
Cross-Modality Mutual Learning for Enhancing Smart Contract
Vulnerability Detection on Bytecode
Peng Qian Zhenguang Liu∗

Zhejiang University Zhejiang University
Hang Zhou, China Hang Zhou, China

messi.qp711@gmail.com liuzhenguang2008@gmail.com

Yifang Yin Qinming He
A*STAR Zhejiang University
Singapore Hang Zhou, China

yin_yifang@i2r.a-star.edu.sg hqm@zju.edu.cn

ABSTRACT
Over the past couple of years, smart contracts have been plagued
by multifarious vulnerabilities, which have led to catastrophic f-
nancial losses. Their security issues, therefore, have drawn intense
attention. As countermeasures, a family of tools has been developed
to identify vulnerabilities in smart contracts at the source-code level.
Unfortunately, only a small fraction of smart contracts is currently
open-sourced. Another spectrum of work is presented to deal with
pure bytecode, but most such eforts still sufer from relatively low
performance due to the inherent difculty in restoring abundant
semantics in the source code from the bytecode.

This paper proposes a novel cross-modality mutual learning
framework for enhancing smart contract vulnerability detection
on bytecode. Specifcally, we engage in two networks, a student
network S as the primary network and a teacher network T as the
auxiliary network. T takes two modalities, i.e., source code and its
corresponding bytecode as inputs, while S is fed with only bytecode.
By learning from T, S is trained to infer the missed source code
embeddings and combine both modalities to approach precise vul-
nerability detection. To further facilitate mutual learning between
S and T, we present a cross-modality mutual learning loss and two
transfer losses. As a side contribution, we construct and release
a labeled smart contract dataset that concerns four types of com-
mon vulnerabilities. Experimental results show that our method
signifcantly surpasses state-of-the-art approaches.

CCS CONCEPTS
• Security and privacy → Software security engineering; •
Computing methodologies → Knowledge representation and
reasoning.

∗Corresponding author.

KEYWORDS
Smart contract; Bug detection; Cross modality; Mutual learning

ACM Reference Format:
Peng Qian, Zhenguang Liu, Yifang Yin, and Qinming He. 2023. Cross-
Modality Mutual Learning for Enhancing Smart Contract Vulnerability
Detection on Bytecode. In Proceedings of the ACM Web Conference 2023
(WWW ’23), April 30–May 04, 2023, Austin, TX, USA. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3543507.3583367

1 INTRODUCTION
Blockchain has received considerable attention both in practice
and in the research community over the past decade [28, 45]. A
blockchain is essentially a distributed and shared ledger maintained
by worldwide bookkeeping nodes (a.k.a miners), which follow a
well-designed consensus protocol that dictates the appending of
new blocks [39]. The duplicate ledgers distributedly stored in the
bookkeeping nodes enforce transactions immutable, endowing the
blockchain with tamper-proof and decentralized nature [7].

Modern blockchains, such as Ethereum [43], enable the execu-
tion of smart contracts, which are programs running on top of a
blockchain system [39]. Developers are capable of implementing
arbitrary rules into the smart contract code for controlling digital
assets. Once the code is deployed on the blockchain, its defned
rules are automatically executed. Owing to the immutability of
blockchain, the execution of a smart contract strictly complies with
its pre-defned rules (i.e., contract terms) and is unalterable, making
it impartial to all stakeholders.

So far, Ethereum reaches a market capitalization of over $178
billion [10]. As it becomes more prevalent and carries more value,
attackers become more incentivized to unearth and exploit poten-
tial problems in smart contracts. In fact, Ethereum smart contracts
have already faced a considerable number of devastating vulnera-
bility attack incidents, which have resulted in substantial economic
losses [31]. For example, in 2017, over $150 million worth of Ether
(i.e., the cryptocurrency of Ethereum) was frozen due to the delegate-
call vulnerability [36]. Recently, attackers exploited the reentrancy
vulnerability in the Cream.Finance contract to steal more than $130
million worth of digital assets [18]. Distinct from conventional
programs that can be updated when bugs are exposed, there is no
way to patch smart contract bugs unless subverting the blockchain
(namely controlling more than 51% computing power of the whole
blockchain network [22]), which is almost impossible. Obviously,

2220

https://doi.org/10.1145/3543507.3583367
mailto:liuzhenguang2008@gmail.com
mailto:messi.qp711@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583367&domain=pdf&date_stamp=2023-04-30

− −

− −

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Qian et al.

various faws in smart contracts have become a serious security
threat. Efective vulnerability checkers for smart contracts are much
coveted, ideally before their deployments to the blockchain.

Existing Methods and Challenges. Upon scrutinizing the re-
leased implementations of existing methods, we empirically found
that current bug detection approaches for smart contracts can be
roughly funneled into two categories. One line of work [19, 40] re-
volves around conventional static analysis and fuzzing techniques.
They leverage fxed patterns to identify vulnerabilities. However, it
is non-trivial to defne perfect patterns for complex vulnerabilities.
Another line of efort [24, 52] builds upon the superiority of deep
learning in handling sophisticated data, leading to impressive per-
formance gains. It is worth mentioning that current methods tend
to detect vulnerabilities from contract source code since it contains
complete semantic information. Unfortunately, the vast majority of
smart contracts are not open-sourced and only the bytecode can be
readily accessed [17]. While existing works [6] can handle bytecode
solely, they fail to obtain a high accuracy due to the difculty in
restoring rich control and data fow semantics from the bytecode.

Notwithstanding the signifcant diferences between source code
and its compiled bytecode, their intimate connection is undeni-
able and one form may appear incomplete without the other. In
vulnerability detection, these two modalities could complement
each other, where we expect the source code to contribute com-
prehensive control and data fow dependencies while the bytecode
contributes succinct instruction information. However, in smart
contract vulnerability detection on bytecode, the challenge is that
we have only bytecode available while the source code is missing. It
is well known that reverting the bytecode back to the source code
is extremely difcult, especially for smart contracts [23]. We are
ambitious to know whether it is possible to improve smart contract
vulnerability detection on bytecode with the assistance of source
code even when the source code is missing in the inference phase.

This motivates us to come up with the following three key de-
signs. (1) Using the collected 40K smart contracts that have both
source code and bytecode, we train a teacher network T that ab-
sorbs two modalities, viz., source code and corresponding bytecode
as inputs, and outputs the binary label which indicates whether
the tested function has a specifc vulnerability. Technically, we cast
both source code and bytecode into graph structures and use graph
attention networks to handle them. (2) We then train a student
network S, namely the primary network, that distills knowledge
from a teacher network T, namely the auxiliary network. Specif-
cally, by learning from T, S has the capacity to predict source code
embeddings from bytecode embeddings. In the inference phase, S
could infer the missed source code embeddings from the bytecode
and combine both modalities to approach accurate detection. (3)
To further enable mutual learning between S and T, we propose a
cross-modality mutual learning strategy framed with theoretically
motivated losses. We would like to highlight that we do not try
to reconstruct the entire source code, instead, we infer the source
code embeddings that are benefcial to enhance the accuracy of
vulnerability detection on bytecode.

Extensive experiments show that our approach achieves signif-
icant performance gains over the state-of-the-art: accuracy from
81% to 84%, 82% to 90%, 73% to 79%, and 73% to 79% on four types
of common vulnerabilities, respectively.

To summarize, we make the following key contributions:
• We investigate whether the mutual learning strategy could
help in the challenging scenario where smart contract source
code is missing. To the best of our knowledge, we are the
frst to investigate the idea of utilizing mutual learning to
enhance smart contract vulnerability detection.

• We propose a novel teacher-student framework for smart
contract vulnerability detection on bytecode, achieving ef-
fective knowledge transfer from a dual-modality teacher
network to a single-modality student network.

• Our approach sets the new state-of-the-art performance and
overall provides interesting insights. In the spirit of open sci-
ence, our implementations and dataset are released1, hoping
to facilitate future research.

2 PRELIMINARY
Problem Defnition. Presented with a smart contract function
� in bytecode, our goal is to learn a student network S that takes
only bytecode as input and is able to predict its label Y ∈ {0, 1}. Y
= 1 denotes � has a certain type of vulnerability and Y = 0 indicates
f is safe. We are interested to know whether S could achieve more
precise predictions after the collaborative training with a teacher
network T fed with both source code and bytecode. In this work, we
concentrate on the following four types of common vulnerabilities.

Reentrancy is a well-known vulnerability that causes the no-
torious DAO attack [12]. When a function �1 transfers money to a
recipient contract � , due to the default settings of smart contracts,
the fallback function �� of � will be automatically triggered [24].
�� may invoke �1 to conduct an illegal second-time transfer. As the
current execution of �1 waits for the frst-time transfer to fnish, the
balance of � may not be reduced yet, making �1 wrongly believe that
� still has enough balance and transfer to � again. More specifcally,

transfer trigger
the expected execution trace is �1 −−−−−→ � −−−−→ �� → ��� ,

transfer trigger
whereas the actual trace is (�1 −−−−−→ � −−−−→ ��) (�) → ��� .
As a result, attackers can exploit the reentrancy vulnerability to
succeed in stealing extra Ether for � − 1 times.

Timestamp dependence vulnerability exists when a function
uses block timestamps as a condition to perform critical operations,
e.g., using block.timestamp of a future block to determine the win-
ner of a gambling game. The miner who mines the block has the
capacity to alter the timestamp of the block within a short time
interval (roughly 900 seconds) [50]. Therefore, malicious miners
may manipulate the block timestamp to gain illegal profts.

Integer overfow/underfow happens when an arithmetic op-
eration attempts to generate a numeric value that is outside the
range of the integer type. For example, if a number � is of type uint8,
its value is stored as a 8-bits unsigned number ranging from 0 to
28 −1. When we try to assign a value out of this range to � , that is, ei-
ther larger than 255 or lower than 0, the integer overfow/underfow
vulnerability will occur.

Delegatecall is almost identical to a classical function call
method but with a critical diference. It endows the caller with
the ability to put the code of the callee contract into the current
execution environment of the caller contract [40]. However, the

1Code is available at https://github.com/Messi-Q/WWW2023

2221

https://github.com/Messi-Q/WWW2023

Cross-Modality Mutual Learning for Enhancing Smart Contract Vulnerability Detection on Bytecode WWW ’23, April 30–May 04, 2023, Austin, TX, USA

pragma solidity 0.4.2; contract DAO
{ function withdraw(){......}}

Code
Semantic

Graph

Edge Attr.

Node Attr.

...Input

Bytecode

pragma solidity 0.4.2;
contract DAO{
 function withdraw(){

 }
}

Source
Code

BERT
Network

ID AccFlag Caller Type
MLMABP

[CLS] Tok1 Tokn...

(a) (b)

CSG
...

44: JUMPDEST
45: CALLVALUE
46: DUP1
47: ISZERO

4f: JUMPDEST
50: POP
51: PUSH1 0x56

4b: PUSH 0x0
4d: DUP1

E[CLS] E1 En... E[SEP] E1' Em'...

C T1 Tn... T[SEP] T1' Tm'...

BERT

MLM

[SEP] Tok1 Tokm...

V2 V3

V1 e12
e9

e11
e10

e1e2e3

e4

e5

e6

GAT
Network

GAT
Network

CFG

Block_1

Block_2 Block_3e1 e2

Gs Gb

➕

Vstart Vend Order Type

e8
e7

CFG
Input

Figure 1: Illustration of extracting the graph semantic embed-
dings of source code and bytecode, i.e., G� and G� , respectively.
(a) A semantic graph extractor and a GAT network are de-
signed to handle the source code. (b) The BERT model and a
GAT network are exploited to deal with the bytecode.

execution environments of the caller and the callee might be quite
diferent from each other, running a function of the callee in the
environment of the caller may lead to unexpected results. Attackers
may exploit the characteristic of delegatecall to perform malicious
activities. As such, we need to evaluate if a delegatecall will indeed
cause losses, e.g., Ether frozen [3].

Why focus on these vulnerabilities. We mainly focus on
the 4 aforementioned vulnerabilities since: (i) In real attacks, 70%
of fnancial losses in Ethereum smart contracts are caused by these
vulnerabilities [5]. (ii) Existing works [15, 31, 33] have shown that
these vulnerabilities are more common in Ethereum smart contracts.
(iii) They manifest the typical characteristics of Ethereum smart
contract vulnerabilities, e.g., lack of run-time checks (integer over-
fow/underfow), lack of privilege controls (delegatecall), misusage
of on-chain information (timestamp dependence), and lack of care
for interactions across diferent contracts (reentrancy).

3 OUR APPROACH
Method Overview. The overall pipeline of our proposed frame-
work consists of three key components: 1) a code semantic-
modeling module, 2) a teacher-student framework, and 3) the cross-
modality mutual learning strategy. Specifcally, in the training stage,
we are given a set of labeled smart contract functions with both byte-
code and source code available. We frst develop automated tools
to cast the source code and the bytecode of a smart contract into a
code semantic graph and a control fow graph, respectively. Their
graph features are extracted by using graph attention networks.
Thereafter, we construct a teacher-student framework, which con-
tains a dual-modality teacher network T and a single-modality
student network S. Finally, we leverage a mutual learning loss and
two transfer losses to collaboratively train the two networks. In
the inference stage, when presented with bytecode merely, S is able
to predict the missing source code embeddings and combine both
modalities to approach more accurate detection. We would like
to highlight that the student network S is the main network and
the teacher network T is only used in the training stage. In what
follows, we will elaborate on the three components, respectively.

C2

C1 NF C3

N1

C3C1

C2

e3
e9

e8

e1
e2

e4e5
e7

e10e11 e6

e3
e8

e9
e1 e2 e4

e7
e10
e11 e6e5

Contract Victim

1
2
3
4
5
6
7

function withdraw(uint sum) public{
 if (Balance[msg.sender] < sum) {
 throw;
 }
 require(msg.sender.call.value(sum)());
 Balance[msg.sender] -= sum;
 }

Core Node Normal Node Control Flow Edge Data Flow Edge Fallback EdgeNiCi

Code Semantic Graph Graph Normalization

Figure 2: The frst fgure shows the source code of a smart
contract function, while the second and third fgures illus-
trate the process of code semantic graph construction and
normalization, respectively.

3.1 Code Semantic-Modeling Module
Existing works [2, 52] have shown that programs can be character-
ized as symbolic graphs, which are able to preserve rich structural
and semantic information. Inspired by this, we transform the source
code and the bytecode of a smart contract into specifc graphs, and
then adopt graph attention networks to handle them for extracting
the graph features. The overview of graph embedding extraction is
illustrated in Figure 1.

3.1.1 Graph Processing. For source code, we design a code seman-
tic graph (CSG) to frame the control and data dependencies in the
contract code. Following [24], we extract two kinds of graph nodes
and three types of edges. Nodes in CSG symbolize diferent pro-
gram elements such as key function calls and variables, while edges
capture the control and data fow connections between nodes. Par-
ticularly, each edge has a temporal order, which is consistent with
its sequential order in the code.

For bytecode, we extract the control fow graph (CFG), which
comprises bytecode blocks (i.e., nodes) and control fow edges. A
bytecode block contains a set of instructions. Prior work [47] has
revealed the success of the BERT model in handling program in-
structions. Heuristically, we resort to the BERT network for encod-
ing the bytecode block. (1) We pre-train a BERT model through
an instruction-level task and a block-level task. (i) For instructions
inside a block, a masked language task (MLM) is engaged to obtain
the instruction-level information. (ii) For blocks that are connected
to neighbors, we adopt an adjacency block prediction task (ABP)
to capture the control fow information and relationships between
adjacent blocks. (2) Considering the discrepancy between diferent
vulnerabilities, we enforce a dedicated fne-tuning task of the pre-
trained BERT on each type of vulnerability. (3) Finally, the features
of bytecode blocks are extracted by the fne-tuned BERT. Notably,
we have put the training details of BERT in Appendix C.

Code Semantic Graph Construction. To clearly illustrate
how to characterize the source code of a smart contract function
into a code semantic graph, we provide a simplifed example in
Figure 2. Taking contract Victim as an example, suppose we are
to evaluate whether its withdraw function possesses a reentrancy
vulnerability. As shown in the middle of Figure 2, function with-
draw is frst modeled as a core node �1 since its inner code contains
the call.value invocation (which is denoted as a key call). Then,
following the temporal order of the code, we treat the critical state
variable �������[���.������] as a core node �2, while the local
variable ��� is modeled as a normal node �1. The invocation to

2222

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Qian et al.

CFG

 51: JUMPDEST
 52: PUSH2 0x59
 55: PUSH2 0xa8
 58: JUMP

 4c: JUMPDEST
 4d: PUSH1 0x0
 4f: DUP1
 50: REVERT

......

Block_2

Block_3

Block_4

Block_5

Block_7
Block_6

d: PUSH1 0x0
f: CALLDATALOAD
3d: PUSH2 0x51
40: JUMPI

59: JUMPDEST
5a: STOP

5b: JUMPDEST
5c: CALLVALUE
5d: DUP1
5e: ISZERO

41: PUSH1 0x0
42: CALLDATALOAD
48: PUSH2 0x5b
4b: JUMPI

......

......

contract SevenToken {
 address owner;
 mapping (address => uint256) balances;
 function SevenToken() { owner = msg.sender; }
 function deposit() payable {
 balances[msg.sender] += msg.value; }
 function withdraw(address to, uint256 amount) {
 require(balances[msg.sender] > amount);
 to.call.value(amount)();
 }
}

1
2
3
4
5
6
7
8
9

10
11

Source code
60806040526004361061004c576000357c010000000000000000
00900463ffffffff1
68063d0e30db014610051578063f3fef3a31461005b575b600080f
d5b6100596100a8565b005b34801561006757600080fd5b506100
a6600480360381019080803573ff16
9060200190929190803590602001909291905050506100f7565b0
05b34600160003373ff1673ffffffffff
ffffffffffffffffffffffffffffff1681526020019081526020016000206000
8282540192505081905550565b80600160003373ffffffffffffffffffff
fffffffffffffffffff1673ff168152602001
9081526020016000205411151561014457600080fd5b8173fffffffff
fffffffffffffffffffffffffffffff168160405160006040518083038185875a
f1925050505050505600a165627a7a72305820740c9467d2d4e37f8
80f7b488a4875bc036e219bcd1e9f7290d26056c6b7cc4b0029

Bytecode

51: JUMPDEST
52: PUSH2 0x59
55: PUSH2 0xa8
58: JUMP
59: JUMPDEST
5a: STOP
5b: JUMPDEST
5c: CALLVALUE
5d: DUP1
5e: ISZERO

......
d: PUSH1 0x0
f: CALLDATALOAD......

......

Instructions

Figure 3: The frst fgure shows the contract source code, while its compiled bytecode is depicted in the second fgure. The third
fgure shows the corresponding bytecode instructions. The fourth fgure illustrates the construction of the control fow graph.

call.value is also extracted as a core node �3, and the fallback func-
tion of a virtual attack contract is characterized by the normal node
�� . To capture rich semantic dependencies between these nodes,
we construct three categories of edges, namely control fow, data
fow, and fallback edges [25]. Each edge describes a path that might
be traversed through by the function under test, and the temporal
number of edges stands for its sequential order in the function.

Considering diferent functions yield graphs with distinct struc-
tures, we are motivated by [52] and normalize the code semantic
graph by removing all normal nodes and merging their features
into their nearest core nodes. For example, normal node �1 in the
second fgure of Figure 2 is removed, with its feature aggregated
to the nearest core nodes �2 and �3. For a normal node that has
multiple nearest core nodes, its feature is passed to all of them. The
edges connected to the removed normal nodes are preserved but
with their start or end nodes moving to the corresponding core
nodes. The third fgure of Figure 2 illustrates the normalized graph
of the second fgure of Figure 2. As graph neural networks are
usually fat in propagating information, the normalization process
also helps highlight the core nodes.

Control Flow Graph Construction. To clearly depict the
construction process of the bytecode control fow graph, we present
a specifc example in Figure 3. Given the smart contract source code,
we employ a public compiler to translate it into the bytecode and de-
velop the automated tool BinaryCFGExtractor2 to extract a control
fow graph of the compiled bytecode. A bytecode control fow graph
(CFG) consists of bytecode basic blocks (i.e., nodes) and control fow
edges. (1) Our frst insight is that the basic block comprises the
sequence of EVM instructions. One basic block is connected to sub-
sequent basic blocks through a branch instruction in the CFG [34].
In our analysis, we treat the branch instructions (e.g., JUMP, JUMPI,
RETURN) as the sign of the end of a basic block, which means
that the branch instruction is regarded as a fag to segment the
basic blocks. To further show the bytecode instructions, we list the
distinctive bytecode value and its corresponding defnitions and
instructions in Appendix A. (2) Our second insight is that the basic
blocks are closely related to each other by the control fow edges
rather than being isolated. A control fow edge captures the control
fow dependencies of a conditional statement or a call statement.
(3) There are three main categories of control fow edges in a CFG,
which are denoted as diferent colors in the right of Figure 3. The
unconditional jump instructions (i.e., JUMP) are highlighted with
blue arrows. True or false conditional jump instructions (i.e, JUMPI)
are demonstrated with green and red arrows, respectively.

2Code is available at https://github.com/Messi-Q/BinaryCFGExtractor

3.1.2 Graph Embedding Distillation. After obtaining the two kinds
of graphs, we build upon the architecture of the graph attention
network (GAT) [41] to learn the high-level graph semantic embed-
dings of both the source code and the bytecode, i.e., G� and G�
∈ R� , respectively. The graph embedding extraction consists of two
phases, namely a message propagation phase and an aggregation
phase. In the message propagation phase, the network passes in-
formation along edges by following their sequential orders in the
code. As an example, at time step � , the message fows through the
�-th temporal edge �� and updates the hidden state of the end node
of �� . Thereafter, GAT computes the hidden states of every node
by attending to its neighbors as: � ∑

ℎ®
′
= � �� � Wℎ®�

�
(1)� � ∈N�

where � is a nonlinear activation function, N� denotes the neighbors
of node � in the graph, W is a weight matrix. �� � represents the
attention coefcient that is given by:� �

��� T (®a� [Wℎ®� ⊕ Wℎ®�])
�� � = Í � � (2)

� ∈N�
��� T (®a� [Wℎ®� ⊕ Wℎ®�])

where ⊕ denotes concatenation, a® is the weight vector of a single-
layer MLP, and T is the LeakyReLU function. After successively
traversing all edges, GAT generates the fnal high-level graph se-
mantic embedding G ∈ Rd by aggregating the hidden states of all
participating nodes in the graph: ∑� ®′ ®′G =

�=1
� (P���� (M1ℎ� + b1)) ⊙ P(M2ℎ� + b2) (3)

where ⊙ denotes the element-wise product, � is an activation func-
tion. Matrix Mj and bias vector bj, with subscript � ∈ {1, 2}, are
trainable network parameters. � represents the number of nodes
and P is a multi-layer perceptron.

3.2 Teacher-Student Framework
After extracting the two kinds of graph embeddings, we introduce
a novel teacher-student framework that addresses the task of en-
hancing smart contract vulnerability detection on bytecode in a
mutual learning fashion.

Dual-Modality Teacher Network (DMT). The dual-
modality teacher network T takes the two graph embeddings,
G� and G� , as inputs. As depicted in the right of Figure 4, (1)
the teacher network builds a semantic extractor, which utilizes a
3-layer CNN, to process the graph embeddings. The convolution
flter size is set to 1×3 and the numbers of flters are set to 64, 128,
and 256, respectively. (2) Batch normalization (BN), rectifed linear
unit (ReLU), and max pooling are employed after each CNN layer,

2223

https://github.com/Messi-Q/BinaryCFGExtractor

Cross-Modality Mutual Learning for Enhancing Smart Contract Vulnerability Detection on Bytecode WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Teacher-Student Framework
Vulnerability

L
abel

Smart
Contract

Single-Modality Student Network

FC
 L

ayer

Sigm
oid

A
ct.

Modality Trans.

hsS
x3

Avg.
Pooling

Conv1d BN+ReLU Max Pooling

Semantic Extractor

 ReLU(W . (bi) + b)hs
bhs b hs

Dual-Modality Teacher Network

FC
 L

ayer

ht

ht
s

Semantic Extractor

Sigm
oid

A
ct.

Conv1d BN+ReLU Max Pooling

Semantic Extractor

Conv1d

Avg.
Pooling

BN+ReLU Max Pooling

Semantic Extractor

x3

Avg.
Pooling

x3

Source code GAT

pragma solidity 0.4.2;
contract DAO{
 function withdraw(){

 }
}

...

Binary2Binary Mutual Learning

b

BCE
Loss

BCE
Loss

Bytecode GAT

PUSH1 0x80
PUSH1 0x40
MSTORE
PUSH1 0x4
CALLDATASIZE
LT
PUSH2 0x4c
JUPMI
...

...

Bytecode GAT

PUSH1 0x80
PUSH1 0x40
MSTORE
PUSH1 0x4
CALLDATASIZE
LT
PUSH2 0x4c
JUPMI
...

...

 Code Semantic-Modeling Module

B
E

R
T

B
E

R
T

44: JUMPDEST
45: CALLVALUE
46: DUP1
47: ISZERO

4f: JUMPDEST
50: POP
51: PUSH1 0x56

4b: PUSH 0x0
4d: DUP1

44: JUMPDEST
45: CALLVALUE
46: DUP1
47: ISZERO

4f: JUMPDEST
50: POP
51: PUSH1 0x56

4b: PUSH 0x0
4d: DUP1

V2 V3

V1
e12

e9

e8
e6

e7 e11
e10

e1
e2e3

e4

e5

Code semantic graph

Control Flow Graph

Control Flow Graph

ht

Source2Binary

Concat

Figure 4: A high-level overview of our pipeline. (1) Code semantic-modeling module, which casts the source code and the
bytecode into a code semantic graph and a control fow graph, respectively, and adopts a graph attention network (GAT) to
extract graph embeddings. (2) Teacher-student framework, which consists of a dual-modality teacher network and a single-
modality student network. A mutual learning loss and two transfer losses are engaged to collaboratively train the two networks.

which highlights the signifcant elements and avoids overftting. (3)
The two graph embeddings are then passed into a global average
pooling layer respectively to generate the semantic intermediate
representations of the source code and the bytecode, hs and hb

t t .
Next, hs and hb are fused by concatenation, namely ht = hs ⊕ ht

b.t t t
(4) The fused feature vector ht is fnally fed into a fully connected
layer with a sigmoid activation to output the label Y� .

Single-Modality Student Network (SMS). The single-
modality student network S takes the graph embedding G� of the
bytecode as input. Technically, we adopt the sub-network of the
teacher as the student network, but with particular modifcations to
support the cross-modality knowledge transfer. We use the interme-
diate representations learned by the teacher network to supervise
the learning of the student network. Let hb denote the semantics
intermediate representations of the bytecode generated by the stu-
dent network, we model a transfer loss B2B within the bytecode
modality as:

where � is the number of functions. Since the B2B loss can prop-
agate knowledge only in the bytecode modality, we proceed to
explore learning cross-modality correlations between source code
and bytecode. Specifcally, we leverage global average pooling to
summarize the representations of input graph embeddings. Then,
the global context of the source code hs in T and the bytecodet
hb in S can be acquired. The main idea is to constrain the globals
context representations of the paired modalities (viz., source code
and bytecode) to be similar to each other. Explicitly, we design a
dedicated modality transformer layer to endow S with the ability
to reconstruct semantic intermediate representations of the source

scode from bytecode features as hsˆ (��) = ���� (Ws · hbs (��) + bs),
where Ws and bs denote the weight matrix and the bias vector,
respectively. Finally, we model a transfer loss S2B to cross the two

modalities between T and S as:

sSimilar to T, we fuse hb (��) and hˆ (��) in S, and pass the con-s s
catenated feature hs into a fully connected layer with a sigmoid
activation to output the label Y� .

3.3 Cross-Modality Mutual Learning Strategy
To achieve efective knowledge transfer from T to S, inspired by
[46], we present a cross-modality mutual learning strategy to collab-
oratively train them. Particularly, we compute the mutual learning
losses by using the binary cross-entropy (BCE) loss between the
labels of the teacher network (Y�), the student network (Y�), and
the ground-truth (Y):

Lteacher = ��� (Y, Y�) + ��� (Y� , Y�) (6)mutual

Lstudent = ��� (Y, Y�) + ��� (Y� , Y�) (7)mutual

where �teacher and �student denote the supervised losses of T and S,mutual mutual
respectively. Finally, by combining the mutual learning losses with
the two transfer losses B2B and S2B, we obtain the overall losses of
the two networks by:

= �� LteacherLteacher mutual + �� L�2� + �� L�2� (8)

= �� LstudentLstudent mutual + �� L�2� + �� L�2� (9)

where �, � , and � are tunable network parameters for balancing
diferent losses. An important highlight in our framework is that
not only S learns from its teacher, but also T can beneft from the
student via cross-modality mutual learning. Experiments in §4.4
show that such a cross-modality mutual learning strategy could
contribute to promising performance gains. This may stem from
the fact that cross-modality mutual learning helps align the global
contexts in diferent modalities better in the feature space compared
to conventional one-way training. The teacher network and student

L𝑆2𝐵 =
∑︁𝑁

 (
𝑖=1

ht
s 𝑠𝑖) − hŝs (𝑏𝑖)

2 (5)

L𝐵2𝐵 =
∑︁𝑁

𝑖=1

ht
b (𝑏𝑖) − hs

b (𝑏𝑖)
2 (4)

2224

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Qian et al.

Table 1: Performance comparison (%) in terms of accuracy (ACC), recall (RE), precision (PRE), and F1-score (F1). Fourteen
methods are included in the comparisons. ‘n/a’ means the corresponding tool does not support detecting the vulnerability type.

Methods Reentrancy Timestamp Overfow/Underfow Delegatecall
ACC RE PRE F1 ACC RE PRE F1 ACC RE PRE F1 ACC RE PRE F1

sFuzz [30] 55.69 14.95 10.88 12.59 33.41 27.01 23.15 24.93 45.50 25.97 25.88 25.92 64.37 47.22 58.62 52.31
Smartcheck [37] 54.65 16.34 45.71 24.07 47.73 79.34 47.89 59.73 53.91 68.54 42.81 52.70 62.41 56.21 45.56 50.33

Osiris [38] 56.73 63.88 40.94 49.90 66.83 55.42 59.26 57.28 68.41 34.18 60.83 43.77 n/a n/a n/a n/a
Oyente [27] 65.07 63.02 46.56 53.55 68.29 57.97 61.04 59.47 69.71 57.55 58.05 57.80 n/a n/a n/a n/a
Mythril [29] 64.27 75.51 42.86 54.68 62.40 49.80 57.50 53.37 n/a n/a n/a n/a 75.06 62.07 72.30 66.80
Securify [40] 72.89 73.06 68.40 70.41 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Slither [14] 74.02 73.50 74.44 73.97 68.52 67.17 69.27 68.20 n/a n/a n/a n/a 68.97 52.27 70.12 59.89

Vanilla-RNN [35] 65.90 72.89 67.39 70.03 64.41 65.17 64.16 64.66 68.12 70.19 67.00 68.56 64.33 67.26 63.77 65.47
ReChecker [32] 70.95 72.92 70.15 71.51 66.65 54.53 73.37 62.56 70.49 71.59 70.56 71.07 67.98 70.66 66.47 68.50

GCN [20] 73.21 73.18 74.47 73.82 75.91 77.55 74.93 76.22 67.53 70.93 69.52 70.22 65.76 69.74 69.01 69.37
TMP [52] 76.45 75.30 76.04 75.67 78.84 76.09 78.68 77.36 70.85 69.47 70.26 69.86 69.11 70.37 68.18 69.26
AME [24] 81.06 78.45 79.62 79.03 82.25 80.26 81.42 80.84 73.24 71.59 71.36 71.47 72.85 69.40 70.25 69.82

SMS 83.85 77.48 79.46 78.46 89.77 91.09 89.15 90.11 79.36 72.98 78.14 75.47 78.82 73.69 76.97 75.29
DMT 89.42 81.06 83.62 82.32 94.58 96.39 93.60 94.97 85.64 74.32 85.44 79.49 82.76 77.93 84.61 81.13

network in the process of mutual learning are optimized jointly in
every mini-batch, obtaining better performance in bug detection.

4 EVALUATION
In this section, we present extensive evaluations on our proposed
framework. We seek to address the following research questions.
• RQ1: Can our proposed method efectively detect the four types
of smart contract vulnerabilities? How is its performance com-
pared with state-of-the-art approaches?

• RQ2: Is the cross-modality mutual learning strategy helpful to
improve the performance of vulnerability detection on bytecode?

• RQ3: How do our designed code semantic-modeling module and
teacher-student network contribute to the whole framework?

In the following, we frst introduce the experimental setup, followed
by answering the above research questions one by one.

4.1 Experimental Setup
Datasets. We notice that there is still a lack of datasets for smart
contract vulnerability detection. Indeed, it is labor-intensive and
time-consuming to collect and label a large-scale smart contract
dataset. Most existing works either publish unlabeled datasets
or a small number of labeled contracts, which is insufcient for
model training. Towards this, we construct and release a benchmark
dataset that concerns four types of vulnerabilities, namely reen-
trancy, timestamp dependence, integer overfow/underfow, and dele-
gatecall. This dataset was created by collecting smart contracts from
three diferent sources, i.e., Ethereum platform (over 96%), GitHub
repositories, and blog posts that analyze contracts. We collected
514, 880 functions (from 42, 910 smart contracts) that have both
source code and bytecode available. These functions are labeled
manually. Detailed labeling strategies are introduced in Appendix B.
In the experiments, we select 80% of functions as the training set
and the rest 20% as the test set. We repeat each experiment fve
times and report average results.

Implementations. Our system consists of three components:
1) the automated tools, SourceCSGExtractor and BinaryCFGExtrac-
tor, for extracting graphs of smart contracts, 2) the BERT model
and the graph attention network for extracting graph embeddings,
and 3) the teacher-student framework. Specifcally, the SourceCS-
GExtractor and BinaryCFGExtractor are implemented with Python,
where SourceCSGExtractor realizes a semantic graph extractor from

source code while BinaryCFGExtractor integrates the bytecode CFG
analyzer and the symbolic execution solver of an of-the-shelf tool
termed Octopus [1]. We accomplish the BERT model and the GAT
network with PyTorch, where their hidden layer sizes are set to 256.
The teacher-student framework is implemented with PyTorch. The
two networks are composed of a 3-layer CNN followed by batch
normalization, activation, and max-pooling layers.

Parameter Settings. All experiments are conducted on a com-
puter equipped with an Intel Core i9 CPU at 3.3GHz, a GPU at
2080Ti, and 64GB Memory. Adam optimizer is employed in the
proposed networks. We apply a grid search to fnd the best hyper-
parameters: the learning rate � is tuned amongst {0.0001, 0.0005,
0.001, 0.002}, the hidden layer size ℎ is searched in {64, 128, 256,
512}, and batch size � in {16, 32, 64, 128}. We choose a set of hyper-
parameters that achieve the best performance on the training set.
We report the performance with the default settings: 1) � = 0.001,
2) ℎ = 256, and 3) � = 64. The balancing factors �, � , and � which
are tuned to weigh diferent functions have been empirically set to
1.0 throughout the experiments.

4.2 Performance Comparison (RQ1)
Comparison with Conventional Bug Detection Tools. We
frst benchmark the proposed approach against the conventional
vulnerability detection tools, including sFuzz [30], Smartcheck [37],
Osiris [38], Oyente [27], Mythril [29], Securify [40], and Slither [14].
Here, we do not compare with several related works, which are
either 1) not open-sourced [44], or 2) handling other types of smart
contracts like EOSIO [16], or 3) focusing on diferent vulnerabil-
ity types than ours [8, 39]. Quantitative experimental results are
summarized in Table 1. From the table, we obtain the following
observations. First, the conventional detection tools have not yet
achieved high accuracy on the four vulnerabilities. For example, for
reentrancy vulnerability, sFuzz and Smartcheck only achieve 55.69%
and 54.65% accuracy, while Securify and Slither obtain 72.89% and
74.02% accuracy. This may stem from two facts: 1) vulnerability de-
tection from bytecode is inherently challenging since the bytecode
conveys only instruction-level binary code, and 2) current tools
(such as sFuzz and Osiris) concentrate on utilizing only low-level
instruction information and are unable to incorporate high-level
semantics from the source code.

2225

Cross-Modality Mutual Learning for Enhancing Smart Contract Vulnerability Detection on Bytecode WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table 2: Performance comparison (%) of the SMS trained using diferent strategies.

Training Strategy
Reentrancy Timestamp Overfow/Underfow Delegatecall

ACC F1 ACC Decrease ACC F1 ACC Decrease ACC F1 ACC Decrease ACC F1 ACC Decrease
SMS 83.85 78.46 — 89.77 90.11 — 79.36 75.47 — 78.82 75.29 —
three losses - w/o 78.25 71.38 -5.60 83.82 83.46 -5.95 74.06 70.18 -5.30 72.90 69.24 -5.92
B2B - w/o 81.43 74.54 -2.42 88.39 88.29 -1.38 77.46 73.02 -1.90 76.57 73.68 -2.25
S2B - w/o 81.04 75.86 -2.81 88.32 88.43 -1.45 77.03 73.14 -2.33 77.18 74.02 -1.64
mutual learning - w/o 82.05 76.58 -1.80 88.25 88.36 -1.52 77.51 73.53 -1.85 76.72 73.65 -2.10

Table 3: Performance comparison (%) between SMS and its variants on the four vulnerabilities.

Variants Reentrancy Timestamp Overfow/Underfow Delegatecall
ACC RE PRE F1 ACC RE PRE F1 ACC RE PRE F1 ACC RE PRE F1

SMS(GPT) 74.32 72.47 75.50 73.95 80.64 80.97 82.83 81.89 75.07 70.38 75.96 73.06 74.76 71.89 72.52 72.20
SMS(Word2vec) 84.08 75.49 81.58 78.42 85.12 87.82 82.12 84.87 78.12 71.90 76.18 73.98 77.26 72.41 74.38 73.38
SMS(GCN) 73.85 72.82 71.84 72.33 78.65 79.84 77.19 78.49 74.64 69.83 70.27 70.05 72.62 70.69 73.16 71.90
SMS(1-CNN) 78.87 72.95 75.56 74.23 81.08 81.57 80.77 81.17 73.01 67.67 69.87 68.75 72.06 70.34 70.00 70.17
SMS(2-CNN) 81.86 76.94 78.94 77.93 81.24 83.98 79.92 81.90 76.45 69.10 70.33 69.71 76.67 72.11 75.99 74.00
SMS(FC) 78.94 76.24 76.81 76.52 85.22 89.39 87.18 82.35 77.75 70.80 72.22 71.50 68.26 68.47 71.81 70.10
SMS(RNN) 80.63 76.37 78.96 77.64 82.24 83.84 82.85 83.34 77.45 69.44 71.56 70.48 76.34 72.66 73.38 73.02
SMS(Tanh) 83.58 77.74 78.06 77.90 89.29 87.74 87.15 87.44 78.50 73.21 77.93 75.50 74.77 68.79 73.57 71.10
SMS 83.85 77.48 79.46 78.46 89.77 91.09 89.15 90.11 79.36 72.98 78.14 75.47 78.82 73.69 76.97 75.29

Next, we evaluate the performance gain of the proposed methods
against state-of-the-art tools. Surprisingly, we found that the results
of the single-modality student network (SMS), are quite encourag-
ing. More specifcally, it keeps delivering the best performance in
all the four metrics on each type of vulnerability, and the relative
accuracy gains on reentrancy, timestamp dependence, integer over-
fow/underfow, and delegatecall over the state-of-the-art tool are
2.79%, 7.52%, 6.12%, and 5.97%, respectively.

Comparison with Deep Learning-Based Methods. We
further compare our method to other deep learning alternatives,
namely Vanilla-RNN [35], ReChecker [32], GCN [20], TMP [52], and
AME [24]. For a feasible comparison, Vanilla-RNN and ReChecker
are fed with the bytecode sequences, while GCN, TMP, and AME are
presented with the bytecode CFG. We illustrate the performance of
deep learning models in the middle of Table 1. Quantitative results
reveal that Vanilla-RNN and ReChecker have relatively poor perfor-
mance. Graph neural networks, GCN, TMP, and AME, which can
capture graph structural information, deliver better performance.
Technically, we speculate that the deep learning-based methods still
have difculties in coping with pure bytecode. In terms of F1-score,
SMS consistently outperforms other methods by a large margin on
the four types of vulnerabilities. Empirical evidences clearly reveal
the potential of using a teacher network to supervise the learn-
ing of a student network, which leads to impressive performance
gains. Moreover, the high accuracy obtained by the dual-modality
teacher (DMT) network suggests that it is useful to combine both
information of the source code and the bytecode.

4.3 Evaluation on Mutual Learning (RQ2)
By default, our cross-modality mutual learning losses consist of
three loss functions. To evaluate the efectiveness of the mutual
learning strategy, we modify the models by removing one of the
losses at each time (i.e., mutual learning loss, B2B loss, and S2B loss)
and report the results in Table 2.

Notably, without the mutual learning loss, the accuracy obtained
by SMS decreases by 1.80%, 1.52%, 1.85%, and 2.10% on the four
types of vulnerabilities, respectively. This indicates that the student
network indeed benefts from the teacher network and gains per-
formance improvements through cross-modality mutual learning

losses. Furthermore, without the transfer losses of B2B and S2B in
the overall losses, the accuracy acquired by the student network
decreases by as much as 2.81%, which shows the efcacy of the
transfer losses. Technically, the B2B loss and the S2B loss address
the modality inconsistency between source code and bytecode by
aligning the two modalities in the high-level feature space. In ad-
dition, we evaluate the efect of removing all the three losses and
observe that the performance degenerates signifcantly. In sum-
mary, our teacher-student network achieves efective performance
gains via the cross-modality mutual learning strategy.

4.4 Ablation Study (RQ3)
Study on Code Semantic-Modeling Module. Our code
semantic-modeling module utilizes a pre-trained BERT model for
feature preprocessing and a graph attention network for graph em-
bedding extraction. To evaluate the two components, we empirically
investigate several variants and conduct comparing experiments,
with results listed in Table 3.

For feature preprocessing, prior works [11] have confrmed that
features processed by a pre-trained model (e.g., Word2vec, GPT,
BERT) can achieve better performance than hand-crafted features.
This demonstrates that building a suitable model for feature prepro-
cessing is feasible yet efective. Therefore, we use the BERT model
to preprocess the bytecode features in the code semantic-modeling
module. Compared with Word2vec and GPT, BERT with a masked
language task and an adjacency block prediction task considers not
only instruction-level but also block-level information of the byte-
code CFG [48]. Meanwhile, the bidirectional transformer in BERT
embraces the ability to extract bidirectional information. For graph
embedding extraction, we resort to the graph attention network in
the code semantic-modeling module. It is worth mentioning that
traditional graph neural networks such as GCN fail to emphasize
the distinct importance of diferent nodes, which is explicitly con-
sidered in GAT by using an attention mechanism. Empirical results
suggest that GAT contributes to better performance in extracting
the graph embeddings.

Study on Teacher-Student Framework. By default, our pro-
posed teacher-student framework adopts a network structure with
a 3-layer CNN. Each CNN layer is followed by batch normalization,

2226

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Qian et al.

ACC
RE

PRE
F1

SMS(1-CNN)
SMS(2-CNN)

SMS(FC)
SMS(RNN)

SMS(Tanh)
SMS

(%)

66
68
70
72
74
76
78
80
82

ACC
RE

PRE
F1

SMS(1-CNN)
SMS(2-CNN)

SMS(FC)
SMS(RNN)

SMS(Tanh)
SMS

(%)

70

75

80

85

90

ACC
RE

PRE
F1

SMS(1-CNN)
SMS(2-CNN)

SMS(FC)
SMS(RNN)

SMS(Tanh)
SMS

(%)

66
68
70
72
74
76
78

ACC
RE

PRE
F1

SMS(1-CNN)
SMS(2-CNN)

SMS(FC)
SMS(RNN)

SMS(Tanh)
SMS

(%)

66
68
70
72
74
76
78

(a) Reentrancy (b) Timestamp (c) Overfow/Underfow (d) Delegatecall
Figure 5: Visually comparison of SMS and its variants on the four types of vulnerabilities.

rectifed linear unit, and max-pooling layers. To validate such kinds
of network architectures, we further try fve other alternatives. First,
we keep the batch normalization, rectifed linear unit, and max-
pooling layers, but change the 3-layer CNN to 1 or 2 layers. The two
variants are denoted as SMS(1-CNN) and SMS(2-CNN), respectively.
Then, we replace the convolution layer with a fully connected layer,
which we denote as SMS(FC). We also try replacing them with a
RNN layer, which we term as SMS(RNN). Finally, we replace the
ReLU activation layer with Tanh activation layer while keeping
the other layers fxed. This variant is denoted as SMS(Tanh). We
list the quantitative results in the middle of Table 3 and further
visualize the results in Figure 5. We may observe that: 1) the default
settings of SMS yield better results, 2) using a Tanh activation layer
or changing the number of CNN layers leads to a slight performance
drop, and 3) adopting RNN structure in the teacher network and
student network does not translate to performance gain.

5 RELATED WORK
Smart Contract Vulnerability Detection. Traditional eforts
for smart contract vulnerability detection mostly revolve around
static analysis and dynamic analysis methods. (1) Static analysis can
be further divided into formal verifcation, program analysis, and
symbolic execution. For example, [4] proposes a formal model to ver-
ify smart contract bytecode by using the Isabelle/HOL tool. [27] per-
forms symbolic execution on smart contracts and checks bugs based
on expert-defned rules. [40] conducts advanced program analysis
to infer semantic facts of data-fows in smart contracts. [15] devel-
ops an overfow detector that adopts a taint analysis-based tracking
technique to detect potential overfow vulnerabilities in Ethereum.
(2) Dynamic analysis methods discover potential vulnerabilities
in smart contracts by executing the contract code. [33] introduce
Serum, which exploits dynamic taint tracking to monitor data-fows
during contract execution to automatically detect and prevent basic
and advanced reentrancy attacks. [30] presents sFuzz, which iden-
tifes vulnerabilities by adopting a branch distance-driven fuzzing
technique. Smartian [9] leverages the data-fow-based feedback
to fnd meaningful transaction sequence orders, triggering more
contract states to detect vulnerabilities. [26] introduces a fully au-
tomatic fuzzing framework equipped with invocation ordering and
crucial branch revisiting to detect smart contract bugs.

Recent attempts have explored using deep learning networks for
vulnerability detection. [35] employs a sequential model to handle
smart contract bytecode sequences. [13] uses a dynamic vulnera-
bility detection framework that extracts features from transaction

data and classifes harmful transactions using machine learning
models. [52] proposes to cast the contract source code into a graph
structure and construct graph neural networks as the detection
model. [24] explores combining deep learning with expert patterns
to detect vulnerabilities in an explainable fashion. [49] presents a
hybrid deep learning model, which combines features from diferent
models to detect smart contract bugs. In this work, we go further
to explore a novel deep learning-based scheme, i.e., cross-modal
mutual learning, to improve smart contract bug detection.

Teacher-Student Network. Existing research [42] has shown
that transferring knowledge from a teacher network to a student
network is benefcial to improve the performance of the student
network. A teacher network often refers to a heavy, cumbersome
model, while a student network refers to a simple, lightweight
model. [21] designs a student network to address the math word
matching task under the supervision of a teacher network. Recently,
mutual learning techniques have been proposed for knowledge
transfer between networks. For example, [51] proposes a binocular
mutual learning framework, which achieves the compatibility of
the global view and the local view. [46] presents the multi- to single-
modality teacher-student network on the audio tagging task.

6 CONCLUSION
In this paper, we investigate whether mutual learning could help
in the challenging scenario where smart contract source code is
missing. We propose a cross-modality mutual learning strategy to
collaboratively train a dual-modality teacher network and a single-
modality student network. The student network, which serves as
the primary network, distills knowledge from the teacher and is
enhanced to reconstruct the missing modality. Extensive experi-
ments on four diferent types of vulnerabilities demonstrate that
our method consistently and signifcantly surpasses state-of-the-
art tools. It is worth pointing out that our proposed approach can
be extendable to other programs as long as they have the paired
modalities of source code and bytecode. We have also released
our implementations and a large-scale labeled benchmark dataset,
hoping to push forward the boundary of this research direction.

ACKNOWLEDGMENTS
This work was supported by the National Key R&D Program of
China under Grant 2021YFB2700500, the Key R&D Program of Zhe-
jiang Province under Grant 2022C01086 and Grant 2023C01217, and
by the Scientifc Research Fund of Zhejiang Provincial Education
Department under Grant Y202250832.

2227

Cross-Modality Mutual Learning for Enhancing Smart Contract Vulnerability Detection on Bytecode WWW ’23, April 30–May 04, 2023, Austin, TX, USA

REFERENCES
[1] 2022. Octopus. https://github.com/FuzzingLabs/octopus.
[2] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2018. Learning

to Represent Programs with Graphs. In International Conference on Learning
Representations.

[3] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A survey of attacks
on ethereum smart contracts (sok). In International conference on principles of
security and trust. Springer, 164–186.

[4] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gol-
lamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi,
Thomas Sibut-Pinote, Nikhil Swamy, et al. 2016. Formal verifcation of smart
contracts: Short paper. In Proceedings of the 2016 ACM workshop on programming
languages and analysis for security.

[5] Huashan Chen, Marcus Pendleton, Laurent Njilla, and Shouhuai Xu. 2020. A
survey on ethereum systems security: Vulnerabilities, attacks, and defenses. ACM
Computing Surveys (CSUR) 53, 3 (2020), 1–43.

[6] Jiachi Chen, Xin Xia, David Lo, John Grundy, Xiapu Luo, and Ting Chen. 2021.
Defectchecker: Automated smart contract defect detection by analyzing evm
bytecode. IEEE Transactions on Software Engineering (2021).

[7] Sijie Chen, Hanning Mi, Jian Ping, Zheng Yan, Zeyu Shen, Xuezhi Liu, Ning Zhang,
Qing Xia, and Chongqing Kang. 2022. A blockchain consensus mechanism that
uses Proof of Solution to optimize energy dispatch and trading. Nature Energy
(2022), 1–8.

[8] Weimin Chen, Xinran Li, Yuting Sui, Ningyu He, Haoyu Wang, Lei Wu, and Xiapu
Luo. 202. Sadponzi: Detecting and characterizing ponzi schemes in ethereum
smart contracts. Proceedings of the ACM on Measurement and Analysis of Com-
puting Systems 5, 2 (202), 1–30.

[9] Jaeseung Choi, Doyeon Kim, Soomin Kim, Gustavo Grieco, Alex Groce, and
Sang Kil Cha. 2021. Smartian: Enhancing smart contract fuzzing with static and
dynamic data-fow analyses. In 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 227–239.

[10] CoinMarketCap. 2022. Ethereum (ETH) price, charts, market cap, and other
metrics. https://coinmarketcap.com/currencies/ethereum.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[12] Vikram Dhillon, David Metcalf, and Max Hooper. 2017. The DAO hacked. In
Blockchain Enabled Applications. Springer, 67–78.

[13] Mojtaba Eshghie, Cyrille Artho, and Dilian Gurov. 2021. Dynamic Vulnerabil-
ity Detection on Smart Contracts Using Machine Learning. In Evaluation and
Assessment in Software Engineering. 305–312.

[14] Josselin Feist, Gustavo Grieco, and Alex Groce. 2019. Slither: a static analysis
framework for smart contracts. In 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB). IEEE, 8–15.

[15] Jianbo Gao, Han Liu, Chao Liu, Qingshan Li, Zhi Guan, and Zhong Chen.
2019. Easyfow: Keep ethereum away from overfow. In 2019 IEEE/ACM 41st
International Conference on Software Engineering: Companion Proceedings (ICSE-
Companion). IEEE, 23–26.

[16] Ningyu He, Ruiyi Zhang, Haoyu Wang, Lei Wu, Xiapu Luo, Yao Guo, Ting Yu, and
Xuxian Jiang. 2021. {EOSAFE}: Security Analysis of {EOSIO} Smart Contracts.
In 30th USENIX Security Symposium (USENIX Security 21). 1271–1288.

[17] Huiwen Hu and Yuedong Xu. 2021. SCSGuard: Deep Scam Detection for Ethereum
Smart Contracts. ArXiv abs/2105.10426 (2021).

[18] Inspex. 2021. Reentrancy Attack on Cream Finance. https://inspexco.medium.
com/reentrancy-attack-on-cream-fnance-incident-analysis-1c629686b6f5.

[19] Bo Jiang, Ye Liu, and WK Chan. 2018. Contractfuzzer: Fuzzing smart contracts
for vulnerability detection. In 2018 33rd IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 259–269.

[20] Thomas N Kipf and Max Welling. 2016. Semi-supervised classifcation with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[21] Zhenwen Liang and Xiangliang Zhang. 2021. Solving Math Word Problems with
Teacher Supervision. In IJCAI. 3522–3528.

[22] Iuon-Chang Lin and Tzu-Chun Liao. 2017. A survey of blockchain security issues
and challenges. Int. J. Netw. Secur. 19, 5 (2017), 653–659.

[23] Shaoying Liu, Honghui Li, Zhouxian Jiang, Xiuru Li, Feng Liu, and Yan Zhong.
2021. Rigorous code review by reverse engineering. Information and Software
Technology 133 (2021), 106503.

[24] Zhenguang Liu, Peng Qian, Xiang Wang, Lei Zhu, Qinming He, and Shouling
Ji. 2021. Smart Contract Vulnerability Detection: From Pure Neural Network to
Interpretable Graph Feature and Expert Pattern Fusion. In IJCAI. 2751–2759.

[25] Zhenguang Liu, Peng Qian, Xiaoyang Wang, Yuan Zhuang, Lin Qiu, and Xun
Wang. 2021. Combining graph neural networks with expert knowledge for
smart contract vulnerability detection. IEEE Transactions on Knowledge and Data
Engineering (2021).

[26] Zhenguang Liu, Peng Qian, Jiaxu Yang, Lingfeng Liu, Xiaojun Xu, Qinming He,
and Xiaosong Zhang. 2023. Rethinking Smart Contract Fuzzing: Fuzzing With
Invocation Ordering and Important Branch Revisiting. IEEE Transactions on

Information Forensics and Security 18 (2023), 1237–1251.
[27] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.

2016. Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security. 254–269.

[28] Giovanni Mirabelli and Vittorio Solina. 2020. Blockchain and agricultural supply
chains traceability: research trends and future challenges. Procedia Manufacturing
42 (2020), 414–421.

[29] Bernhard Mueller. 2017. A framework for bug hunting on the Ethereum
blockchain. https://github.com/ConsenSys/mythril.

[30] Tai D Nguyen, Long H Pham, Jun Sun, Yun Lin, and Quang Tran Minh. 2020.
sfuzz: An efcient adaptive fuzzer for solidity smart contracts. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering. 778–788.

[31] Purathani Praitheeshan, Lei Pan, Jiangshan Yu, Joseph K. Liu, and R. Doss. 2019.
Security Analysis Methods on Ethereum Smart Contract Vulnerabilities: A Survey.
ArXiv abs/1908.08605 (2019).

[32] Peng Qian, Zhenguang Liu, Qinming He, Roger Zimmermann, and Xun Wang.
2020. Towards automated reentrancy detection for smart contracts based on
sequential models. IEEE Access 8 (2020), 19685–19695.

[33] Michael Rodler, Wenting Li, Ghassan O Karame, and Lucas Davi. 2018. Sereum:
Protecting existing smart contracts against re-entrancy attacks. arXiv preprint
arXiv:1812.05934 (2018).

[34] Michael Rodler, Wenting Li, Ghassan O Karame, and Lucas Davi. 2021. EVMPatch:
timely and automated patching of ethereum smart contracts. In 30th {USENIX}
Security Symposium ({USENIX} Security 21).

[35] Wesley Joon-Wie Tann, X. Han, Sourav Sengupta, and Y. Ong. 2018. Towards Safer
Smart Contracts: A Sequence Learning Approach to Detecting Vulnerabilities.
ArXiv abs/1811.06632 (2018).

[36] Parity Technologies. 2021. Security alert: Parity wallet (multi-sig wallets). https:
//www.parity.io/security-alert-2/.

[37] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil Takhaviev,
Evgeny Marchenko, and Yaroslav Alexandrov. 2018. Smartcheck: Static analysis
of ethereum smart contracts. In 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB). 9–16.

[38] Christof Ferreira Torres, Julian Schütte, and Radu State. 2018. Osiris: Hunting
for integer bugs in ethereum smart contracts. In Proceedings of the 34th Annual
Computer Security Applications Conference. 664–676.

[39] Christof Ferreira Torres, Mathis Steichen, et al. 2019. The art of the scam: De-
mystifying honeypots in ethereum smart contracts. In 28th USENIX Security
Symposium (USENIX Security 19). 1591–1607.

[40] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian
Buenzli, and Martin Vechev. 2018. Securify: Practical security analysis of smart
contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. 67–82.

[41] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[42] Xionghui Wang, Jian-Fang Hu, Jian-Huang Lai, Jianguo Zhang, and Wei-Shi
Zheng. 2019. Progressive teacher-student learning for early action prediction. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
3556–3565.

[43] Gavin Wood et al. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151, 2014 (2014), 1–32.

[44] Valentin Wüstholz and Maria Christakis. 2020. Harvey: A greybox fuzzer for
smart contracts. In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
1398–1409.

[45] Dylan Yaga, Peter Mell, Nik Roby, and Karen Scarfone. 2019. Blockchain technol-
ogy overview. arXiv preprint arXiv:1906.11078 (2019).

[46] Yifang Yin, Harsh Shrivastava, Ying Zhang, Zhenguang Liu, Rajiv Ratn Shah,
and Roger Zimmermann. 2021. Enhanced Audio Tagging via Multi-to Single-
Modal Teacher-Student Mutual Learning. In Proceedings of the AAAI conference
on artifcial intelligence, Vol. 35. 10709–10717.

[47] Zeping Yu, Rui Cao, Qiyi Tang, Sen Nie, Junzhou Huang, and Shi Wu. 2020. Order
matters: Semantic-aware neural networks for binary code similarity detection. In
Proceedings of the AAAI conference on artifcial intelligence, Vol. 34. 1145–1152.

[48] Zeping Yu, Wenxin Zheng, Jiaqi Wang, Qiyi Tang, Sen Nie, and Shi Wu. 2020.
Codecmr: Cross-modal retrieval for function-level binary source code matching.
Advances in Neural Information Processing Systems 33 (2020), 3872–3883.

[49] Lejun Zhang, Weijie Chen, Weizheng Wang, Zilong Jin, Chunhui Zhao, Zhennao
Cai, and Huiling Chen. 2022. Cbgru: A detection method of smart contract
vulnerability based on a hybrid model. Sensors 22, 9 (2022), 3577.

[50] Mengya Zhang, Xiaokuan Zhang, Yinqian Zhang, and Zhiqiang Lin. 2020.
{TXSPECTOR}: Uncovering attacks in ethereum from transactions. In 29th
USENIX Security Symposium (USENIX Security 20). 2775–2792.

[51] Ziqi Zhou, Xi Qiu, Jiangtao Xie, Jianan Wu, and Chi Zhang. 2021. Binocular
Mutual Learning for Improving Few-shot Classifcation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 8402–8411.

2228

https://github.com/FuzzingLabs/octopus
https://coinmarketcap.com/currencies/ethereum
https://inspexco.medium.com/reentrancy-attack-on-cream-finance-incident-analysis-1c629686b6f5
https://inspexco.medium.com/reentrancy-attack-on-cream-finance-incident-analysis-1c629686b6f5
https://github.com/ConsenSys/mythril
https://www.parity.io/security-alert-2/
https://www.parity.io/security-alert-2/

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

[52] Yuan Zhuang, Zhenguang Liu, Peng Qian, Qi Liu, Xiang Wang, and Qinming He.
2020. Smart Contract Vulnerability Detection using Graph Neural Network. In
IJCAI. 3283–3290.

APPENDIX

A DEFINITIONS OF BYTECODE VALUES AND
INSTRUCTIONS

We present the 11 categories of bytecode values and their corre-
sponding defnitions. Moreover, we list the distinctive opcodes used
as features to represent the binary instruction operations.
• 0x00 - 0x0B: STOP, ADD, MUL, SUB, DIV, SDIV, MOD, SMOD, ADDMOD,
MULMOD, EXP, SIGNEXTEND (Stop and Arithmetic Operations).

• 0x10 - 0x1A: LT, GT, SLT, SGT, EQ, ISZERO, AND, OR, XOR, NOT, BYTE,
SHL, SHR, SAR (Comparison and Bitwise Logic Operations).

• 0x20: KECCAK256 (KECCAK256 Method).
• 0x30 - 0x3E: ADDRESS, BALANCE, ORIGIN, CALLER, CALLVALUE,
CALLDATALOAD, CALLDATASIZE, etc (Environmental Information).

• 0x40 - 0x45: BLOCKHASH, COINBASE, TIMESTAMP, NUMBER,
DIFFICULTY, GASLIMIT, CHAINID, etc (Block Information).

• 0x50 - 0x5B: POP, MLOAD, MSTORE, MSTORE8, SLOAD, SSTORE, JUMP,
JUMPI, PC, etc (Stack, Memory, Storage and Flow Operations).

• 0x60 - 0x7F: PUSH1 – PUSH32 (Push Operations).
• 0x80 - 0x8F: DUP1 – DUP16 (Duplication Operations).
• 0x90 - 0x9F: SWAP1 – SWAP16 (Exchange Operations).
• 0xA0 - 0xA4: LOG0 – LOG4 (Logging Operations).
• 0xF0 - 0xFF: CALL, RETURN, DELEGATECALL (System Operations).

B DETAILS OF THE DATASET
Our objective in constructing the dataset is to collect a set of real-
world Ethereum smart contracts, which can serve as a depository
suite for security research on smart contracts. In particular, this
dataset can be used to evaluate the efectiveness of smart contract
vulnerability detection tools. Here, we further present the specifc
statistics of the dataset collection and labeling strategies.

Table 4 showcases the dataset statistics. Specifcally, we have col-
lected a total of 514, 880 functions from available 42, 910 Ethereum
smart contracts with source code. In the 514, 880 functions, 701
functions of 680 contracts have the reentrancy (RE) vulnerability
(i.e., label = 1). 3, 368 functions of 2, 242 contracts possess the times-
tamp dependence (TD) vulnerability. Around 3, 503 functions of
1, 368 contracts have the integer overfow/underfow (IO) vulnera-
bility. 149 functions of 136 contracts possess the delegatecall (DT)
vulnerability.

Dataset Labeling. To facilitate data labeling, we refer to sev-
eral patterns to flter out suspicious functions, which are then
handed over to human experts for further manual verifcation.
Taking the timestamp dependence vulnerability as an example,
pattern TDInvocation models whether there exists an invocation
to block.timestamp in a function. TDAssign checks whether the
value of block.timestamp is assigned to other variables or passed
to a condition statement as a parameter, and TDContaminate vali-
dates if block.timestamp may contaminate the triggering condition
of critical operations. We consider a function as suspicious to have
a timestamp dependence vulnerability if it fulflls the combined
pattern: TDInvocation ∧ (TDAssign ∨ TDContaminate). We then
hand over the suspicious ones to peers with specialized knowledge

Qian et al.

Table 4: Dataset Statistics. There are four types of vulnerabil-
ities in the benchmark dataset.

Functions RE. Functions TD. Functions IO. Functions DT. Functions
514,880 701 / 2,505 3,368/ 6,285 3,503 / 10,774 149 / 436

Contracts RE. Contracts TD. Contracts IO. Contracts DT. Contracts
42,910 680 / 2,385 2,242 / 4,490 1,368 / 7,183 136 / 414

for labeling. We have released the benchmark dataset on Github,
where more details on the dataset and annotations can be found.

C TRAINING DETAILS OF BERT
It is worth mentioning that the BERT network is of several advan-
tages [11]. (1) The in-depth pre-training task and fne-tuning task
for the BERT contribute to yielding better semantic features. (2)
The masked language task (MLM) and adjacency block prediction
task (ABP) can help the BERT obtain both the instruction-level and
the block-level information in the control fow graph (CFG). In-
spired by the success of the BERT network in handling the program
instructions, we resort to a pre-trained model BERT to deal with
the bytecode basic blocks in the CFG. Empirically, in our work, the
optimized BERT indeed has the ability to generate better semantic
embeddings for the bytecode basic blocks.

Specifcally, to pre-train a BERT network for processing the
bytecode feature, we need to provide a pre-training strategy and an
instruction training dataset. First, we construct a vocabulary, i.e.,
vocab, to map the word piece (i.e., instruction) into the unique id
(i.e., <ID, Word>) for the bytecode instructions. Then, we pre-train
the BERT model using more than one million lines of instructions
from scratch with following confgurations: 1) learning rate = 2e-5,
2) train steps = 2,000, 3) batch size = 32, and 4) max sequence length
= 64. Dimension for BERT pre-training embedding is 256.

Considering the discrepancy between diferent vulnerabilities,
we design a dedicated fne-tuning task for the pre-trained BERT,
from which we expect that the fne-tuned BERT is able to encode in-
structions with vulnerability characteristics more accurately. More-
over, using the fne-tuned BERT to extract the block embeddings of
CFG could alleviate the noise in subsequent graph feature extrac-
tion. For each vulnerability, we enforce more than 100 thousand
instructions for model fne-tuning with the default parameter set-
tings: 1) learning rate = 2e-5, 2) train epoch = 10, 3) batch size = 32,
and 4) max sequence length = 64. Note that, for each vulnerability,
we have an independent fne-tuned BERT model. Finally, we exploit
the fne-tuned BERT model to extract the semantic features of the
bytecode basic blocks. As a side contribution, we have also re-
leased a pre-trained BERT model and four fne-tuned BERT models,
hoping to facilitate community research.

D BROADER IMPACT
In this work, we proposed a novel cross-modality mutual learning
framework to improve smart contract vulnerability detection on
bytecode. To the best of our knowledge, this is the frst work that
investigates distilling knowledge from the teacher network for
reconstructing the missing source code modality, which completes
the bytecode modality towards more precise vulnerability detection.
The attempt might inspire future research in this feld.

2229

	Abstract
	1 Introduction
	2 Preliminary
	3 Our Approach
	3.1 Code Semantic-Modeling Module
	3.2 Teacher-Student Framework
	3.3 Cross-Modality Mutual Learning Strategy

	4 Evaluation
	4.1 Experimental Setup
	4.2 Performance Comparison (RQ1)
	4.3 Evaluation on Mutual Learning (RQ2)
	4.4 Ablation Study (RQ3)

	5 Related Work
	6 Conclusion
	Acknowledgments
	References
	A Definitions of Bytecode Values and Instructions
	B Details of The Dataset
	C Training Details of BERT
	D Broader Impact

