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ABSTRACT 
Over the past couple of years, smart contracts have been plagued 
by multifarious vulnerabilities, which have led to catastrophic f-
nancial losses. Their security issues, therefore, have drawn intense 
attention. As countermeasures, a family of tools has been developed 
to identify vulnerabilities in smart contracts at the source-code level. 
Unfortunately, only a small fraction of smart contracts is currently 
open-sourced. Another spectrum of work is presented to deal with 
pure bytecode, but most such eforts still sufer from relatively low 
performance due to the inherent difculty in restoring abundant 
semantics in the source code from the bytecode. 

This paper proposes a novel cross-modality mutual learning 
framework for enhancing smart contract vulnerability detection 
on bytecode. Specifcally, we engage in two networks, a student 
network S as the primary network and a teacher network T as the
auxiliary network. T takes two modalities, i.e., source code and its
corresponding bytecode as inputs, while S is fed with only bytecode. 
By learning from T, S is trained to infer the missed source code 
embeddings and combine both modalities to approach precise vul-
nerability detection. To further facilitate mutual learning between 
S and T, we present a cross-modality mutual learning loss and two 
transfer losses. As a side contribution, we construct and release 
a labeled smart contract dataset that concerns four types of com-
mon vulnerabilities. Experimental results show that our method 
signifcantly surpasses state-of-the-art approaches. 

CCS CONCEPTS 
• Security and privacy → Software security engineering; •
Computing methodologies → Knowledge representation and
reasoning.
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1 INTRODUCTION 
Blockchain has received considerable attention both in practice 
and in the research community over the past decade [28, 45]. A 
blockchain is essentially a distributed and shared ledger maintained 
by worldwide bookkeeping nodes (a.k.a miners), which follow a
well-designed consensus protocol that dictates the appending of 
new blocks [39]. The duplicate ledgers distributedly stored in the 
bookkeeping nodes enforce transactions immutable, endowing the 
blockchain with tamper-proof and decentralized nature [7]. 

Modern blockchains, such as Ethereum [43], enable the execu-
tion of smart contracts, which are programs running on top of a
blockchain system [39]. Developers are capable of implementing 
arbitrary rules into the smart contract code for controlling digital 
assets. Once the code is deployed on the blockchain, its defned 
rules are automatically executed. Owing to the immutability of 
blockchain, the execution of a smart contract strictly complies with 
its pre-defned rules (i.e., contract terms) and is unalterable, making 
it impartial to all stakeholders. 

So far, Ethereum reaches a market capitalization of over $178 
billion [10]. As it becomes more prevalent and carries more value, 
attackers become more incentivized to unearth and exploit poten-
tial problems in smart contracts. In fact, Ethereum smart contracts 
have already faced a considerable number of devastating vulnera-
bility attack incidents, which have resulted in substantial economic 
losses [31]. For example, in 2017, over $150 million worth of Ether 
(i.e., the cryptocurrency of Ethereum) was frozen due to the delegate-
call vulnerability [36]. Recently, attackers exploited the reentrancy
vulnerability in the Cream.Finance contract to steal more than $130
million worth of digital assets [18]. Distinct from conventional 
programs that can be updated when bugs are exposed, there is no 
way to patch smart contract bugs unless subverting the blockchain 
(namely controlling more than 51% computing power of the whole
blockchain network [22]), which is almost impossible. Obviously, 
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various faws in smart contracts have become a serious security 
threat. Efective vulnerability checkers for smart contracts are much 
coveted, ideally before their deployments to the blockchain. 

Existing Methods and Challenges. Upon scrutinizing the re-
leased implementations of existing methods, we empirically found 
that current bug detection approaches for smart contracts can be 
roughly funneled into two categories. One line of work [19, 40] re-
volves around conventional static analysis and fuzzing techniques. 
They leverage fxed patterns to identify vulnerabilities. However, it 
is non-trivial to defne perfect patterns for complex vulnerabilities.
Another line of efort [24, 52] builds upon the superiority of deep 
learning in handling sophisticated data, leading to impressive per-
formance gains. It is worth mentioning that current methods tend 
to detect vulnerabilities from contract source code since it contains 
complete semantic information. Unfortunately, the vast majority of 
smart contracts are not open-sourced and only the bytecode can be 
readily accessed [17]. While existing works [6] can handle bytecode 
solely, they fail to obtain a high accuracy due to the difculty in 
restoring rich control and data fow semantics from the bytecode. 

Notwithstanding the signifcant diferences between source code 
and its compiled bytecode, their intimate connection is undeni-
able and one form may appear incomplete without the other. In 
vulnerability detection, these two modalities could complement 
each other, where we expect the source code to contribute com-
prehensive control and data fow dependencies while the bytecode 
contributes succinct instruction information. However, in smart 
contract vulnerability detection on bytecode, the challenge is that 
we have only bytecode available while the source code is missing. It 
is well known that reverting the bytecode back to the source code 
is extremely difcult, especially for smart contracts [23]. We are 
ambitious to know whether it is possible to improve smart contract 
vulnerability detection on bytecode with the assistance of source 
code even when the source code is missing in the inference phase. 

This motivates us to come up with the following three key de-
signs. (1) Using the collected 40K smart contracts that have both
source code and bytecode, we train a teacher network T that ab-
sorbs two modalities, viz., source code and corresponding bytecode
as inputs, and outputs the binary label which indicates whether 
the tested function has a specifc vulnerability. Technically, we cast 
both source code and bytecode into graph structures and use graph 
attention networks to handle them. (2) We then train a student
network S, namely the primary network, that distills knowledge
from a teacher network T, namely the auxiliary network. Specif-
cally, by learning from T, S has the capacity to predict source code 
embeddings from bytecode embeddings. In the inference phase, S
could infer the missed source code embeddings from the bytecode 
and combine both modalities to approach accurate detection. (3)
To further enable mutual learning between S and T, we propose a 
cross-modality mutual learning strategy framed with theoretically 
motivated losses. We would like to highlight that we do not try 
to reconstruct the entire source code, instead, we infer the source 
code embeddings that are benefcial to enhance the accuracy of 
vulnerability detection on bytecode. 

Extensive experiments show that our approach achieves signif-
icant performance gains over the state-of-the-art: accuracy from
81% to 84%, 82% to 90%, 73% to 79%, and 73% to 79% on four types 
of common vulnerabilities, respectively. 

To summarize, we make the following key contributions:
• We investigate whether the mutual learning strategy could
help in the challenging scenario where smart contract source
code is missing. To the best of our knowledge, we are the
frst to investigate the idea of utilizing mutual learning to
enhance smart contract vulnerability detection.

• We propose a novel teacher-student framework for smart
contract vulnerability detection on bytecode, achieving ef-
fective knowledge transfer from a dual-modality teacher
network to a single-modality student network.

• Our approach sets the new state-of-the-art performance and
overall provides interesting insights. In the spirit of open sci-
ence, our implementations and dataset are released1, hoping
to facilitate future research.

2 PRELIMINARY 
Problem Defnition. Presented with a smart contract function
� in bytecode, our goal is to learn a student network S that takes 
only bytecode as input and is able to predict its label Y ∈ {0, 1}. Y 
= 1 denotes � has a certain type of vulnerability and Y = 0 indicates 
f is safe. We are interested to know whether S could achieve more
precise predictions after the collaborative training with a teacher 
network T fed with both source code and bytecode. In this work, we 
concentrate on the following four types of common vulnerabilities. 

Reentrancy is a well-known vulnerability that causes the no-
torious DAO attack [12]. When a function �1 transfers money to a
recipient contract � , due to the default settings of smart contracts, 
the fallback function �� of � will be automatically triggered [24].
�� may invoke �1 to conduct an illegal second-time transfer. As the
current execution of �1 waits for the frst-time transfer to fnish, the
balance of � may not be reduced yet, making �1 wrongly believe that
� still has enough balance and transfer to � again. More specifcally, 

transfer trigger
the expected execution trace is �1 −−−−−→ � −−−−→ �� → ��� ,

transfer trigger
whereas the actual trace is (�1 −−−−−→ � −−−−→ �� ) (� ) → ��� .
As a result, attackers can exploit the reentrancy vulnerability to 
succeed in stealing extra Ether for � − 1 times. 

Timestamp dependence vulnerability exists when a function
uses block timestamps as a condition to perform critical operations, 
e.g., using block.timestamp of a future block to determine the win-
ner of a gambling game. The miner who mines the block has the
capacity to alter the timestamp of the block within a short time
interval (roughly 900 seconds) [50]. Therefore, malicious miners
may manipulate the block timestamp to gain illegal profts.

Integer overfow/underfow happens when an arithmetic op-
eration attempts to generate a numeric value that is outside the 
range of the integer type. For example, if a number � is of type uint8,
its value is stored as a 8-bits unsigned number ranging from 0 to 
28 −1. When we try to assign a value out of this range to � , that is, ei-
ther larger than 255 or lower than 0, the integer overfow/underfow 
vulnerability will occur. 

Delegatecall is almost identical to a classical function call
method but with a critical diference. It endows the caller with
the ability to put the code of the callee contract into the current
execution environment of the caller contract [40]. However, the

1Code is available at https://github.com/Messi-Q/WWW2023
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pragma solidity 0.4.2; contract DAO
{ function withdraw(){......}}
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Figure 1: Illustration of extracting the graph semantic embed-
dings of source code and bytecode, i.e., G� and G� , respectively.
(a) A semantic graph extractor and a GAT network are de-
signed to handle the source code. (b) The BERT model and a
GAT network are exploited to deal with the bytecode.

execution environments of the caller and the callee might be quite
diferent from each other, running a function of the callee in the
environment of the caller may lead to unexpected results. Attackers
may exploit the characteristic of delegatecall to perform malicious
activities. As such, we need to evaluate if a delegatecall will indeed
cause losses, e.g., Ether frozen [3].

Why focus on these vulnerabilities. We mainly focus on
the 4 aforementioned vulnerabilities since: (i) In real attacks, 70%
of fnancial losses in Ethereum smart contracts are caused by these 
vulnerabilities [5]. (ii) Existing works [15, 31, 33] have shown that
these vulnerabilities are more common in Ethereum smart contracts. 
(iii) They manifest the typical characteristics of Ethereum smart
contract vulnerabilities, e.g., lack of run-time checks (integer over-
fow/underfow), lack of privilege controls (delegatecall), misusage
of on-chain information (timestamp dependence), and lack of care
for interactions across diferent contracts (reentrancy).

3 OUR APPROACH 
Method Overview. The overall pipeline of our proposed frame-
work consists of three key components: 1) a code semantic-
modeling module, 2) a teacher-student framework, and 3) the cross-
modality mutual learning strategy. Specifcally, in the training stage,
we are given a set of labeled smart contract functions with both byte-
code and source code available. We frst develop automated tools 
to cast the source code and the bytecode of a smart contract into a 
code semantic graph and a control fow graph, respectively. Their 
graph features are extracted by using graph attention networks. 
Thereafter, we construct a teacher-student framework, which con-
tains a dual-modality teacher network T and a single-modality 
student network S. Finally, we leverage a mutual learning loss and 
two transfer losses to collaboratively train the two networks. In 
the inference stage, when presented with bytecode merely, S is able
to predict the missing source code embeddings and combine both 
modalities to approach more accurate detection. We would like 
to highlight that the student network S is the main network and 
the teacher network T is only used in the training stage. In what 
follows, we will elaborate on the three components, respectively. 
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function withdraw(uint sum) public{ 
  if (Balance[msg.sender] < sum) { 
   throw;
  }
  require(msg.sender.call.value(sum)());
  Balance[msg.sender] -= sum;
 }

Core Node Normal Node Control Flow Edge Data Flow Edge Fallback EdgeNiCi

Code Semantic Graph Graph Normalization

Figure 2: The frst fgure shows the source code of a smart 
contract function, while the second and third fgures illus-
trate the process of code semantic graph construction and 
normalization, respectively. 

3.1 Code Semantic-Modeling Module 
Existing works [2, 52] have shown that programs can be character-
ized as symbolic graphs, which are able to preserve rich structural 
and semantic information. Inspired by this, we transform the source 
code and the bytecode of a smart contract into specifc graphs, and 
then adopt graph attention networks to handle them for extracting 
the graph features. The overview of graph embedding extraction is 
illustrated in Figure 1. 

3.1.1 Graph Processing. For source code, we design a code seman-
tic graph (CSG) to frame the control and data dependencies in the 
contract code. Following [24], we extract two kinds of graph nodes 
and three types of edges. Nodes in CSG symbolize diferent pro-
gram elements such as key function calls and variables, while edges 
capture the control and data fow connections between nodes. Par-
ticularly, each edge has a temporal order, which is consistent with 
its sequential order in the code. 

For bytecode, we extract the control fow graph (CFG), which
comprises bytecode blocks (i.e., nodes) and control fow edges. A
bytecode block contains a set of instructions. Prior work [47] has
revealed the success of the BERT model in handling program in-
structions. Heuristically, we resort to the BERT network for encod-
ing the bytecode block. (1) We pre-train a BERT model through
an instruction-level task and a block-level task. (i) For instructions 
inside a block, a masked language task (MLM) is engaged to obtain 
the instruction-level information. (ii) For blocks that are connected 
to neighbors, we adopt an adjacency block prediction task (ABP) 
to capture the control fow information and relationships between 
adjacent blocks. (2) Considering the discrepancy between diferent
vulnerabilities, we enforce a dedicated fne-tuning task of the pre-
trained BERT on each type of vulnerability. (3) Finally, the features
of bytecode blocks are extracted by the fne-tuned BERT. Notably, 
we have put the training details of BERT in Appendix C. 

Code Semantic Graph Construction. To clearly illustrate
how to characterize the source code of a smart contract function 
into a code semantic graph, we provide a simplifed example in 
Figure 2. Taking contract Victim as an example, suppose we are
to evaluate whether its withdraw function possesses a reentrancy
vulnerability. As shown in the middle of Figure 2, function with-
draw is frst modeled as a core node �1 since its inner code contains
the call.value invocation (which is denoted as a key call). Then,
following the temporal order of the code, we treat the critical state 
variable �������[���.������ ] as a core node �2, while the local
variable ��� is modeled as a normal node �1. The invocation to
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contract SevenToken {
  address owner;
  mapping (address => uint256) balances; 
  function SevenToken() { owner = msg.sender; }
  function deposit() payable {
     balances[msg.sender] += msg.value; }
  function withdraw(address to, uint256 amount) {
      require(balances[msg.sender] > amount);
      to.call.value(amount)(); 
  }
}

1
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11

Source code
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Instructions

Figure 3: The frst fgure shows the contract source code, while its compiled bytecode is depicted in the second fgure. The third 
fgure shows the corresponding bytecode instructions. The fourth fgure illustrates the construction of the control fow graph. 

call.value is also extracted as a core node �3, and the fallback func-
tion of a virtual attack contract is characterized by the normal node 
�� . To capture rich semantic dependencies between these nodes,
we construct three categories of edges, namely control fow, data
fow, and fallback edges [25]. Each edge describes a path that might
be traversed through by the function under test, and the temporal 
number of edges stands for its sequential order in the function. 

Considering diferent functions yield graphs with distinct struc-
tures, we are motivated by [52] and normalize the code semantic 
graph by removing all normal nodes and merging their features 
into their nearest core nodes. For example, normal node �1 in the
second fgure of Figure 2 is removed, with its feature aggregated 
to the nearest core nodes �2 and �3. For a normal node that has
multiple nearest core nodes, its feature is passed to all of them. The 
edges connected to the removed normal nodes are preserved but 
with their start or end nodes moving to the corresponding core 
nodes. The third fgure of Figure 2 illustrates the normalized graph 
of the second fgure of Figure 2. As graph neural networks are 
usually fat in propagating information, the normalization process 
also helps highlight the core nodes. 

Control Flow Graph Construction. To clearly depict the
construction process of the bytecode control fow graph, we present 
a specifc example in Figure 3. Given the smart contract source code, 
we employ a public compiler to translate it into the bytecode and de-
velop the automated tool BinaryCFGExtractor2 to extract a control
fow graph of the compiled bytecode. A bytecode control fow graph 
(CFG) consists of bytecode basic blocks (i.e., nodes) and control fow
edges. (1) Our frst insight is that the basic block comprises the
sequence of EVM instructions. One basic block is connected to sub-
sequent basic blocks through a branch instruction in the CFG [34]. 
In our analysis, we treat the branch instructions (e.g., JUMP, JUMPI,
RETURN) as the sign of the end of a basic block, which means 
that the branch instruction is regarded as a fag to segment the 
basic blocks. To further show the bytecode instructions, we list the 
distinctive bytecode value and its corresponding defnitions and 
instructions in Appendix A. (2) Our second insight is that the basic
blocks are closely related to each other by the control fow edges 
rather than being isolated. A control fow edge captures the control 
fow dependencies of a conditional statement or a call statement.
(3) There are three main categories of control fow edges in a CFG,
which are denoted as diferent colors in the right of Figure 3. The
unconditional jump instructions (i.e., JUMP) are highlighted with
blue arrows. True or false conditional jump instructions (i.e, JUMPI)
are demonstrated with green and red arrows, respectively.

2Code is available at https://github.com/Messi-Q/BinaryCFGExtractor

3.1.2 Graph Embedding Distillation. After obtaining the two kinds 
of graphs, we build upon the architecture of the graph attention 
network (GAT) [41] to learn the high-level graph semantic embed-
dings of both the source code and the bytecode, i.e., G� and G�
∈ R� , respectively. The graph embedding extraction consists of two 
phases, namely a message propagation phase and an aggregation
phase. In the message propagation phase, the network passes in-
formation along edges by following their sequential orders in the 
code. As an example, at time step � , the message fows through the 
�-th temporal edge �� and updates the hidden state of the end node
of �� . Thereafter, GAT computes the hidden states of every node
by attending to its neighbors as: � ∑

ℎ®
′ 
= � �� � Wℎ®�

� 
(1)� � ∈N� 

where � is a nonlinear activation function, N� denotes the neighbors
of node � in the graph, W is a weight matrix. �� � represents the
attention coefcient that is given by:� � 

��� T (®a� [Wℎ®� ⊕ Wℎ®� ]) 
�� � = Í � � (2) 

� ∈N� 
��� T (®a� [Wℎ®� ⊕ Wℎ®� ])

where ⊕ denotes concatenation, a® is the weight vector of a single-
layer MLP, and T is the LeakyReLU function. After successively
traversing all edges, GAT generates the fnal high-level graph se-
mantic embedding G ∈ Rd by aggregating the hidden states of all 
participating nodes in the graph: ∑� ®′ ®′G = 

�=1 
� (P���� (M1ℎ� + b1)) ⊙ P(M2ℎ� + b2) (3) 

where ⊙ denotes the element-wise product, � is an activation func-
tion. Matrix Mj and bias vector bj, with subscript � ∈ {1, 2}, are
trainable network parameters. � represents the number of nodes 
and P is a multi-layer perceptron.

3.2 Teacher-Student Framework 
After extracting the two kinds of graph embeddings, we introduce 
a novel teacher-student framework that addresses the task of en-
hancing smart contract vulnerability detection on bytecode in a 
mutual learning fashion. 

Dual-Modality Teacher Network (DMT). The dual-
modality teacher network T takes the two graph embeddings, 
G� and G� , as inputs. As depicted in the right of Figure 4, (1)
the teacher network builds a semantic extractor, which utilizes a
3-layer CNN, to process the graph embeddings. The convolution
flter size is set to 1×3 and the numbers of flters are set to 64, 128,
and 256, respectively. (2) Batch normalization (BN), rectifed linear
unit (ReLU), and max pooling are employed after each CNN layer,
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Figure 4: A high-level overview of our pipeline. (1) Code semantic-modeling module, which casts the source code and the 
bytecode into a code semantic graph and a control fow graph, respectively, and adopts a graph attention network (GAT) to 
extract graph embeddings. (2) Teacher-student framework, which consists of a dual-modality teacher network and a single-
modality student network. A mutual learning loss and two transfer losses are engaged to collaboratively train the two networks. 

which highlights the signifcant elements and avoids overftting. (3)
The two graph embeddings are then passed into a global average 
pooling layer respectively to generate the semantic intermediate 
representations of the source code and the bytecode, hs and hb 

t t .
Next, hs and hb are fused by concatenation, namely ht = hs ⊕ ht

b.t t t 
(4) The fused feature vector ht is fnally fed into a fully connected
layer with a sigmoid activation to output the label Y� .

Single-Modality Student Network (SMS). The single-
modality student network S takes the graph embedding G� of the
bytecode as input. Technically, we adopt the sub-network of the 
teacher as the student network, but with particular modifcations to 
support the cross-modality knowledge transfer. We use the interme-
diate representations learned by the teacher network to supervise 
the learning of the student network. Let hb denote the semantics 
intermediate representations of the bytecode generated by the stu-
dent network, we model a transfer loss B2B within the bytecode
modality as: 

where � is the number of functions. Since the B2B loss can prop-
agate knowledge only in the bytecode modality, we proceed to 
explore learning cross-modality correlations between source code 
and bytecode. Specifcally, we leverage global average pooling to 
summarize the representations of input graph embeddings. Then, 
the global context of the source code hs in T and the bytecodet 
hb in S can be acquired. The main idea is to constrain the globals 
context representations of the paired modalities (viz., source code
and bytecode) to be similar to each other. Explicitly, we design a 
dedicated modality transformer layer to endow S with the ability
to reconstruct semantic intermediate representations of the source 

scode from bytecode features as hsˆ (�� ) = ���� (Ws · hbs (�� ) + bs),
where Ws and bs denote the weight matrix and the bias vector,
respectively. Finally, we model a transfer loss S2B to cross the two

modalities between T and S as: 

sSimilar to T, we fuse hb (�� ) and hˆ (�� ) in S, and pass the con-s s 
catenated feature hs into a fully connected layer with a sigmoid
activation to output the label Y� .

3.3 Cross-Modality Mutual Learning Strategy 
To achieve efective knowledge transfer from T to S, inspired by 
[46], we present a cross-modality mutual learning strategy to collab-
oratively train them. Particularly, we compute the mutual learning 
losses by using the binary cross-entropy (BCE) loss between the 
labels of the teacher network (Y� ), the student network (Y� ), and
the ground-truth (Y): 

Lteacher = ��� (Y, Y� ) + ��� (Y� , Y� ) (6)mutual 

Lstudent = ��� (Y, Y� ) + ��� (Y� , Y� ) (7)mutual 

where �teacher and �student denote the supervised losses of T and S,mutual mutual
respectively. Finally, by combining the mutual learning losses with 
the two transfer losses B2B and S2B, we obtain the overall losses of
the two networks by: 

= �� LteacherLteacher mutual + �� L�2� + �� L�2� (8) 

= �� LstudentLstudent mutual + �� L�2� + �� L�2� (9) 

where �, � , and � are tunable network parameters for balancing 
diferent losses. An important highlight in our framework is that 
not only S learns from its teacher, but also T can beneft from the 
student via cross-modality mutual learning. Experiments in §4.4 
show that such a cross-modality mutual learning strategy could 
contribute to promising performance gains. This may stem from 
the fact that cross-modality mutual learning helps align the global 
contexts in diferent modalities better in the feature space compared 
to conventional one-way training. The teacher network and student 

L𝑆2𝐵 =
∑︁𝑁

 (
𝑖=1

ht
s 𝑠𝑖 ) − hŝs (𝑏𝑖 )

2 (5)

L𝐵2𝐵 =
∑︁𝑁


𝑖=1

ht
b (𝑏𝑖 ) − hs

b (𝑏𝑖 )
2 (4)
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Table 1: Performance comparison (%) in terms of accuracy (ACC), recall (RE), precision (PRE), and F1-score (F1). Fourteen 
methods are included in the comparisons. ‘n/a’ means the corresponding tool does not support detecting the vulnerability type. 

Methods Reentrancy Timestamp Overfow/Underfow Delegatecall 
ACC RE PRE F1 ACC RE PRE F1 ACC RE PRE F1 ACC RE PRE F1 

sFuzz [30] 55.69 14.95 10.88 12.59 33.41 27.01 23.15 24.93 45.50 25.97 25.88 25.92 64.37 47.22 58.62 52.31 
Smartcheck [37] 54.65 16.34 45.71 24.07 47.73 79.34 47.89 59.73 53.91 68.54 42.81 52.70 62.41 56.21 45.56 50.33 

Osiris [38] 56.73 63.88 40.94 49.90 66.83 55.42 59.26 57.28 68.41 34.18 60.83 43.77 n/a n/a n/a n/a 
Oyente [27] 65.07 63.02 46.56 53.55 68.29 57.97 61.04 59.47 69.71 57.55 58.05 57.80 n/a n/a n/a n/a 
Mythril [29] 64.27 75.51 42.86 54.68 62.40 49.80 57.50 53.37 n/a n/a n/a n/a 75.06 62.07 72.30 66.80 
Securify [40] 72.89 73.06 68.40 70.41 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
Slither [14] 74.02 73.50 74.44 73.97 68.52 67.17 69.27 68.20 n/a n/a n/a n/a 68.97 52.27 70.12 59.89 

Vanilla-RNN [35] 65.90 72.89 67.39 70.03 64.41 65.17 64.16 64.66 68.12 70.19 67.00 68.56 64.33 67.26 63.77 65.47 
ReChecker [32] 70.95 72.92 70.15 71.51 66.65 54.53 73.37 62.56 70.49 71.59 70.56 71.07 67.98 70.66 66.47 68.50 

GCN [20] 73.21 73.18 74.47 73.82 75.91 77.55 74.93 76.22 67.53 70.93 69.52 70.22 65.76 69.74 69.01 69.37 
TMP [52] 76.45 75.30 76.04 75.67 78.84 76.09 78.68 77.36 70.85 69.47 70.26 69.86 69.11 70.37 68.18 69.26 
AME [24] 81.06 78.45 79.62 79.03 82.25 80.26 81.42 80.84 73.24 71.59 71.36 71.47 72.85 69.40 70.25 69.82 

SMS 83.85 77.48 79.46 78.46 89.77 91.09 89.15 90.11 79.36 72.98 78.14 75.47 78.82 73.69 76.97 75.29 
DMT 89.42 81.06 83.62 82.32 94.58 96.39 93.60 94.97 85.64 74.32 85.44 79.49 82.76 77.93 84.61 81.13 

network in the process of mutual learning are optimized jointly in 
every mini-batch, obtaining better performance in bug detection. 

4 EVALUATION 
In this section, we present extensive evaluations on our proposed 
framework. We seek to address the following research questions. 
• RQ1: Can our proposed method efectively detect the four types 
of smart contract vulnerabilities? How is its performance com-
pared with state-of-the-art approaches? 

• RQ2: Is the cross-modality mutual learning strategy helpful to 
improve the performance of vulnerability detection on bytecode? 

• RQ3: How do our designed code semantic-modeling module and 
teacher-student network contribute to the whole framework? 

In the following, we frst introduce the experimental setup, followed 
by answering the above research questions one by one. 

4.1 Experimental Setup 
Datasets. We notice that there is still a lack of datasets for smart 
contract vulnerability detection. Indeed, it is labor-intensive and 
time-consuming to collect and label a large-scale smart contract 
dataset. Most existing works either publish unlabeled datasets 
or a small number of labeled contracts, which is insufcient for 
model training. Towards this, we construct and release a benchmark 
dataset that concerns four types of vulnerabilities, namely reen-
trancy, timestamp dependence, integer overfow/underfow, and dele-
gatecall. This dataset was created by collecting smart contracts from 
three diferent sources, i.e., Ethereum platform (over 96%), GitHub 
repositories, and blog posts that analyze contracts. We collected 
514, 880 functions (from 42, 910 smart contracts) that have both 
source code and bytecode available. These functions are labeled 
manually. Detailed labeling strategies are introduced in Appendix B. 
In the experiments, we select 80% of functions as the training set 
and the rest 20% as the test set. We repeat each experiment fve 
times and report average results. 

Implementations. Our system consists of three components: 
1) the automated tools, SourceCSGExtractor and BinaryCFGExtrac-
tor, for extracting graphs of smart contracts, 2) the BERT model 
and the graph attention network for extracting graph embeddings, 
and 3) the teacher-student framework. Specifcally, the SourceCS-
GExtractor and BinaryCFGExtractor are implemented with Python, 
where SourceCSGExtractor realizes a semantic graph extractor from 

source code while BinaryCFGExtractor integrates the bytecode CFG 
analyzer and the symbolic execution solver of an of-the-shelf tool 
termed Octopus [1]. We accomplish the BERT model and the GAT 
network with PyTorch, where their hidden layer sizes are set to 256. 
The teacher-student framework is implemented with PyTorch. The 
two networks are composed of a 3-layer CNN followed by batch 
normalization, activation, and max-pooling layers. 

Parameter Settings. All experiments are conducted on a com-
puter equipped with an Intel Core i9 CPU at 3.3GHz, a GPU at 
2080Ti, and 64GB Memory. Adam optimizer is employed in the 
proposed networks. We apply a grid search to fnd the best hyper-
parameters: the learning rate � is tuned amongst {0.0001, 0.0005, 
0.001, 0.002}, the hidden layer size ℎ is searched in {64, 128, 256, 
512}, and batch size � in {16, 32, 64, 128}. We choose a set of hyper-
parameters that achieve the best performance on the training set. 
We report the performance with the default settings: 1) � = 0.001, 
2) ℎ = 256, and 3) � = 64. The balancing factors �, � , and � which 
are tuned to weigh diferent functions have been empirically set to 
1.0 throughout the experiments. 

4.2 Performance Comparison (RQ1) 
Comparison with Conventional Bug Detection Tools. We 
frst benchmark the proposed approach against the conventional 
vulnerability detection tools, including sFuzz [30], Smartcheck [37], 
Osiris [38], Oyente [27], Mythril [29], Securify [40], and Slither [14]. 
Here, we do not compare with several related works, which are 
either 1) not open-sourced [44], or 2) handling other types of smart 
contracts like EOSIO [16], or 3) focusing on diferent vulnerabil-
ity types than ours [8, 39]. Quantitative experimental results are 
summarized in Table 1. From the table, we obtain the following 
observations. First, the conventional detection tools have not yet 
achieved high accuracy on the four vulnerabilities. For example, for 
reentrancy vulnerability, sFuzz and Smartcheck only achieve 55.69% 
and 54.65% accuracy, while Securify and Slither obtain 72.89% and 
74.02% accuracy. This may stem from two facts: 1) vulnerability de-
tection from bytecode is inherently challenging since the bytecode 
conveys only instruction-level binary code, and 2) current tools 
(such as sFuzz and Osiris) concentrate on utilizing only low-level 
instruction information and are unable to incorporate high-level 
semantics from the source code. 
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Table 2: Performance comparison (%) of the SMS trained using diferent strategies. 

Training Strategy 
Reentrancy Timestamp Overfow/Underfow Delegatecall 

ACC F1 ACC Decrease ACC F1 ACC Decrease ACC F1 ACC Decrease ACC F1 ACC Decrease 
SMS 83.85 78.46 — 89.77 90.11 — 79.36 75.47 — 78.82 75.29 — 
three losses - w/o 78.25 71.38 -5.60 83.82 83.46 -5.95 74.06 70.18 -5.30 72.90 69.24 -5.92 
B2B - w/o 81.43 74.54 -2.42 88.39 88.29 -1.38 77.46 73.02 -1.90 76.57 73.68 -2.25 
S2B - w/o 81.04 75.86 -2.81 88.32 88.43 -1.45 77.03 73.14 -2.33 77.18 74.02 -1.64 
mutual learning - w/o 82.05 76.58 -1.80 88.25 88.36 -1.52 77.51 73.53 -1.85 76.72 73.65 -2.10 

Table 3: Performance comparison (%) between SMS and its variants on the four vulnerabilities. 

Variants Reentrancy Timestamp Overfow/Underfow Delegatecall 
ACC RE PRE F1 ACC RE PRE F1 ACC RE PRE F1 ACC RE PRE F1 

SMS(GPT) 74.32 72.47 75.50 73.95 80.64 80.97 82.83 81.89 75.07 70.38 75.96 73.06 74.76 71.89 72.52 72.20 
SMS(Word2vec) 84.08 75.49 81.58 78.42 85.12 87.82 82.12 84.87 78.12 71.90 76.18 73.98 77.26 72.41 74.38 73.38 
SMS(GCN) 73.85 72.82 71.84 72.33 78.65 79.84 77.19 78.49 74.64 69.83 70.27 70.05 72.62 70.69 73.16 71.90 
SMS(1-CNN) 78.87 72.95 75.56 74.23 81.08 81.57 80.77 81.17 73.01 67.67 69.87 68.75 72.06 70.34 70.00 70.17 
SMS(2-CNN) 81.86 76.94 78.94 77.93 81.24 83.98 79.92 81.90 76.45 69.10 70.33 69.71 76.67 72.11 75.99 74.00 
SMS(FC) 78.94 76.24 76.81 76.52 85.22 89.39 87.18 82.35 77.75 70.80 72.22 71.50 68.26 68.47 71.81 70.10 
SMS(RNN) 80.63 76.37 78.96 77.64 82.24 83.84 82.85 83.34 77.45 69.44 71.56 70.48 76.34 72.66 73.38 73.02 
SMS(Tanh) 83.58 77.74 78.06 77.90 89.29 87.74 87.15 87.44 78.50 73.21 77.93 75.50 74.77 68.79 73.57 71.10 
SMS 83.85 77.48 79.46 78.46 89.77 91.09 89.15 90.11 79.36 72.98 78.14 75.47 78.82 73.69 76.97 75.29 

Next, we evaluate the performance gain of the proposed methods 
against state-of-the-art tools. Surprisingly, we found that the results 
of the single-modality student network (SMS), are quite encourag-
ing. More specifcally, it keeps delivering the best performance in 
all the four metrics on each type of vulnerability, and the relative 
accuracy gains on reentrancy, timestamp dependence, integer over-
fow/underfow, and delegatecall over the state-of-the-art tool are 
2.79%, 7.52%, 6.12%, and 5.97%, respectively. 

Comparison with Deep Learning-Based Methods. We 
further compare our method to other deep learning alternatives, 
namely Vanilla-RNN [35], ReChecker [32], GCN [20], TMP [52], and 
AME [24]. For a feasible comparison, Vanilla-RNN and ReChecker 
are fed with the bytecode sequences, while GCN, TMP, and AME are 
presented with the bytecode CFG. We illustrate the performance of 
deep learning models in the middle of Table 1. Quantitative results 
reveal that Vanilla-RNN and ReChecker have relatively poor perfor-
mance. Graph neural networks, GCN, TMP, and AME, which can 
capture graph structural information, deliver better performance. 
Technically, we speculate that the deep learning-based methods still 
have difculties in coping with pure bytecode. In terms of F1-score, 
SMS consistently outperforms other methods by a large margin on 
the four types of vulnerabilities. Empirical evidences clearly reveal 
the potential of using a teacher network to supervise the learn-
ing of a student network, which leads to impressive performance 
gains. Moreover, the high accuracy obtained by the dual-modality 
teacher (DMT) network suggests that it is useful to combine both 
information of the source code and the bytecode. 

4.3 Evaluation on Mutual Learning (RQ2) 
By default, our cross-modality mutual learning losses consist of 
three loss functions. To evaluate the efectiveness of the mutual 
learning strategy, we modify the models by removing one of the 
losses at each time (i.e., mutual learning loss, B2B loss, and S2B loss) 
and report the results in Table 2. 

Notably, without the mutual learning loss, the accuracy obtained 
by SMS decreases by 1.80%, 1.52%, 1.85%, and 2.10% on the four 
types of vulnerabilities, respectively. This indicates that the student 
network indeed benefts from the teacher network and gains per-
formance improvements through cross-modality mutual learning 

losses. Furthermore, without the transfer losses of B2B and S2B in 
the overall losses, the accuracy acquired by the student network 
decreases by as much as 2.81%, which shows the efcacy of the 
transfer losses. Technically, the B2B loss and the S2B loss address 
the modality inconsistency between source code and bytecode by 
aligning the two modalities in the high-level feature space. In ad-
dition, we evaluate the efect of removing all the three losses and 
observe that the performance degenerates signifcantly. In sum-
mary, our teacher-student network achieves efective performance 
gains via the cross-modality mutual learning strategy. 

4.4 Ablation Study (RQ3) 
Study on Code Semantic-Modeling Module. Our code 
semantic-modeling module utilizes a pre-trained BERT model for 
feature preprocessing and a graph attention network for graph em-
bedding extraction. To evaluate the two components, we empirically 
investigate several variants and conduct comparing experiments, 
with results listed in Table 3. 

For feature preprocessing, prior works [11] have confrmed that 
features processed by a pre-trained model (e.g., Word2vec, GPT, 
BERT) can achieve better performance than hand-crafted features. 
This demonstrates that building a suitable model for feature prepro-
cessing is feasible yet efective. Therefore, we use the BERT model 
to preprocess the bytecode features in the code semantic-modeling 
module. Compared with Word2vec and GPT, BERT with a masked 
language task and an adjacency block prediction task considers not 
only instruction-level but also block-level information of the byte-
code CFG [48]. Meanwhile, the bidirectional transformer in BERT 
embraces the ability to extract bidirectional information. For graph 
embedding extraction, we resort to the graph attention network in 
the code semantic-modeling module. It is worth mentioning that 
traditional graph neural networks such as GCN fail to emphasize 
the distinct importance of diferent nodes, which is explicitly con-
sidered in GAT by using an attention mechanism. Empirical results 
suggest that GAT contributes to better performance in extracting 
the graph embeddings. 

Study on Teacher-Student Framework. By default, our pro-
posed teacher-student framework adopts a network structure with 
a 3-layer CNN. Each CNN layer is followed by batch normalization, 

2226



WWW ’23, April 30–May 04, 2023, Austin, TX, USA Qian et al. 

ACC
RE

PRE
F1

SMS(1-CNN)
SMS(2-CNN)

SMS(FC)
SMS(RNN)

SMS(Tanh)
SMS

(%)

66
68
70
72
74
76
78
80
82

ACC
RE

PRE
F1

SMS(1-CNN)
SMS(2-CNN)

SMS(FC)
SMS(RNN)

SMS(Tanh)
SMS

(%)

70

75

80

85

90

ACC
RE

PRE
F1

SMS(1-CNN)
SMS(2-CNN)

SMS(FC)
SMS(RNN)

SMS(Tanh)
SMS

(%)

66
68
70
72
74
76
78

ACC
RE

PRE
F1

SMS(1-CNN)
SMS(2-CNN)

SMS(FC)
SMS(RNN)

SMS(Tanh)
SMS

(%)

66
68
70
72
74
76
78

(a) Reentrancy (b) Timestamp (c) Overfow/Underfow (d) Delegatecall 
Figure 5: Visually comparison of SMS and its variants on the four types of vulnerabilities. 

rectifed linear unit, and max-pooling layers. To validate such kinds 
of network architectures, we further try fve other alternatives. First, 
we keep the batch normalization, rectifed linear unit, and max-
pooling layers, but change the 3-layer CNN to 1 or 2 layers. The two 
variants are denoted as SMS(1-CNN) and SMS(2-CNN), respectively. 
Then, we replace the convolution layer with a fully connected layer, 
which we denote as SMS(FC). We also try replacing them with a 
RNN layer, which we term as SMS(RNN). Finally, we replace the 
ReLU activation layer with Tanh activation layer while keeping 
the other layers fxed. This variant is denoted as SMS(Tanh). We 
list the quantitative results in the middle of Table 3 and further 
visualize the results in Figure 5. We may observe that: 1) the default 
settings of SMS yield better results, 2) using a Tanh activation layer 
or changing the number of CNN layers leads to a slight performance 
drop, and 3) adopting RNN structure in the teacher network and 
student network does not translate to performance gain. 

5 RELATED WORK 
Smart Contract Vulnerability Detection. Traditional eforts 
for smart contract vulnerability detection mostly revolve around 
static analysis and dynamic analysis methods. (1) Static analysis can 
be further divided into formal verifcation, program analysis, and 
symbolic execution. For example, [4] proposes a formal model to ver-
ify smart contract bytecode by using the Isabelle/HOL tool. [27] per-
forms symbolic execution on smart contracts and checks bugs based 
on expert-defned rules. [40] conducts advanced program analysis 
to infer semantic facts of data-fows in smart contracts. [15] devel-
ops an overfow detector that adopts a taint analysis-based tracking 
technique to detect potential overfow vulnerabilities in Ethereum. 
(2) Dynamic analysis methods discover potential vulnerabilities 
in smart contracts by executing the contract code. [33] introduce 
Serum, which exploits dynamic taint tracking to monitor data-fows 
during contract execution to automatically detect and prevent basic 
and advanced reentrancy attacks. [30] presents sFuzz, which iden-
tifes vulnerabilities by adopting a branch distance-driven fuzzing 
technique. Smartian [9] leverages the data-fow-based feedback 
to fnd meaningful transaction sequence orders, triggering more 
contract states to detect vulnerabilities. [26] introduces a fully au-
tomatic fuzzing framework equipped with invocation ordering and 
crucial branch revisiting to detect smart contract bugs. 

Recent attempts have explored using deep learning networks for 
vulnerability detection. [35] employs a sequential model to handle 
smart contract bytecode sequences. [13] uses a dynamic vulnera-
bility detection framework that extracts features from transaction 

data and classifes harmful transactions using machine learning 
models. [52] proposes to cast the contract source code into a graph 
structure and construct graph neural networks as the detection 
model. [24] explores combining deep learning with expert patterns 
to detect vulnerabilities in an explainable fashion. [49] presents a 
hybrid deep learning model, which combines features from diferent 
models to detect smart contract bugs. In this work, we go further 
to explore a novel deep learning-based scheme, i.e., cross-modal 
mutual learning, to improve smart contract bug detection. 

Teacher-Student Network. Existing research [42] has shown 
that transferring knowledge from a teacher network to a student 
network is benefcial to improve the performance of the student 
network. A teacher network often refers to a heavy, cumbersome 
model, while a student network refers to a simple, lightweight 
model. [21] designs a student network to address the math word 
matching task under the supervision of a teacher network. Recently, 
mutual learning techniques have been proposed for knowledge 
transfer between networks. For example, [51] proposes a binocular 
mutual learning framework, which achieves the compatibility of 
the global view and the local view. [46] presents the multi- to single-
modality teacher-student network on the audio tagging task. 

6 CONCLUSION 
In this paper, we investigate whether mutual learning could help 
in the challenging scenario where smart contract source code is 
missing. We propose a cross-modality mutual learning strategy to 
collaboratively train a dual-modality teacher network and a single-
modality student network. The student network, which serves as 
the primary network, distills knowledge from the teacher and is 
enhanced to reconstruct the missing modality. Extensive experi-
ments on four diferent types of vulnerabilities demonstrate that 
our method consistently and signifcantly surpasses state-of-the-
art tools. It is worth pointing out that our proposed approach can 
be extendable to other programs as long as they have the paired 
modalities of source code and bytecode. We have also released 
our implementations and a large-scale labeled benchmark dataset, 
hoping to push forward the boundary of this research direction. 
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APPENDIX 

A DEFINITIONS OF BYTECODE VALUES AND 
INSTRUCTIONS 

We present the 11 categories of bytecode values and their corre-
sponding defnitions. Moreover, we list the distinctive opcodes used 
as features to represent the binary instruction operations. 
• 0x00 - 0x0B: STOP, ADD, MUL, SUB, DIV, SDIV, MOD, SMOD, ADDMOD, 
MULMOD, EXP, SIGNEXTEND (Stop and Arithmetic Operations). 

• 0x10 - 0x1A: LT, GT, SLT, SGT, EQ, ISZERO, AND, OR, XOR, NOT, BYTE, 
SHL, SHR, SAR (Comparison and Bitwise Logic Operations). 

• 0x20: KECCAK256 (KECCAK256 Method). 
• 0x30 - 0x3E: ADDRESS, BALANCE, ORIGIN, CALLER, CALLVALUE, 
CALLDATALOAD, CALLDATASIZE, etc (Environmental Information). 

• 0x40 - 0x45: BLOCKHASH, COINBASE, TIMESTAMP, NUMBER, 
DIFFICULTY, GASLIMIT, CHAINID, etc (Block Information). 

• 0x50 - 0x5B: POP, MLOAD, MSTORE, MSTORE8, SLOAD, SSTORE, JUMP, 
JUMPI, PC, etc (Stack, Memory, Storage and Flow Operations). 

• 0x60 - 0x7F: PUSH1 – PUSH32 (Push Operations). 
• 0x80 - 0x8F: DUP1 – DUP16 (Duplication Operations). 
• 0x90 - 0x9F: SWAP1 – SWAP16 (Exchange Operations). 
• 0xA0 - 0xA4: LOG0 – LOG4 (Logging Operations). 
• 0xF0 - 0xFF: CALL, RETURN, DELEGATECALL (System Operations). 

B DETAILS OF THE DATASET 
Our objective in constructing the dataset is to collect a set of real-
world Ethereum smart contracts, which can serve as a depository 
suite for security research on smart contracts. In particular, this 
dataset can be used to evaluate the efectiveness of smart contract 
vulnerability detection tools. Here, we further present the specifc 
statistics of the dataset collection and labeling strategies. 

Table 4 showcases the dataset statistics. Specifcally, we have col-
lected a total of 514, 880 functions from available 42, 910 Ethereum 
smart contracts with source code. In the 514, 880 functions, 701 
functions of 680 contracts have the reentrancy (RE) vulnerability 
(i.e., label = 1). 3, 368 functions of 2, 242 contracts possess the times-
tamp dependence (TD) vulnerability. Around 3, 503 functions of 
1, 368 contracts have the integer overfow/underfow (IO) vulnera-
bility. 149 functions of 136 contracts possess the delegatecall (DT) 
vulnerability. 

Dataset Labeling. To facilitate data labeling, we refer to sev-
eral patterns to flter out suspicious functions, which are then 
handed over to human experts for further manual verifcation. 
Taking the timestamp dependence vulnerability as an example, 
pattern TDInvocation models whether there exists an invocation 
to block.timestamp in a function. TDAssign checks whether the 
value of block.timestamp is assigned to other variables or passed 
to a condition statement as a parameter, and TDContaminate vali-
dates if block.timestamp may contaminate the triggering condition 
of critical operations. We consider a function as suspicious to have 
a timestamp dependence vulnerability if it fulflls the combined 
pattern: TDInvocation ∧ (TDAssign ∨ TDContaminate). We then 
hand over the suspicious ones to peers with specialized knowledge 
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Table 4: Dataset Statistics. There are four types of vulnerabil-
ities in the benchmark dataset. 

Functions RE. Functions TD. Functions IO. Functions DT. Functions 
514,880 701 / 2,505 3,368/ 6,285 3,503 / 10,774 149 / 436 

Contracts RE. Contracts TD. Contracts IO. Contracts DT. Contracts 
42,910 680 / 2,385 2,242 / 4,490 1,368 / 7,183 136 / 414 

for labeling. We have released the benchmark dataset on Github, 
where more details on the dataset and annotations can be found. 

C TRAINING DETAILS OF BERT 
It is worth mentioning that the BERT network is of several advan-
tages [11]. (1) The in-depth pre-training task and fne-tuning task 
for the BERT contribute to yielding better semantic features. (2) 
The masked language task (MLM) and adjacency block prediction 
task (ABP) can help the BERT obtain both the instruction-level and 
the block-level information in the control fow graph (CFG). In-
spired by the success of the BERT network in handling the program 
instructions, we resort to a pre-trained model BERT to deal with 
the bytecode basic blocks in the CFG. Empirically, in our work, the 
optimized BERT indeed has the ability to generate better semantic 
embeddings for the bytecode basic blocks. 

Specifcally, to pre-train a BERT network for processing the 
bytecode feature, we need to provide a pre-training strategy and an 
instruction training dataset. First, we construct a vocabulary, i.e., 
vocab, to map the word piece (i.e., instruction) into the unique id 
(i.e., <ID, Word>) for the bytecode instructions. Then, we pre-train 
the BERT model using more than one million lines of instructions 
from scratch with following confgurations: 1) learning rate = 2e-5, 
2) train steps = 2,000, 3) batch size = 32, and 4) max sequence length 
= 64. Dimension for BERT pre-training embedding is 256. 

Considering the discrepancy between diferent vulnerabilities, 
we design a dedicated fne-tuning task for the pre-trained BERT, 
from which we expect that the fne-tuned BERT is able to encode in-
structions with vulnerability characteristics more accurately. More-
over, using the fne-tuned BERT to extract the block embeddings of 
CFG could alleviate the noise in subsequent graph feature extrac-
tion. For each vulnerability, we enforce more than 100 thousand 
instructions for model fne-tuning with the default parameter set-
tings: 1) learning rate = 2e-5, 2) train epoch = 10, 3) batch size = 32, 
and 4) max sequence length = 64. Note that, for each vulnerability, 
we have an independent fne-tuned BERT model. Finally, we exploit 
the fne-tuned BERT model to extract the semantic features of the 
bytecode basic blocks. As a side contribution, we have also re-
leased a pre-trained BERT model and four fne-tuned BERT models, 
hoping to facilitate community research. 

D BROADER IMPACT 
In this work, we proposed a novel cross-modality mutual learning 
framework to improve smart contract vulnerability detection on 
bytecode. To the best of our knowledge, this is the frst work that 
investigates distilling knowledge from the teacher network for 
reconstructing the missing source code modality, which completes 
the bytecode modality towards more precise vulnerability detection. 
The attempt might inspire future research in this feld. 
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