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ABSTRACT

Automated facial age estimation has diverse real-world
applications in multimedia analysis, e.g., video surveillance,
and human-computer interaction. However, due to the ran-
domness and ambiguity of the aging process, age assessment
is challenging. Most research work over the topic regards the
task as one of age regression, classification, and ranking prob-
lems, and cannot well leverage age distribution in represent-
ing labels with age ambiguity. In this work, we propose a
simple yet effective loss function for robust facial age estima-
tion via distribution learning, i.e., adaptive mean-residue loss,
in which, the mean loss penalizes the difference between the
estimated age distribution’s mean and the ground-truth age,
whereas the residue loss penalizes the entropy of age proba-
bility out of dynamic top-K in the distribution. Experimental
results in the datasets FG-NET and CLAP2016 have validated
the effectiveness of the proposed loss.

Index Terms— Age estimation, label distribution learn-
ing, deep learning, neural networks.

1. INTRODUCTION

Automated facial age estimation has been widely applied to
different multimedia application scenarios but remains a very
challenging task. Human face aging is a complicated and ran-
dom process affected by various internal factors, e.g., genes,
makeup, living environment. As a result, there are noticeable
variances in facial appearance among different subjects with
similar ages. Furthermore, the aging process of each subject
is lasting, making it hard to perceive the variances in its facial
appearance among neighbouring ages.

In general, the research work for facial age estima-
tion in the literature can be classified into three cate-
gories, i.e., regression-based [1, 2], classification-based [3, 4],
and ranking-based [5, 6]. But these methods fail to address
the age distribution effectively, as there are no clear bound-
aries between adjacent ages, it is relatively easy for humans
to guess the age with some confidence. For example, one per-
son could guess a girl is around 25 years old, or she may be in
her mid-20s. In real life, the guessing process follows some
certain probability distribution, which means that we could

Fig. 1: Overview of the proposed approach

convert the mission of age estimation into a process of age
distribution learning. In [7], the authors assumed that the age
distribution follows a Gaussian distribution with a particular
mean age, mi, and a standard deviation, σi, for i-th image,
and proposed a novel mean-variance loss. The mean-variance
loss attempts to penalize the variance between mi and the
ground-truth age, yi, by mean loss, and concentrate more on
the classes around mi by variance loss. However, it is pos-
sible that the 2 loss functions suppress each other in part of
the age distribution, achieving undesired solutions, and even
worse, if yi happens to be out of the range [mi−σi, mi+σi],
variance loss penalizes the softmax loss that attempts to in-
crease the probability of yi. Furthermore, the age distribu-
tions of different subjects vary a lot, and it is not true that
smaller σi leads to a more accurate mi.

On the other hand, the top-K accuracy of deep learning
models has achieved a very high level, e.g., the best top-5
accuracy on the ImageNet dataset is 98% [8]. In age estima-
tion, we can assume that yi is included in top-K classes and
the ages out of top-K have a very limited correlation with yi,
and then the sum of out-of-top-K probabilities can be treated
as residue. However, how to determine K remains a problem.
These motivate us to propose a hypothesis: If it is hard to
extract deeper facial features, why not suppress uncorrelated
features and dynamically penalize the residue to strengthen
the correlation among the top-K classes indirectly?

Following the idea, we designed an adaptive entropy-
based residue loss, which can penalize the age probabilities
out of dynamic top-K. By combining mean loss with residue



loss, we proposed a simple, yet very efficient loss, adaptive
mean-residue loss, for facial age estimation. The proposed
mean-residue loss is simple to incorporate into other network
architectures, such as ResNet. Experimental results are su-
perior to the existing state-of-the-art benchmarks, e.g., mean-
variance loss.

2. RELATED WORK

Early age estimation work from facial portraits was carried
out in [9], where ages were simply split into the following
categories, i.e., babies, young and senior individuals. Since
then, more and more research interests have been attracted to
age estimation from facial images [6, 1]. Traditional meth-
ods for facial age estimation consist of two separate stages:
feature extraction and one of age regression, classification,
and ranking-based methods. In [10], an active appearance
model (AAM) was proposed to use shape landmarks and tex-
tural features for age estimation. In [11], age estimation is
achieved by multi-direction and multi-scale Gabor filters with
the feature pooling function were used for identification of bi-
ologically inspired features (BIF). Robustness of BIF in age
estimation has been verified, but it still relied on feature rep-
resentations crafted by hand, which is not an optimal solution
to facial age estimation.

Deep learning based approaches have succeeded in many
computer vision tasks, e.g., object detection [12], image clas-
sification [13]. and medical image analysis [14, 15]. They
also have remarkable advance facial age estimation recently.
In [16], deep convolutional neural networks (DCNNs) were
proposed to extract features from different regions on fa-
cial images and a square loss was utilized for age predic-
tion. In [17], a multi-task deep learning model was proposed
for joint estimation based on numerous attributes, including
shared feature extraction and attribute group feature extrac-
tion. To encode both the ordinal information between adja-
cent ages and their correlation, soft-ranking label encoding
was proposed in [18], which encourages deep learning mod-
els to learn more robust facial features for age estimation.

On the other hand, label distribution learning (LDL) was
proposed to distinguish label ambiguity, which is challeng-
ing. [19, 20]. In LDL, a label distribution can be assigned
to an sample. Moreover, the correlation among values in the
label space can be leveraged, from which a more robust esti-
mation can be obtained. Gang et al. proposed several LDL
based methods for age estimation and presented the robust-
ness of them, e.g., maximum-entropy modeling [21]. It has
been argued that a single facial image facilitates not only the
estimation of a singular age, but is also informative for adja-
cent ages [22]. In [7], novel loss functions for model training
were proposed and the mean-variance loss was proposed, in
which the mean loss aims at minimizing the distance between
the predicted age and ground-truth, while the variance loss
attempts to lower the variance in the predicted age distribu-

tion. Consequently, the age distribution could be sharpened.
Meanwhile, a sharper age distribution does not necessarily
lead to better age estimation. Under particular circumstances,
mean loss and variance loss contradict each other and prevent
the accurate prediction to be achieved. More details of mean-
variance loss will be discussed in Section 4.

3. PRELIMINARY

In an age estimation dataset, yi ∈ {1, 2, . . . , L} represents
the corresponding age of i-th sample, xi stands for the facial
feature, and f(xi) ∈ RN×M represents the output from the
layer, followed by a last fully connected (FC) layer. Let z ∈
RN×L be the output vector from the last FC layer, and p ∈
RN×L is the softmax probability defined in Equ.1:

z = f(xi) · θT ; pi,j =
ezi,j∑L
l=1 e

zi,l
, (1)

in which xi denotes the feature vector, θ ∈ RL×M contains
trainable parameters in the FC layer, j ∈ {1, 2, . . . , L} stands
for an age, zi,j is an element of z in the i-th sample with age
j. pi,j represents the probability that the age of sample i is
j. Hence, the estimated or mean age mi of the sample i is
calculated in Equ. 2:

E(agei) = mi =

L∑
j=1

j · pi,j . (2)

4. METHODOLOGY

As illustrated in Fig. 1, the proposed adaptive mean-residue
loss can be embedded into a deep convolutional neural net-
work (DCNN) for end-to-end learning. As illustrated in
Fig. 2, the proposed adaptive mean-residue loss penalizes (a)
the difference between the mean of the estimated age distri-
bution and the ground-truth age, and (b) residue errors in the
two long tails of the age distribution.

4.1. Mean Loss

The mean loss suppresses the variance between an estimated
age distribution’s mean and the true age. According to Equ. 2,
we define the mean loss as

Lm =
1

2N

N∑
i=1

(mi−yi)
2 =

1

2N

N∑
i=1

(

L∑
j=1

j ·pi,j−yi)
2, (3)

in which N , mi, and yi are the training batch size, the esti-
mated age, and and ground-truth age, respectively. Unlike the
widely used softmax loss, the mean loss is presented in many
regression problems. L2 distance can be used to evaluate the
variances between the mean of an estimated age distribution
and the ground-truth age. Therefore, the proposed mean loss
complements the softmax loss during training.
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Fig. 2: Gradient analysis on different components of the loss
functions. (Lm: the mean loss, Lv: the variance loss, Lr:
the residue loss, where K1,K2 and K3 denote three different
situations.) ↑ and ↓ indicate the direction in which the loss
function optimizes the distribution, while the ideal direction
is indicated (red). For simplicity, −σ, B, and K1 overlap; yi
and K2 overlap; A and K3 overlap.

4.2. Residue Loss

The residue loss penalizes the residue errors in the tails that
exist in an estimated age distribution after the top-K pooling
operation. The residue entropy is presented as follows,

Lr = − 1

N

N∑
i=1

L∑
j=1,j /∈top−K

pi,j · log pi,j . (4)

The mean-variance loss [7] tries to suppress the probabil-
ities within the range mi ∈ (j ∈ [1,mi − σ]) ∪ [mi + σ, L]),
where σ is the standard deviation of the age distribution in
the i-th sample. However, inevitably, yi may probably fall in-
side this range. In this regard, pi,yi

is incorrectly suppressed,
which could induce errors, while our residue loss Lr guaran-
tees that yi falls in the top-K classes and avoids such errors
that occur with the mean-variance loss.

To further optimize the residue loss, we propose a dy-
namic top-K pooling method. More specifically, let Ki de-
note the number of top-K. Let Ryi

stands for the ranking of
yi, for i-th image in a training batch. Subsequently, we can
set Ki to be adaptive as:

Ki = max{2, Ryi
}. (5)

With the dynamic top-K pooling, yi is always included
during the optimization process, and will not be incorrectly
penalized by the residue loss.

4.3. Adaptive Mean-Residue Loss

Combining with the softmax loss Ls, the adaptive mean-
residue loss is showed in Equ. 6:

L = Ls + λ1Lm + λ2Lr

=
1

N

N∑
i=1

[− log pi,yi
+

λ1

2
(mi − yi)

2 + λ2ri],
(6)

where λ1 and λ2 are hyperparameters that attempt to balance
the influences of mean and residue sub-losses in the combined
loss function. We use SGD [13] to optimize parameters in the
network. At inference, the estimated age of the i-th test image
can be calculated based on Equ. 2.

4.4. Gradient Analysis

4.4.1. Comparison with Mean-Variance Loss

The mean-variance loss and the proposed mean-residue loss
share the same mean loss function. The key difference exists
in the variance loss and the residue loss, and their joint effect
with the mean loss, as plotted in Fig. 2. In the mean-variance
loss, the variance loss attempts to enhance the probabilities of
classes within the range of [mi−σ,mi+σ] while suppressing
the probabilities of classes out of the range, no matter yi is
in the range or not. When yi happens to be out of the range,
variance loss will decrease the probability of yi, leading to a
worse effect on the model performance. In the mean-residue
loss, the residue entropy loss function attempts to suppress the
probabilities of the classes out of top-K and help the network
to focus more on the top-K classes indirectly. Adaptive top-K
guarantees that yi is within top-K and residue loss function
can help the network to increase the probability of classes
within top-K as a whole. Hence, the performance of softmax
loss can be enhanced. Effects of different K values for top-K
are analyzed in the following.

4.4.2. Situations of Different K

The joint effect of the mean and residue loss is dependent on
the choice of top-K in the residue loss. A proper selection of
K is the key to ensuring the correct optimization. The analy-
sis of top-K is illustrated in Fig. 2, and different situations of
top-K are summarized as follows:

Over Centralization: When top-K is too narrow, e.g.,
K1 in Fig. 2, the ground-truth yi is excluded from the over-
centralized top-K classes. The probability at yi is penalized
by the residue loss in the wrong direction, and the residue loss
conflicts with the mean loss at yi, which is undesired.

Centralization: When top-K is appropriate, e.g., K2 in
Fig. 2, the ground-truth yi is included in the centralized top-
K classes. The residue loss at yi is 0, and the joint effect of
both mean and residue loss are the same as the ideal direction,
which is desired.

Decentralization: When top-K is too wide, e.g., K3 in
Fig. 2, the ground-truth yi is included in the decentralized
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top-K classes. The joint effect of the loss functions is there-
fore following the ideal optimization direction. However, too
many classes are covered by the top-K, in which the residue
loss is not calculated. It lessens the effect of the residue loss
and makes it more difficult to optimize the model.

Compared with a fixed K, the proposed dynamic top-K
pooling can obtain a proper range for centralizing the age dis-
tribution. As the training proceeds, the distributions of the
prediction converge towards the ground-truth, during which
the optimal K also decreases. Empirically, a fixed K is ei-
ther too small at the start of training, excluding yi from top-K
pooling, or too large towards the end of the training, slowing
down the optimization process. In contrast, the adaptive K, as
shown in Equ. 5, always includes yi without over centraliza-
tion or decentralization. Therefore it does not suffer from the
drawbacks of a fixed K. From our theoretical analysis, we
can anticipate that the adaptive mean-residue loss shall out-
perform the mean-variance loss in accuracy and convergence.

5. EXPERIMENTS

5.1. Datasets and Evaluation Metrics

Extensive experiments have been carried out using the pro-
posed loss on two popular facial image datasets, i.e., FG-
NET [23] and CLAP 2016 [24]. The basic statistics of age
distribution refers to Table 1. FG-NET [23] includes 1002
facial images collected from 82 subjects. The ages of subjects
lie between 0 to 69 years old. We adopt the leave-one-person-
out (LOPO) protocol in the experiments [7]. CLAP2016 [24]
is a competition dataset released in 2016 at the ChaLearn
Looking at people challenges. There are 4113 training sub-
jects, 1500 validation subjects and 1979 test subjects. In
CLAP 2016, An apparent mean age and standard deviation
is labeled to each image. For evaluation, we use the mean ab-
solute error (MAE) between the ground-truth age µi and the
prediction yi in FG-NET. The ε-error is adopted from [24] for
CLAP2016, which is formulated as:

ε = 1− 1

N
·

N∑
i=1

exp− (yi − µi)
2

2 · σ2
i

, (7)

where µi stands for the ground-truth mean age of sample
i, and σi (1 ≤ i ≤ N ) is its standard deviation.

Table 1: Age distribution of the face images.

Age 0 ∼ 19 20 ∼ 39 40 ∼ 59 60 ∼ 69 ≥ 80

FG-NET 710 223 61 8 0

CLAP 2016 1394 4362 1423 366 46

Table 2: Comparisons of different losses.

Method
FG-NET CLAP2016

VGG-16 ResNet-50 VGG-16 ResNet-50
Softmax Loss 7.19 6.99 0.4926 0.4756

Mean Loss + Softmax Loss 4.25 3.95 0.4687 0.4532
Variance Loss + Softmax Loss 9.78 7.63 0.5516 0.5697

Mean-Variance Loss 4.10 3.95 0.4552 0.4018
Residue Loss + Softmax Loss 6.39 6.55 0.4921 0.4699
Adaptive Mean-Residue Loss 3.79 3.61 0.4511 0.3882

5.2. Experiment Settings

To reduce the influence of noises, e.g., bodies, environ-
ments, all face images from different datasets were cropped
with the cascaded classifier in OpenCV [25] and resized into
256×256×3. We also employed data augmentation with ro-
tation, flipping, color jittering, and affine transformations to
reduce the overfitting. We adopted VGG-16 [26] and ResNet-
50 [13] as our deep learning architectures for age estimation.
The models are initialized with weights pre-trained using Im-
ageNet [27]. The models are implemented using PyTorch.
The initial learning rate and batch size are set to 0.001 and 64
respectively. The model is trained for 100 epochs. Further-
more, for every 15 epoch, the learning rate is reduced by a
multiplication factor of 0.1.

5.3. Comparisons with Different Losses

We compare the proposed mean-residue loss with the mean-
variance loss proposed in [7]. Both two losses have compo-
nents softmax loss (i.e., Ls) and mean loss (i.e., Lm). Be-
sides, we testify the effect of each component from both
losses in an incremental manner. As shown in Table 2, we
notice that the mean component always plays a core role in
the prediction under both VGG-16 and ResNet-50. In com-
parison between variance loss and residue loss, the residue
loss beats the variance loss in either case of the combination
with the softmax loss or the combination with both the mean
and softmax loss, which demonstrates the effectiveness of the
proposed residue loss. Finally, our adaptive mean-residue
loss outperforms all the other combinations, including mean-
variance loss using VGG-16 and ResNet-50.

5.4. Influences of the Parameter λ1 and λ2

Since hyperparameters λ1 and λ2 in Equ. 6 control the
strengths of three components (softmax, mean, and residue)
in the proposed loss during network training, we evaluate
their influences of λ1 and λ2 on CLAP2016. In the rest of
this section, we aim to pick out the best portfolio for a pair
of hyperparameters λ1 and λ2 in the proposed loss function.
Following [7], we set λ1 to 0.2 empirically and change λ2

from 0 to 0.2 at interval of ever 0.025. The ϵ−error of the
performance with different portfolios with different architec-
tures, i.e., VGG-16 and ResNet-50 are shown in Fig. 3. We
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can see that VGG-16 is not sensitive to the changes of λ2,
while the best portfolio on CLAP 2016 is λ1 = 0.2 and
λ2 = 0.75 for ResNet-50, which yields the lowest ϵ−error.

Fig. 3: The ϵ−error w.r.t. λ1 = 0.2 and λ2 from 0 to 0.2.

5.5. Influences of the Parameter K

In Section 4, the influence of the choice of K on the model
optimization is explained. Fig. 4 illustrates such impact of
K values on the model performance. For a fixed K, it can be
observed that the test MAE is lowest when K = 5. Moreover,
it is noted that the model with an adaptive K value consistently
outperforms fixed K values. Fig. 4 describes the adaptive K
values during training, which gradually converges to the best
fixed K value of 5, proving the capability of the algorithm to
find the optimal K during training.

Fig. 4: Top: The MAE on FG-NET achieved by VGG-16
using different K (blue line) and Adaptive K (red line). Bot-
tom: The adaptive K value during training.

5.6. Comparisons with the State-of-the-art

Experiments have been carried out for comparison between
the proposed method and a number of state-of-the-art bench-
marks on FG-NET and CLAP2016 respectively. As indicated
in Table 3, the proposed mean-residue loss achieves the low-
est MAE error among these approaches in FG-NET. Experi-
mental results show that methods with distribution learning,

such as mean-variance loss [7] can outperform ranking, re-
gression, or classification based methods [28, 5, 29]. It is
noted that, in DHAA [30], a hybrid structure with multi-
ple branches was utilized to achieve the best performance
among the rest approaches. We can explore the combina-
tion of DHAA with mean-residue loss in our future work. In
Table 4, we directly quote the results of DeepAge and MI-
PAL SNU from [24] as a complementary comparison. Our
proposed loss outperforms mean-variance loss, which proves
that residue loss with adaptive-K pooling is helpful to con-
centrate more on top-K ages indirectly. In Fig. 5, we present
some examples (3 good cases and 3 poor cases) predicted by
the proposed method on CLAP 2016. The proposed approach
performs well for different age groups. But when the images
have poor qualities, e.g., bad illumination, blurring, the age
estimation accuracy decreases dramatically. In addition, good
makeup and extreme values would influence the results.

Table 3: Comparisons on FG-NET dataset.

Method MAE Protocol
RED-SVM [28] 5.24 LOPO
OHRank [5] 4.48 LOPO
DEX [29] 4.63 LOPO
Mean-Variance Loss [7] 3.95 LOPO
DRFs [31] 3.85 LOPO
DHAA [30] 3.72 LOPO
Adaptive Mean-Residue Loss 3.61 LOPO

Table 4: Comparisons on CLAP2016 dataset.

Method ε-error Single Model?
DeepAge [24] 0.4573 YES
MIPAL SNU [24] 0.4565 NO
Mean-Variance Loss [7] 0.4018 YES
Adaptive Mean-Residue Loss 0.3882 YES

6. CONCLUSION AND FUTURE WORK

In this paper, we propose a simple, yet very efficient mean-
residue loss for robust facial age estimation. We verify the su-
periority of our proposed method over state-of-the-art bench-
marks through theoretical analysis and experiments. In the
future, we would extend our method to other domains for con-
tinuous value estimation, such as survival year estimation in
healthcare, sales prediction in e-business, etc.
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Xavier Baró, Hugo Jair Escalante, Isabelle Guyon, Geor-
gios Tzimiropoulos, Ciprian Corneou, Marc Oliu, Mohammad
Ali Bagheri, et al., “Chalearn looking at people and faces of
the world: Face analysis workshop and challenge 2016,” in
IEEE CVPRW, 2016. 4, 5

[25] Paul Viola and Michael J Jones, “Robust real-time face detec-
tion,” International journal of computer vision, 2004. 4

[26] Karen Simonyan and Andrew Zisserman, “Very deep convo-
lutional networks for large-scale image recognition,” arXiv
preprint arXiv:1409.1556, 2014. 4

6



[27] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al., “Imagenet large scale
visual recognition challenge,” International journal of com-
puter vision, 2015. 4

[28] Kuang-Yu Chang, Chu-Song Chen, and Yi-Ping Hung, “A
ranking approach for human ages estimation based on face im-
ages,” in IEEE CVPR, 2010. 5

[29] Z. Niu, M. Zhou, L. Wang, X. Gao, and G. Hua, “Ordinal
regression with multiple output cnn for age estimation,” in
IEEE CVPR, 2016. 5

[30] Zichang Tan, Yang Yang, Jun Wan, Guodong Guo, and Stan Z.
Li, “Deeply-learned hybrid representations for facial age esti-
mation,” in IJCAI, 2019. 5

[31] W. Shen, Y. Guo, Y. Wang, K. Zhao, B. Wang, and A. Yuille,
“Deep regression forests for age estimation,” in IEEE CVPR,
2018, pp. 2304–2313. 5

7


