k 1 2 3 4 5 6 7
1 1 0 0 0 0 1 0
2 0 0 0 0 1 0 0
3 0 1 0 0 0 0 1
4 0 0 0 1 0 0 0
5 0 0 1 0 0 0 0
6 0 0 0 0 1 0 0
7 1 0 0 0 0 1 0

(b) xb(k) under second time-
variant demand pattern

The proposed method is still tested on a 8km-loop bus line
with 10 bus stops evenly spaced, and the bus line operates 7
buses under the same capacity and pre-defined timetable in
Section IV-B. The proportion of passenger demands across
the whole stops is the same, but the demands change over the
trip index, as shown in Fig. 10a and Fig. 10b. Table IX(a)
and IX(b) illustrate the corresponding optimal dispatching
sequence results of MBDBH under the passenger demands
shown in Fig. 10a and Fig. 10b, respectively. The proposed
method belongs to the discrete-time model, accordingly, the
update of the passenger demands at each stop only occurs at
the trip instant, as shown in constraint (1), thus, the changes of
demands during trip interval k can only be reflected after trip
instant k + 1. Because of this, trips which dispatch multiple
buses, shown in Table IX, are one-step lagging behind the
demand patterns illustrated in Fig. 10. But from the overall
view, the number of dispatched buses for each trip will
change according to the changes of the passenger demands,
which further illustrates the potential benefit of MBDBH, and
this advantage stands out especially when a sudden demand
increase happens, which could not be realized in a single bus
dispatching strategy.

V. CONCLUSION AND FUTURE WORK

In this paper, a multi-bus dispatching strategy with operation
control is proposed for a loop-shaped bus line system. Either
a single bus or a bus platoon is allowed to be dispatched
from the terminal in order to create adaptive bus capacities
to meet the fluctuated passenger demands. Also, boarding
control in each stop is applied with the aim to avoid the
phenomenon that bus space is fully occupied at several initial



14

upstream stops which leaves no space for passengers waiting
at the downstream stops. Additionally, holding control at each
bus stop and headway control formulated in the objective
function are implemented to fulfill the system reliability. The
proposed model is converted into the MINP problem, which is
firstly solved by the commercial solver, Gurobi. A distributed
algorithm is also proposed via Lagrangian multipliers with
the aim to further reduce the computational time. Moreover,
we compare four different methods in a variety of different
perspectives, e.g., from objective performance, bus trajectory,
boarding volume to computational time. The results illustrate
that the addition of the dispatching adjustment (dispatching
sequence and time) into the operation system largely reduces
the passenger delay, at the price of dramatically increased
computational complexity.

To make this proposed approach practically implementable,
we shall consider the following measures in our next step:
besides meta-heuristic algorithms such as evolution algorithms
to further reduce computational time, we will adopt a receding
horizon strategy to minimize the number of decision variables
and constraints within each optimization horizon. Also, the
extended model based on the rolling-horizon mechanism could
alleviate the impacts of the uncertainty involved in the passen-
ger arrival patterns. All these results shall be presented in our
future works.
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[33] İ Ömer Verbas and Hani S Mahmassani. Optimal allocation of service
frequencies over transit network routes and time periods: formulation,
solution, and implementation using bus route patterns. Transportation
research record, 2334(1):50–59, 2013.
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