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Abstract— Federated Learning (FL) has emerged as an
effective machine-learning paradigm for collaborative ma-
chine fault diagnosis in a privacy-preserving scheme. How-
ever, due to the perception limitation and different anno-
tation criteria of annotators, the data in clients may have
noisy labels with varied noise levels, leading to degraded
FL performances. Most existing methods in FL for tackling
the label noise issue, assume that there is label noise in all
clients and treat all clients with the same denoising training.
However, these methods may result in sub-optimization and
even training instability of local models, so that they cannot
perform well on heterogeneous label noise across clients
in FL. To address this issue, we propose a curriculum-
based federated learning method (called FedCNL) to com-
bat the heterogeneous label noise in FL settings. Firstly,
our proposed FedCNL exploits a noise modeling module
to adaptively estimate the clean clients and noisy clients,
and identify the clean samples and noisy samples in noisy
clients in an unsupervised manner. Then, a multi-stage cur-
riculum learning is designed by regarding the noise level
as learning complexity, where the model learns from clean
to noisy samples, gradually improving the performance
of the global model. Moreover, a mixed loss correction
method is explored in the curriculum stage to maximize
the utilization of data with noisy labels. Experiments per-
formed on fault datasets in non-IID settings indicate that
our proposed method addresses the label noise issue for
machine fault diagnosis in heterogeneous FL with favorable
effectiveness, achieving state-of-the-art performances.

Index Terms— Curriculum learning, Fault diagnosis, Fed-
erated learning, Label noise, Loss correction
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FEDERATED learning (FL) [1], [2] has received massive
attention in machine fault diagnosis [3], [4] for its de-

centralized machine-learning paradigm in a privacy-preserving
scheme. FL provides an effective solution to data island
problem for fault diagnosis [5] in the industry by cooperatively
training the local diagnosis models, while keeping the local
data safely stored in local clients. This new decentralized
learning paradigm in machine fault diagnosis is of great signif-
icance as it promotes the cooperative fault diagnosis between
companies, further improves the classification accuracy of fault
diagnosis model, and ensures the safe and economic operation
of mechanical systems.

The data of machinery in different companies is almost
non-identically and independently distributed (non-IID), so
that FL applied to machine fault diagnosis in practice faces
the challenge of data heterogeneity [4]–[7]. Furthermore, the
complex operating conditions of machines lead to discrepan-
cies in the perception of fault types and annotation criteria
for annotators in different companies. This inevitably causes
noisy labels during the annotation process in some clients,
with the noise level being heterogeneous across clients. Noisy
labels can lead to performance degradation of deep model, as
the models are easily overfitted to the noisy labels [8], [9].
In FL, the clients with label noise not only affect their own
local model training but also degrade the performances of the
other clients participating in the FL, resulting in a significant
performance degradation of FL [10], [11]. Consequently, in
addition to the data heterogeneity issue, the label noise issue
is also an unignorable problem for machine fault diagnosis in
FL.

Although the label noise issue has been studied extensively
in centralized learning [12]–[16] over the past years, it is still
challenging to tackle the label noise issue for machine fault
diagnosis in FL, due to the limited sizes of local fault datasets
and the data privacy constraints. To alleviate the label noise
issue in FL, some methods have been proposed, which can be
mainly divided into two complementary perspectives. The first
one assumes that label noise exists in all clients and adopts
the same training strategy in all clients to combat the label
noise [17], [18]. However, these methods cannot deal with the
heterogeneous label noise across clients, because the training
strategy for label noise cannot be adapted well to data with
low level or no noisy labels and may result in sub-optimization
and even training instability of local model. Another focuses
on selecting relatively clean clients and heavily relies on the



2 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXXX

predictions of the global model federated by these clean clients
[19]–[21]. Nevertheless, these methods cannot make full use
of the data with noisy labels and limit the performance of
the global model especially in FL settings with high data
heterogeneity due to the low confidence of the global model
federated by limited amount of training data in clean clients.

To address the challenge of heterogeneous label noise across
clients without falling into sub-optimization and to maximize
the utilization of all local data, we propose a Curriculum-based
Federated label Noise Learning method (called FedCNL)
for federated machine fault diagnosis with noisy labels. The
proposed FedCNL method is inspired by curriculum learning
[13], [22], which formalizes the learning strategies of human
beings and advocates learning starting from easy samples
and gradually progressing to complex samples and tasks. The
noisy labeled samples are more challenging to learn than the
clean samples. Considering the different levels of label noise
across clients, our proposed FedCNL regards the noise level
as learning complexity and develops a multi-stage curriculum
learning strategy by ranking both client and sample learning
complexities. This strategy allows the model to begin learning
from relatively clean samples and gradually progress to noisy
samples, thereby making full use of local data and gradually
improving the performance of the global model.

Specifically, the proposed FedCNL firstly exploits a noise
modeling module in the pre-processing stage to adaptively
identify the clean clients and noisy clients, and subsequently,
identify the clean samples and noisy labeled samples in noisy
clients using posterior probabilities in an unsupervised manner.
Then, a multi-stage curriculum learning strategy is developed
by ranking both client and sample learning complexities,
which enables the federated training to start from the clean
clients to noisy clients and then from the clean samples in
noisy clients to the noisy samples in noisy clients, to gradually
enhance the performance of the global model for heteroge-
neous label noise. Finally, a mixed loss correction method is
explored in noisy clients to bootstrap the training loss using
the label noise posterior probabilities for the curriculum-based
FL to maximize the utilization of local data with noisy labels.

To the best of our knowledge, this work is the first to
investigate the label noise issue for machine fault diagnosis
in federated learning. The main contributions of this work can
be summarized as follows:

1) A noise modeling module is exploited for heterogeneous
label noise across clients to identify the clients and the
samples that are likely to be noisy in an unsupervised
manner for curriculum learning.

2) A multi-stage curriculum learning strategy is developed
by ranking both client and sample learning complexities
to tackle the label noise issue in federated machine fault
diagnosis.

3) A mixed loss correction method is explored in the cur-
riculum to bootstrap the training of noisy clients, fully
utilizing noisy data and improving the model robustness
to label noise.

4) Comprehensive experiments are conducted on machine
fault datasets under different FL settings. The results
indicate that our proposed FedCNL outperforms the

competing methods with strong robustness to hetero-
geneous label noise and data in FL for machine fault
diagnosis.

The remainder of the paper is organized as follows. Section
II introduces the related works. In Section III, the problem
setting of our work is provided. In Section IV, the methodology
of the proposed FedCNL is presented. Section V provides the
experimental setup and results in FL. Finally, a conclusion is
provided in Section VI.

II. RELATED WORKS

A. Label Noise Learning

Label noise learning has been widely studied in centralized
learning [12]–[16], [23], [24]. Existing studies can be roughly
divided into two complementary perspectives: no-selection
methods [14], [16], [23] and selection-based methods [12],
[13], [15], [24]. For the former, Zhang et al. [23] proposed
mixup data augmentation to improve the robustness against
label noise without explicitly modeling it. Reed et al. [14]
proposed a mechanism to deal with noisy labels by adding
a perceptual term to the standard cross-entropy loss with
bootstrapping. For the latter, Guo et al. [13] proposed a
CurriculumNet for weakly supervised learning from large-
scale web images. Han et al. [15] proposed Co-teaching, which
trains two deep neural networks simultaneously and selects
data of possibly clean labels for cross-training. Cheng et al.
[24] proposed a semi-supervised learning strategy based on
time series to simultaneously train two DNNs with cross-
training for sample selection and label correction for fault
diagnosis.

Although there are massive studies on label noise learn-
ing, they are proposed under the centralized learning. Direct
application of these centralized learning methods in FL is
challenging and results in performance degradations in FL
settings [20], [25]. This is primarily due to the data scarcity
and data privacy issues associated with local data used for
machine fault diagnosis in FL.

B. Federated Learning with Label Noise

Recently, several FL methods have focused on addressing
label noise issues to enhance the robustness of FL against
noisy labels. These approaches can be categorized into two
complementary perspectives: no-client selection methods [17],
[18], [26] and client selection based methods [20], [21],
[25]. For the former, Fang et al. [17] proposed a robust
heterogeneous federated learning (RHFL) method to handle
the label noise and model heterogeneity issues simultaneously.
Yang et al. [18] proposed a label correction method during
the training with interchanging class-wise centroids. FedFixer
[26] presented a dual model structure to cross-train the global
model and local model with clean samples only. However,
these methods adopt the same noise training strategy in
all clients, which easily results in sub-optimization of local
models. Alternatively, FedCorr [20] selected clean clients via
the LID scores and used the global model federated by the
clean clients to correct the noisy labels in noisy clients. Finally,
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the global model was trained in the conventional FL stage
with all clients. FedNoRo [21] selected clean clients with
the per-class average loss values of clients and applied a
knowledge distillation loss to combat label noise in noisy
clients. Nevertheless, these methods heavily rely on the global
model federated by clean clients and may easily fail in extreme
non-IID settings, since the limited amount of data in clean
clients leads to a poor global model that cannot guide the
noise training effectively.

In contrast, our proposed FedCNL selects both the clients
and the samples to design the multi-stage curriculum learning
strategy to gradually learn from the clean samples to noisy
samples for bootstrapping the noise training, maximizing the
utilization of local data and gradually improving the perfor-
mance of the global model for heterogeneous label noise and
data.

III. PROBLEM SETTING

In this paper, the heterogeneous label noise issue in feder-
ated learning for machine fault diagnosis is investigated and
the main assumptions for federated machine fault diagnosis
are presented as follows:

1) Multiple clients with similar machines participate in
federated learning to obtain a shared global model.

2) All clients have a union set of fault labels and adopt the
same fault diagnosis model architecture.

3) Each client has its local data varied in category and
number, and with different levels of noisy labels.

4) The local data of each client is private and cannot be
communicated with each other.

The K clients with dataset D = {Dk}Kk=1, where Dk ={
(xk,i, ŷk,i)

|Dk|
i=1

}
is the local private dataset of client k,

participate in FL system for machine fault diagnosis. Here,
xk,i is the i-th sample in client k and ŷk,i indicates the label
of sample xk,i, which may be the correct label yk,i or the niosy
one ŷk,i 6= yk,i, |Dk| denotes the number of data samples in
client k. We define θk as the local model parameters of client
k and θ as the global model parameters, f (·) representing the
fault diagnosis model function, and A indicating a set of all
K clients. In FL, the objective is to optimize the global model
θ across all clients as follows,

min
θ
L (θ) =

∑
k∈At

|Dk|∑
i∈At

|Di|
Lk (θ), (1)

where At ∈ A indicates the subset of selected clients, Lk(θ)
is the local training loss of client k on dataset Dk, formulated
as,

Lk (θ) =
1

|Dk|

|Dk|∑
i=1

Lice (ŷk,i, f (xk,i; θ)), (2)

where Lce is the cross entropy loss.
A standard FL algorithm FedAvg [1], solves the global opti-

mization problem through iteratively communication between
local training and global aggregation as follows,

Local :θk = arg min
θk
Lk (θk) , initialized with θ, (3)

Global :θ ←
∑
k∈At

|Dk|∑
i∈At

|Di|
θk, (4)

where the local training is performed with multiple epochs
of stochastic gradient descent to minimize the local loss Lk
for the local model θk. The global aggregation is realized by
taking weighted average over local model parameters.

However, the FedAvg algorithm can easily lead to a poor
global model with degraded performance in the presence of
label noise in clients. Thus, we propose FedCNL to address
the label noise issue in FL for machine fault diagnosis.

IV. METHODOLOGY

Our proposed FedCNL designs a multi-stage curriculum
learning strategy to start the federated training from clean
samples gradually to noisy samples, improving the perfor-
mance of the global model stage by stage. Considering the
local data is stored in clients and cannot be accessing to each
other, our proposed FedCNL firstly exploits a noise modeling
module in the pre-processing stage to identify the clients
and the samples in clients that are likely to be noisy during
the federated training. Subsequently, a multi-stage curriculum
learning is designed by ranking both client and sample learning
complexities to gradually learn from clean to noisy samples.
The framework of our proposed FedCNL is illustrated in Fig.
1 and the corresponding training process of our proposed
FedCNL is elaborated in Algorithm 1.

A. Pre-processing Stage for Label Noise

The pre-processing stage is conducted for early federated
training to model the different levels of label noise. During this
stage, the label noise levels across clients and within clients are
both modeled to identify the clients and the samples that are
likely to be noisy. Previous studies [8], [9], [12] have indicated
that samples with noisy labels exhibit higher training loss
compared to clean samples in the early stage of model training.
Thus, our proposed FedCNL models on the per-sample loss to
identify whether a sample is clean or noisy. Accordingly, the
local training loss of a client in the early stage is modeled to
identify the clients.

1) Federated Training: In the pre-processing stage, a global
model is trained based on FedAvg for several warm-up rounds
(T0) for noise modeling. To enhance the robustness of the
global model to label noise, a popular data augmentation tech-
nique Mixup [23] is applied in the federated training, which
has exhibited strong robustness to label noise. It constructs
synthetic training samples (x̃, ỹ) on convex combinations of
sample pairs (xi, yi) and (xj , yj):

x̃ = λxi + (1− λ)xj ,
ỹ = λyi + (1− λ) yj ,
L = λLice + (1− λ)Ljce,

(5)

where λ ∼ Beta (α, α) is randomly sampled from the beta
distribution and α ∈ (0,∞). Mixup extends the training
distribution by random interpolations to enhance the sample
diversity. For label noise, Mixup improves the robustness to
label noise by combining clean and noisy samples, computing
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Fig. 1. The framework of our proposed FedCNL method.

Algorithm 1 FedCNL learning

INPUT: Communication rounds T0, T1, T2, T3; Number
of Clients K; Datasets of clients {Dk}Kk=1; Global model
parameters θ; Local model parameters {θk}Kk=1.
1: Initialize model parameters θ;

// Pre-processing:
2: for t=1 to T0 do
3: A ← (a set of all K clients);
4: for client k ∈ A in parallel do
5: θk ← θ;
6: θk ← Update(θk;Dk, Mixup) by Eq.(2) and (5);
7: Upload θk and loss value Lk to the server;
8: Update global model θ by Eq. (4);
9: Compute a GMM based on {Lk}Kk=1 to divide the
clients into clean set Ac and noisy set An;
10: for noisy client k ∈ An in parallel do
11: Compute a GMM based on

{
Lice
}|Dk|
i=1

to divide
the local dataset into clean subset D̂ck and noisy subset D̂nk ;

// Multi-Stage Curriculum Learning:
12:for t=1 to T1 do
13: Update θ by federated training among clients in Ac;
14:for t=1 to T2 do
15: Update θ by federated training among clients in Ac
and clients in An which only provide its clean subset D̂ck;
16:for t=1 to T3 do
17: for clean client k ∈ Ac in parallel do
18: Update θk by minimizing loss function in Eq.(10)
with ω = 0;
19: for clean client k ∈ An in parallel do
20: Compute a GMM to obtain the posterior proba-
bility p

(
n = 1

∣∣Lice ) for each sample;
21: Update θk by minimizing loss function in Eq.(10)
with ω = p

(
n = 1

∣∣Lice );
22: Update global model θ by Eq. (4);
OUTPUT: Global model θ.

a more representative loss to reduce the negative impact caused
by noisy labels.

In the federated training at the pre-processing stage, the
local training loss value Lk on the mixup augmentation of
dataset Dk in the k-th client is also uploaded to the server
along with the local model θk for modeling the label noise
level across clients. It should be noted that our proposed
FedCNL is privacy-preserving, since only the additional client-
wise training loss value is uploaded to the server in comparison
to the usual FL, and the loss value is a single scalar that cannot
recover the local data.

2) Noise Modeling Module: To adaptively model the label
noise, Gaussian Mixture Models (GMMs) are utilized in our
proposed FedCNL for noise modeling in an unsupervised
manner. The probability density function (pdf) of a GMM
model on the loss value l with N components is formulated
as:

p (l) =

N∑
n=1

γnp (l |n ), (6)

where γn are the mixing coefficients of each individual pdf
p(l |n ), N = 2 indicates that a two-component GMM is fitted to
model the distribution of the loss values l ∼ N (µn,

∑
n). And

the Expectation Maximization (EM) algorithm [27] is applied
to fit the GMM to the distributions. Then, the probability of
a client(sample) being clean or noisy can be obtained through
the posterior probability:

p (n |li ) =
p (n) p (li |n )

p (li)
, (7)

where n is the Gaussian component and we use n = 0 (1) to
denote the clean (noisy) components for intuitive distinction.
The clean component corresponds to the Gaussian distribution
with the small µn and the noisy component corresponds to the
Gaussian distribution with the large µn.

Our proposed FedCNL employs GMMs to model the label
noise levels across clients and within clients for curriculum de-
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sign. At the last federated training round in the pre-processing
stage, a GMM is computed on the client-wise training loss
values {Lk}Kk=1 in the server to identify the clean clients
and noisy clients. With the GMM, the clients can be divided
into two subsets: clean clients Ac and noisy clients An.
After identifying the noisy clients, each noisy client k ∈ An
locally computes the per-sample cross-entropy loss Lice using
the global model and estimates a GMM on the per-sample
loss values

{
Lice
}|Dk|
i=1

of all local samples to identify the
clean samples and the noisy samples. As a result, the local
dataset Dk in noisy client k can be divided into two subsets:
clean dataset D̂ck and noisy dataset D̂nk . Then, a multi-stage
curriculum learning strategy can be designed by ranking both
client and sample learning complexities.

B. Multi-Stage Curriculum Learning
The design of the multi-stage curriculum relies on the

intuition that the federated training is conducted sequentially
from easy samples to complex ones. Thus, considering the
learning complexities of both clients and samples, a three-
stage curriculum learning strategy is developed.

In the first curriculum stage, only a set of clean clients Ac
participate in the federated training with mixup augmentation
for T1 rounds until the global model training converges. In the
second stage, the noisy clients with clean datasets are incor-
porated into the federated training for T2 rounds, providing
more labeled training samples for the global model training.
Through the first two-stage curriculum learning, the federated
global model achieves high confidence in fault classification.
Consequently, in the third stage, the noisy clients add the
noisy datasets into the federated training, involving all clients
and all local data in training for T3 rounds. To maximize the
use of noisy data and further enhance the robustness of the
global model to heterogeneous label noise and data across
clients, a mixed loss correction method and a local proximal
regularization term are explored in this stage. The relevant
training details for this third curriculum stage are introduced
as follows.

Standard cross-entropy loss is ill-fitted to the label noise
tasks, as it tends to easily fit the noisy labels [8], [9].
Meanwhile, the bootstrapping loss [14] is proposed to improve
the standard cross-entropy loss for label noise by adding a
perceptual term to the loss function which can help to correct
the training objective:

LB = −
M∑
i=1

((1− ω) ŷi + ωzi)
T
log (qi), (8)

where qi is the softmax probabilities produced by the training
model, zi denotes the class prediction produced by the model,
M is the number of training samples, ω indicates the weight
for bootstrapping the model prediction zi and it is fixed in
[14].

Unfortunately, using a fixed weight value of ω for all
samples cannot well prevent the model from fitting the noisy
labels. Our proposed FedCNL improves the bootstrapping loss
by using the posterior probability of a sample being noisy to
weight each sample individually. Consequently, the value of

weight ω is set to be p
(
n = 1

∣∣Lice ) for each sample in each
noisy client for dynamically bootstrapping. Combined with
the mixup augmentation, a mixed loss correction method is
explored to implement a robust per-sample loss correction:

Ln = −λ
[
((1− ωi) ŷi + ωizi)

T
log (q)

]
−

(1− λ)
[
((1− ωj) ŷj + ωjzj)

T
log (q)

]
,

(9)

where Ln is the mixed bootstrapping training loss, ωi =
p
(
n = 1

∣∣Lice ) and ωj = p
(
n = 1

∣∣Ljce ) are inferred from
the GMM model which controls the confidence in the labels, q
indicates the softmax probabilities of the mixed samples. Note
that in the third curriculum stage, the posterior probabilities
estimated by the GMM models are updated in every federated
round for each noisy client. Thus, the mixed loss correction
method can lead to a robust global model by trusting in
progressively better predictions during training, fully using all
the local data.

To further improve the robustness of global model to data
heterogeneity, a local proximal regularization term is finally
applied in all clients to constrain the local models not to
deviate from the global model. Hence, the overall objective
of the local model for clients in the third curriculum stage is
formulated as,

L∗k = Ln + β‖θk − θ‖2. (10)

where β is the hyperparameter to control the overall effect of
the local proximal regularization term. It should be noted that
ω in Ln for noisy clients is set to be p

(
n = 1

∣∣Lice ), while
the ω in Ln for clean clients is set to be 0, which means the
Ln is the cross-entropy loss on mixup augmentation for clean
clients. We use a small β value in the early rounds of this stage
and only focus on the mixed loss correction training as shown
in Eq. (9). Then we increase the β value to constrain the local
training for handling the heterogeneous data across clients,
together improving the performance of the global model for
fault diagnosis.

Fig. 2. Architecture of the compact ConvNet for fault diagnosis.

C. Fault Diagnosis Model in FedCNL

The CNN networks with residual structure have shown
strong robustness to label noise in fault diagnosis [16], [28].
In our proposed FedCNL, a compact ConvNet with one
ConvNeXt block [29] is implemented as fault diagnosis model
for machine fault diagnosis, which is constructed with residual
structure. The architecture of the compact ConvNet is shown
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in Fig. 2. As illustrated in Fig. 2, the proposed architecture
contains a patch embedding layer, a ConvNeXt block, an
AdaptiveAvgPool layer, and a fully connected (FC) layer for
classification. The ConvNeXt block consists of a depthwise
convolution layer with layer normalization behind, a pointwise
convolution layer activated by a Gaussian Error Linerar Unit
(GELU), and another pointwise convolution layer connected
with residual connection. Our proposed fault diagnosis model
is compact and robust, and its architecture is shared by all
clients and the server in our proposed FedCNL.

Fig. 3. The test rig of DDS.

TABLE I
PLANETARY GEARBOX CONDITION DESCRIPTIONS

Component Type Description

Bearing

Ball Ball wear fault
Combo Combo wear fault in both inner and outer ring
Inner Inner race-wear fault
Outer Outer race-wear fault

Gear

Chipped Broken teeth fault
Miss Missing teeth fault
Root Teeth root crack fault

Surface Surface wear fault

V. EXPERIMENT STUDY

A. Dataset Description
We conduct experiments on two fault datasets to investigate

the effectiveness of our proposed FedCNL.
The PU dataset [30], [31], which is the bearing dataset

from the Paderborn University Bearing Data Center, collects
bearing data by a piezoelectric accelerometer on the top end
of the rolling bearing module at a sampling frequency of 64
kHz. We select the vibration signals from 13 real damage
bearings (KA04, KA15, KA16, KA22, KA30, KB23, KB24,
KB27, KI14, KI16, KI17, KI18, and KI21) and 1 healthy
bearing (K001) under the working condition N15 M07 F10 for
experiments. Consequently, the PU dataset obtains 14 different
class states. From each state, 500 samples are chosen for
training and another 500 samples for testing.

The DDS dataset consists of vibration signals of planetary
gearbox acquired by ourselves from the test rig of Spec-
tra Quests Drivetrain Dynamics Simulator (DDS), as shown
in Fig. 3. We acquires the bearing-gear fault data by the
608A11 vibrating sensors placed on the planetary gearbox at
a sampling frequency of 5120 Hz under different operating
conditions of 30Hz 4, 30Hz 2, 20Hz 0, and 40Hz 0 for experi-
ments. Here 20Hz, 30Hz, and 40Hz indicate the motor rotation

frequency, corresponding to the working speed of 1200 rpm,
1800 rpm, and 2400 rpm respectively, 0, 2 and 4 behind denote
the corresponding load of 0 N.m, 3.66 N.m and 10.98 N.m.
The planetary gearbox has 8 class faulty states listed in Table
I and 1 healthy state. The DDS dataset includes 200 samples
from each state under each operating condition for training and
also 200 samples for testing. The data length of each sample
in two datasets is both 1024.

B. Experimental Settings

We investigate the performance of our proposed FedCNL
with different label noise levels under heterogeneous data par-
titions. The ways of data partition and label noise generation
in FL scenarios are presented as follows.

1) Data Partition: Following the previous works [20], [21],
Dirichlet distribution Dir(α) is used to simulate the non-IID
scenarios for heterogeneous data partitions, in which a smaller
α indicates higher data heterogeneity. Through Dirichlet distri-
bution, the local training data of different clients are varied in
both class distribution and sample number. Here, we set α = 1
to control the heterogeneity of data for non-IID data partition.
As for the IID data partition, the whole training dataset is
uniformly distributed across all clients. There are 10 clients
setting for our FL experiments.

2) Noise Generation: To simulate label noise for data in
experiments, we use the noise model in [20] for synthetic label
noise generation among 10 clients. Two parameters ρ and τ
are utilized to control the heterogeneous label noise, where ρ
represents the probability of a client to be noisy and τ indicates
the lower limit of the noise level in a noisy client. In this
way, the noise ratio of clients is controlled by ρ and the noise
level in a noisy client is randomly sampled from the uniform
distribution U (τ, 1). The two parameters enable the modeling
of heterogeneous label noise across clients.

TABLE II
HYPERPARAMETERS OF OUR PROPOSED FEDCNL

Hyperparameter value Hyperparameter value

Learning rate 0.05 Mixup 1
Optimizer SGD Warm-up rounds (T0) 20

Local epoches 5 Stage 1 rounds (T1) 60
Local batch size 16 Stage 2 rounds (T2) PU 25 / DDS 30
Client number 10 Stage 3 rounds (T3) PU 45 / DDS 50

C. Compared Methods

Six different learning methods are implemented to handle
the heterogeneous label noise in our experiments for compar-
ison. (1) Centralized learning: The local data of all clients
are centralized for model training. The mixed loss correction
method is also used in the model training. (2) FedAvg: FedAvg
[1] is the vanilla FL algorithm and can be viewed as the
baseline method. (3) FedProx: FedProx [7] is also a classic FL
method, which adds a local proximal term in the local training
to constraint the local updates to be closer to the global model.
(4) FedAvg+Mixup: The FedAvg algorithm is combined with
the mixup augmentation to improve the robustness of model.
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TABLE III
COMPARISON PERFORMANCE OF ALL APPROACHES UNDER THE NON-IID SETTING WITH HETEROGENEOUS LABEL NOISE

Dataset Method
Test Accuracy(%)

ρ=0.0 ρ=0.3 ρ=0.5 ρ=0.7
τ=0.0 τ=0.0 τ=0.5 τ=0.0 τ=0.5 τ=0.0 τ=0.5

PU

Centralized learning 98.55±0.25 98.53±0.23 98.61±0.11 98.06±0.51 97.17±0.14 97.88±0.21 95.48±0.55

FedAvg [1] 98.50±0.09 94.92±0.63 93.33±0.99 91.48±0.60 87.12±0.96 90.88±0.62 87.30±0.97
FedProx [7] 98.13±0.18 94.97±0.67 94.48±0.18 91.87±1.04 86.15±0.80 91.12±1.14 86.24±1.25

FedAvg+Mixup 98.22±0.23 97.24±0.10 96.59±0.22 95.19±0.32 92.70±0.65 93.74±0.43 89.04±0.24
RHFL [17] 98.44±0.12 96.52±0.59 96.16±0.47 94.06±0.46 91.22±0.73 93.79±0.38 91.01±0.74

FedCorr [20] 97.11±0.94 96.51±2.60 97.49±0.17 93.85±2.53 88.07±1.59 93.71±0.52 91.07±0.95
FedNoRo [21] 98.25±0.10 97.59±0.17 98.18±0.18 95.81±0.28 94.29±1.04 94.45±0.68 95.78±0.63
FedCNL(ours) 98.80±0.07 98.41±0.06 98.45±0.14 97.53±0.25 97.54±0.14 96.68±0.22 96.67±0.44

DDS

Centralized learning 99.08±0.37 97.97±1.58 96.43±0.59 90.43±1.14 89.05±1.60 84.96±2.66 67.02±1.62

FedAvg [1] 92.47±0.17 78.45±0.56 75.20±1.07 61.45±1.15 53.66±2.15 59.46±2.70 51.54±0.89
FedProx [7] 88.19±0.66 75.87±1.37 72.00±0.97 62.77±1.70 52.70±1.04 60.83±1.46 52.34±0.52

FedAvg+Mixup 87.63±0.99 82.58±0.72 79.79±0.78 69.15±0.89 63.78±1.80 65.83±1.07 56.86±1.17
RHFL [17] 88.28±0.80 77.29±1.11 73.37±3.01 67.13±2.01 59.70±1.17 64.42±1.92 54.72±1.47

FedCorr [20] 75.83±4.69 82.16±2.82 79.65±3.90 73.36±2.82 59.70±2.82 62.71±2.75 56.88±7.85
FedNoRo [21] 74.98±2.65 85.60±0.46 86.23±0.83 79.49±0.79 71.18±0.80 70.61±0.63 60.14±3.84
FedCNL(ours) 96.23±0.82 93.79±0.46 94.58±0.47 85.17±0.50 79.17±2.02 79.15±1.27 65.78±1.11

TABLE IV
COMPARISON PERFORMANCE OF ALL APPROACHES UNDER NON-IID SETTING OF α = 0.5 WITH HETEROGENEOUS LABEL NOISE

Dataset Method
Test Accuracy(%)

ρ=0.0 ρ=0.3 ρ=0.5 ρ=0.7
τ=0.0 τ=0.0 τ=0.5 τ=0.0 τ=0.5 τ=0.0 τ=0.5

PU

Centralized learning 98.63±0.25 98.58±0.35 97.91±0.34 98.20±0.28 97.11±0.32 98.03±0.18 96.42±0.38

FedAvg [1] 98.36±0.21 94.15±0.55 92.19±0.62 91.27±0.98 86.42±0.89 90.50±0.78 86.05±0.64
FedProx [7] 97.86±0.11 94.46±0.65 92.91±0.37 90.23±0.72 84.63±0.85 90.08±0.96 85.59±0.97

FedAvg+Mixup 96.94±0.44 94.56±0.40 95.08±0.65 93.06±0.56 88.05±0.56 92.35±0.51 88.46±0.97
RHFL [17] 98.18±0.17 95.54±0.34 95.05±0.37 92.96±0.44 89.65±0.52 92.40±0.99 89.63±0.98

FedCorr [20] 97.07±0.57 96.51±0.74 96.10±0.60 90.92±1.78 86.80±1.66 90.71±1.42 83.73±2.19
FedNoRo [21] 97.61±0.26 96.60±0.20 97.46±0.16 94.63±0.16 95.84±0.66 93.22±0.44 93.96±0.69
FedCNL(ours) 98.55±0.10 97.92±0.06 97.92±0.30 96.20±0.47 96.29±0.26 95.41±0.57 95.57±0.97

DDS

Centralized learning 98.93±0.13 98.82±0.19 98.84±0.15 96.60±4.21 90.60±1.85 88.26±6.76 76.86±5.24

FedAvg [1] 90.36±2.01 76.83±1.87 67.61±1.57 59.48±0.50 53.16±1.51 53.02±1.92 43.15±0.87
FedProx [7] 86.47±1.29 74.26±1.67 66.69±1.79 58.49±1.76 56.07±1.89 51.04±0.85 41.50±3.21

FedAvg+Mixup 84.47±1.19 74.09±1.44 67.58±1.27 67.46±0.53 59.39±1.62 61.61±1.02 50.85±0.75
RHFL [17] 87.20±1.70 77.50±1.33 71.50±1.11 62.64±1.10 57.851.54 57.79±1.42 47.35±2.38

FedCorr [20] 49.37±6.01 38.45±15.55 31.96±7.85 50.51±4.77 52.18±3.33 49.29±8.61 35.40±5.67
FedNoRo [21] 84.36±3.11 81.02±0.69 77.73±1.77 72.98±1.52 63.64±0.87 63.48±1.01 62.92±1.10
FedCNL(ours) 93.51±0.50 88.09±0.45 80.64±1.00 79.76±0.42 74.45±0.60 76.83±1.14 73.36±2.82

(5) RHFL: RHFL is the method proposed in [17]. Here, we
use the symmetric cross entropy learning (SL) loss and the
client confidence re-weighting scheme to reduce the negative
effects caused by label noise. (6) FedCorr: FedCorr is a label
correction method proposed in [20], which identifies noisy
clients via LID scores and relabels the identified noisy samples
with the labels predicted by the global model. (7) FedNoRo:
FedNoRo is the method proposed in [21], which selects noisy
clients based on per-class average loss values and applies
knowledge distillation for noisy client training.

The experimental results of all approaches are the aver-
age of five random runs, including the average accuracies
and the standard deviations. For the four no-client selection
methods, as FedAvg, FedProx, FedAvg+Mixup, and RHFL,
the federated training is terminated when the global model
reaches a local optimal. For client selection based methods, as
FedCorr, FedNoRo and our proposed FedCNL, the federated
training is terminated after the same number of communication
rounds. The values of hyperparameters setting in our proposed

FedCNL are presented in Table II. The hyperparameter β that
controls the local proximal regularization term is initialized to
be 0, and increased to be 0.5 for the last 30 communication
rounds. Our works are all programmed on a PC with Python
3.8.10 with torch 1.8.0, Cuda version 11.1 and executed on
computer operating system Windows 10, Intel(R) Core(TM)
i7-8700 CPU @3.20GHz, 24.0GB RAM, and GPU NVIDIA
GeForce RTX 3080, 10GB.

D. Experimental Results

1) Comparison with State-of-the-art Methods: The test ac-
curacy results of our proposed FedCNL and all compared
approaches on PU and DDS datasets under the non-IID setting
are presented in Table III. Additionally, we also provide com-
parison results under a higher data heterogeneity scenario (α =
0.5) in Table IV. It can be seen that our proposed FedCNL
achieves the best performances across all noise settings on both
datasets. The performance of the Centralized learning method
can be regarded as upper limit of fault diagnosis performance.



8 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXXX

Among federated methods, the two classic FL algorithms,
FedAvg and FedProx, exhibit similar test accuracies, both of
which are significantly affected by label noise. When com-
bined with mixup augmentation, the test accuracy of FedAvg
improves under most noise settings. Meanwhile, the RHFL
method, which also applies the same training in all clients
for label noise, achieves some performance gains compared
with the performance of FedAvg. FedCorr and FedNoRo, both
of which select clients for different training, also achieve
performance gains. Notably, FedNoRo is more effective and
robust under the higher data heterogeneity scenario (α = 0.5),
whereas FedCorr performs worse under this scenario. It may
be because FedCorr fails to correctly filter out noisy clients
in highly heterogeneous scenarios, leading to incorrect label
corrections. Among the FL methods, our proposed FedCNL
achieves the largest performance gains under different label
noise settings in both non-IID scenarios. The performances
of all approaches over different values for (ρ, τ) on DDS
dataset under the IID setting are also evaluated in Table V.
Our proposed FedCNL also outperforms the other FL methods
under different label noise settings in the IID setting.

TABLE V
RESULTS ON DDS DATASET UNDER THE IID SETTING

Method
Test Accuracy(%)

ρ=0.3 ρ=0.5
τ=0.0 τ=0.5 τ=0.0 τ=0.5

Centralized Learning 98.82±0.31 98.72±0.49 98.87±0.27 96.66±0.85

FedAvg [1] 92.09±0.47 88.01±0.94 81.82±0.63 71.35±1.51
FedProx [7] 91.86±0.36 86.06±1.06 81.74±1.68 70.45±1.78

FedAvg+Mixup 95.94±0.14 93.58±0.40 87.97±1.34 80.58±1.95
RHFL [17] 94.18±0.22 91.80±0.83 86.38±1.32 76.93±5.60

FedCorr [20] 98.24±0.76 98.27±0.38 97.63±0.49 95.98±0.98
FedNoRo [21] 94.44±0.46 96.70±0.48 91.28±0.29 94.28±0.29
FedCNL(ours) 98.28±0.19 98.29±0.12 97.71±0.14 97.30±0.31

To evaluate our proposed FedCNL in more non-IID settings,
we vary the non-IID settings via adjusting the parameter α in
Dirichlet distribution, where a smaller α indicates the higher
data heterogeneity. And we compare our proposed FedCNL
with the FL methods at two noise levels. The experimental
results under different non-IID settings are described in Table
VI. It can be seen that our proposed FedCNL consistently
outperforms the other FL methods, especially at high data
heterogeneity level. For DDS dataset that contains the bearing-
gear data under varied operating conditions, the performance
gains of our proposed FedCNL in the non-IID settings are
more obvious.

Our proposed FedCNL utilizes the client-wise training loss
values for GMM modeling to identify the clean and noisy
clients, while FedCorr computes the LID scores for modeling.
To investigate the effectiveness of these two methods for client
identification, we use the local training loss values instead of
LID scores in FedCorr to ensure fair experiments in the non-
IID setting. The comparison results are presented in Table VII.
It can be seen that the client-wise training loss values are more
effective than LID scores in identifying the noisy clients. This
may be because the model training loss is directly obtained
through the supervised training with the labels, while the LID
scores are computed based on distances of k nearest neighbors.

TABLE VI
ACCURACIES OF DIFFERENT FL METHODS UNDER DIFFERENT

NON-IID SETTINGS WITH HETEROGENEOUS LABEL NOISE

Dataset Method
Test Accuracy(%)

α=0.1 α=6
ρ=0.3,τ=0.5 ρ=0.5,τ=0.5 ρ=0.3,τ=0.5 ρ=0.5,τ=0.5

PU

FedAvg+mixup 82.74±0.56 74.47±2.25 97.49±0.35 93.91±0.32
RHFL [17] 86.30±0.95 76.54±2.01 95.95±0.56 91.54±1.24

FedCorr [20] 79.30±2.45 63.82±5.52 98.37±0.18 98.06±0.21
FedNoRo [21] 90.86±0.58 78.36±1.59 98.48±0.27 97.72±0.15
FedCNL(ours) 94.34±0.29 89.68±0.90 98.82±0.15 98.10±0.17

DDS

FedAvg+mixup 55.70±0.82 44.22±0.79 85.94±0.38 73.79±1.32
RHFL [17] 55.17±1.36 40.24±1.51 82.29±1.46 65.57±3.10

FedCorr [20] 53.92±3.33 31.80±3.35 89.63±2.62 73.59±3.78
FedNoRo [21] 55.74±2.43 46.29±2.58 91.07±0.72 79.19±1.50
FedCNL(ours) 73.13±3.59 54.57±0.76 96.16±0.43 92.08±0.91

The model training losses can more directly reflect the label
noise information, while the LID scores would be significantly
influenced by the heterogeneous data distributions in clients.
This is also consistent with the results in Table IV and VI that
FedCorr works poorly in high data heterogeneity scenarios.
Besides, our proposed FedCNL which designs a multi-stage
curriculum learning strategy considering both client and sam-
ple learning complexities surpasses FedCorr(loss) a lot.

TABLE VII
COMPARISONS BETWEEN THE TRAINING LOSS VALUES AND THE LID

SCORES

Dataset Method
Test Accuracy(%)

ρ=0.3 ρ=0.5
τ=0.0 τ=0.5 τ=0.0 τ=0.5

PU
FedCorr(LID) 96.51±2.60 97.49±0.17 93.85±2.53 88.07±1.59
FedCorr(loss) 98.13±0.31 98.27±0.17 94.76±0.81 89.49±0.45

FedCNL(ours) 98.41±0.06 98.45±0.14 97.53±0.25 97.54±0.14

DDS
FedCorr(LID) 82.16±2.82 79.65±3.90 73.36±2.82 59.70±2.82
FedCorr(loss) 82.71±4.46 81.18±3.11 78.45±2.06 62.94±2.71

FedCNL(ours) 93.79±0.46 94.58±0.47 85.17±0.50 79.17±2.02

2) Communication Efficiency: To compare the communica-
tion efficiency of FL methods, we show the learning curves of
different methods with certain communication rounds under
noise level of (ρ, τ) = (0.5, 0.5) in the non-IID setting
in Fig. 4, where our proposed FedCNL achieves distinct
performance gain after 140 rounds on both datasets. FedAvg,
FedAvg+Mixup, and RHFL methods, which use the same
training for all clients, reach the local optimal after about
30, 50 and 40 communication rounds, respectively. The av-
erage training times of one random experiment to reach the
local optimal in these three methods are 3.22 minutes (min),
5.95 min and 5.34 min, respectively. Then the global model
becomes overfitted to the noisy labels, leading to a decline
of the test accuracy. FedCorr, FedNoRo and our proposed
FedCNL, which select clients first, need more communication
rounds to obtain robust performances. The average training
times of one random experiment in FedCorr, FedNoRo and
our proposed FedCNL are 20.14 min, 26.94 min and 19.57
min, respectively. Our proposed FedCNL achieves the highest
classification accuracy while taking the least training time
among the three client selection based methods. Through the
multi-stage curriculum learning, our proposed FedCNL can
gradually improve the classification performance of the global
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TABLE VIII
IMPACTS OF EACH COMPONENT OF THE MULTI-STAGE CURRICULUM LEARNING STRATEGY IN FEDCNL

non-IID setting Method

Test Accuracy(%)

PU dataset DDS dataset
ρ=0.3,τ=0.5 ρ=0.5,τ=0.0 ρ=0.5,τ=0.5 ρ=0.7,τ=0.5 ρ=0.3,τ=0.5 ρ=0.5,τ=0.0 ρ=0.5,τ=0.5 ρ=0.7,τ=0.5

α = 1

FedCNL(ours) 98.45±0.14 97.53±0.25 97.54±0.14 96.67±0.44 94.58±0.47 85.17±0.50 79.17±2.02 65.78±1.11

w/o mixup 97.14±1.14 92.38±0.90 94.00±1.34 92.96±0.58 89.28±1.12 79.87±0.57 70.23±0.89 60.94±0.69
w/o curriculum learning 97.18±0.14 96.53±0.28 95.28±0.47 92.88±0.92 87.52±1.47 79.61±1.21 71.82±1.50 56.60±5.09
w/o stage 2 + stage 3 97.54±0.13 95.03±0.13 89.52±0.40 92.24±1.08 85.18±1.10 75.16±1.86 66.91±1.98 55.98±2.33

w/o stage 3 97.90±0.12 96.05±0.34 94.14±0.57 95.10±0.44 86.39±0.83 76.71±0.66 70.39±2.27 59.31±1.05
w/o loss correction 97.90±0.19 95.73±0.31 94.66±0.47 90.97±0.78 91.55±0.90 80.99±1.01 72.27±0.89 62.64±1.70
w/o local proximal 97.57±0.31 96.59±0.57 95.92±0.48 95.77±0.38 86.40±0.90 79.33±1.29 71.44±1.11 60.50±1.84

α = 0.5

FedCNL(ours) 97.92±0.30 96.20±0.47 96.29±0.26 95.57±0.97 80.64±1.00 79.76±0.42 74.45±0.60 73.36±2.82

w/o mixup 95.63±0.50 91.75±0.66 93.57±0.51 93.48±0.52 80.35±1.15 73.50±1.17 65.62±1.70 57.64±4.01
w/o curriculum learning 96.34±0.15 95.40±0.40 92.80±0.96 92.99±0.43 74.35±1.51 78.08±1.51 64.57±1.44 47.84±6.90
w/o stage 2 + stage 3 95.68±0.53 94.34±0.56 91.16±1.56 88.28±1.17 69.15±1.31 72.31±1.61 55.70±1.48 57.01±2.46

w/o stage 3 96.19±0.12 95.03±0.23 92.67±0.68 90.55±0.74 70.41±0.73 73.57±0.80 62.10±0.96 58.41±2.33
w/o loss correction 96.70±0.21 94.56±0.69 93.37±0.20 91.35±0.69 80.27±1.24 72.12±1.53 67.61±0.84 60.55±2.32
w/o local proximal 95.81±0.47 93.44±0.68 93.05±0.36 92.02±0.63 72.43±0.73 72.53±0.36 67.78±1.81 67.60±2.87

model under heterogeneous label noise across clients and
obtain high efficiency.

Fig. 4. The learning curves of different methods with certain communi-
cation rounds.

3) Ablation Study: Impacts of each component in Fed-
CNL: We evaluate six different learning strategies in non-
iid settings by removing each component of the multi-stage
curriculum learning strategy in the proposed FedCNL, which
are described as follows. w/o mixup: The mixup augmentation
is not applied in FedCNL. w/o curriculum learning: The global
model is directly trained with stage 3 using all clients with all
local data. w/o stage 2 + stage 3: The global model is only
trained in stage 1 using only the clean clients. w/o stage 3:
The global model is trained with the first two-stage curriculum
learning. w/o loss correction: The bootstrapping loss for loss
correction is removed in stage 3. w/o local proximal: The
local proximal regularization term is removed in stage 3. The
experimental results are presented in Table VIII.

It is evident that removing any component in the multi-stage
curriculum learning strategy of our proposed FedCNL would
lead to degraded performances. Our proposed FedCNL with a
three-stage curriculum learning significantly outperforms the
method w/o curriculum learning that directly trains with all
clients, especially under higher levels of label noise. Training
our proposed FedCNL only with clean clients (w/o stage 2
+ stage 3) has the worst performance under higher levels of
label noise, due to the small sizes of datasets in clean clients.
The proposed FedCNL w/o stage 3 curriculum, which adds the
clean datasets in noisy clients into federated training, improves
the test accuracy. However, it suffers from accuracy drops

since it discards the noisy data in noisy clients. The proposed
loss correction and the local proximal regularization in stage 3
also contribute to improving the accuracy of global model for
fault diagnosis, both of which lead to performance degradation
when removed individually.

In stage 3, the value of β is dynamically adjusted to make
the model adapt to the noisy data first and subsequently combat
the data heterogeneity. The learning curve of our proposed
FedCNL on DDS dataset in stage 3 under the non-IID setting
is presented in Fig. 5 to intuitively show the impacts of β value
before and after adjustment. It can be seen that adding β value
which controls the local proximal regularization on the basis
of loss correction can further improve the performance of the
global model for fault diagnosis in heterogeneous FL.

Fig. 5. The impacts of β before and after adjustment on DDS dataset.

Fig. 6. The impacts of stage rounds on DDS dataset with different noise
levels.

Impacts of Stage Rounds: We conduct experiments to
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investigate the impacts of communication rounds on global
model convergence in each curriculum learning stage of our
proposed FedCNL, using DDS dataset under noise levels of
(ρ, τ) = (0.3, 0.5) and (ρ, τ) = (0.5, 0.5) in the non-IID set-
ting. We change the stage rounds T1 and T2 to investigate the
robustness of our proposed FedCNL during stage transitions.
Specifically, we adjusted T1 from 70 to 100 with a stride
of 10 while keeping the other stages constant to study the
effects of the stage rounds on transition from stage 1 to stage
2. Similarly, the value of T2 is also varied from 20 to 50
with a stride of 10 to study the effects of the stage rounds on
transition from stage 2 to stage 3. The results are shown in
Fig. 6. It can be seen that adjustments in stage rounds during
transitions from near convergence to over-convergence have
minimal impact on the performance of the global model. Our
proposed FedCNL method demonstrates robustness against
fluctuations in stage rounds, consistently outperforming the
baseline method FedAvg in combating label noise.

VI. CONCLUSION

This paper has proposed a novel approach FedCNL for
machine fault diagnosis in FL with label noise, where a multi-
stage curriculum learning strategy is designed for tackling
the heterogeneous label noise across clients. The proposed
FedCNL have exploited a noise modeling module via GMM
models to adaptively estimate the noisy clients and identify
the clean samples and noisy label samples in noisy clients
in an unsupervised manner. Then, the multi-stage curriculum
learning strategy has been designed by regarding the noise
level as learning complexity, which enables the model to
learn from clean to noisy samples, gradually improving the
performance of the global model. Moreover, a mixed loss cor-
rection method has been explored in the curriculum learning
stage to maximize the utilization of data with noisy labels.
The machine fault diagnosis experiments performed on two
fault datasets with non-IID settings under different label noise
levels have verified the effectiveness of our proposed FedCNL
method for machine fault diagnosis in FL with heterogeneous
label noise. Our proposed FedCNL has outperformed the state-
of-the-art methods for federated learning with label noise with
significant performance gains.

Although our proposed FedCNL method has effectively
addressed label noise issues, it is evident that the classification
performances on DDS dataset are worse than that on PU
dataset due to its variable operating conditions within and
across clients. In fact, the variable operating conditions in
practical engineering further increase the difficulty of federated
learning for machine fault diagnosis. In the future work, we
will explore the domain generalization and domain adaptation
methods for federated machine fault diagnosis, and further
address the issue of variable operating conditions in FL for
practical engineering.
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