
GLPose: Global-Local Representation Learning for Human Pose

Estimation

YINGYING JIAO and HAIPENG CHEN∗, Jilin University, China

RUNYANG FENG∗, HAOMING CHEN, and SIFAN WU, Zhejiang Gongshang University, China

YIFANG YIN, Institute for Infocomm Research, A*STAR, Singapore

ZHENGUANG LIU, Zhejiang University, China

Multi-frame human pose estimation is at the core of many computer vision tasks. Although state-

of-the-art approaches have demonstrated remarkable results for human pose estimation on static

images, their performances inevitably come short when being applied to videos. A central issue lies

in the visual degeneration of video frames induced by rapid motion and pose occlusion in dynamic

environments. This problem, by nature, is insurmountable for a single frame. Therefore, incorporating

complementary visual cues from other video frames becomes an intuitive paradigm. Current state-

of-the-art methods usually leverage information from adjacent frames, which unfortunately place

excessive focuses on only the temporally nearby frames. In this paper, we argue that combining global

semantically similar information and local temporal visual context will deliver more comprehensive

and more robust representations for human pose estimation. Towards this end, we present an efective

framework, namely global-local enhanced pose estimation (GLPose) network. Our framework consists

of a feature processing module that conditionally incorporates global semantic information and local

visual context to generate a robust human representation and a feature enhancement module that

excavates complementary information from this aggregated representation to enhance keyframe features

for precise estimation. We empirically ind that the proposed GLpose outperforms existing methods by

a large margin and achieves new state-of-the-art results on large benchmark datasets.

CCS Concepts: · Computing methodologies→ Activity recognition and understanding; Computer vision.

Additional Key Words and Phrases: Human pose estimation, feature aggregation, pose estimation, global-local representation

1 INTRODUCTION

Estimating keypoint positions of each person from an image is a fundamental challenge in the area of computer

vision. It has a wide spectrum of applications including human behavior understanding, action recognition,

augmented reality, and surveillance tracking [15, 16, 26ś29, 37, 42, 55]. Recent attempts address this problem
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by employing deep convolutional neural networks (CNNs), and have witnessed rapid advancements [5, 11, 30,

31, 44, 49]. Renewed detection frameworks [15, 23], potent visual backbone networks [19, 40], and large-scale

benchmark datasets [1, 25] jointly push forward the performance boundary of human pose estimation.

Multi-frame human pose estimation has recently emerged as a rising challenge beyond recognizing human

poses in static images. Beneiting from the technological advances in image-based pose estimation models

and convolutional neural networks, the performance of human joints detectors is nearly saturated in regular

scenarios (e.g., single-person scenes with minimal occlusion). Unfortunately, the application of these models

on video sequences featuring dynamic and complex environments sufers from performance diminishment and

licking. The central issue lies in the appearance degeneration of human subjects induced by the motion blur,

video out-of-focus, and frequent pose occlusions that are imperceptible in static image setting. Static image

pose estimators tend to fail in handling such cases. A video, on the other hand, contains more abundant visual

information. Integrating available cues from other video frames thus becomes an intuitive paradigm for mitigation

of visual degradation.

Several methods [4, 8, 28, 60] suggest incorporating temporal information from adjacent frames to compete

against visual degeneration. [4] proposes PoseWarper to propagate pose annotations between a pair of frames,

and further aggregate temporal pose information from neighboring frames. [28] presents a DCPose framework to

aggregate spatial features over nearby frames and model their motion contexts. By leveraging relatively limited

local visual context within a short temporal window, these methods have demonstrated superior performance.

However, the richer global semantic cues in videos are neglected, which leads to their failures in the cases of

contiguous pose occlusions. Another line of work instead considers capturing video-level evidence to bridge

the degraded features. [7, 34, 38] propose to estimate optical low between video frames, and employ the low

based motion ield for temporally aligning features. These approaches produce promising results when the low

cues can be computed precisely. However, the computation of optical low relies heavily on motion estimation,

which inevitably sufers from image quality degradation. Thus in cases involving defocus or pose occlusions,

the optical lows usually perform unsatisfactorily and hence are not that helpful for human pose estimation. An

additional issue of the above approaches is that they directly perform feature aggregation either by concatenation

or element-wise summation, and fails to discover valuable information for the key frame, which also limits their

performance.

In this paper, we argue that learning a robust human representation requires looking at both global semantically

similar information and local temporal visual context. Intuitively, visual cues from neighboring frames are closely

related to the current frame, which ensures the stability of feature aggregation. On the other hand, any instances

from other frames sharing highly semantic similarity (e.g., similar actions) with the current human subject might be

useful, which provide discriminative and complementary information. As illustrated in Fig. 1 (d), diferent human

proposals might also contribute to the pose estimation of the current human subject. The composition of global

semantical information and local visual context will yield more comprehensive and more robust representations.

Starting from this concept, we present a global-local enhanced pose estimation (GLPose) network, which consists

of a Feature Processing module and a Feature Enhancement module. Speciically, features of human subjects are

irst extracted from sampled video frames, and then go through our Feature Processing module for conditional

aggregation. The aggregated features are then handed to the Feature Enhancement module to yield the enhanced

discriminative keyframe features. Finally, a detection head [40, 51] is used to output heatmap estimates. Notably,

unlike previous approaches, we design the Feature Enhancement module to further explore the valuable and

complementary information for the key frame after obtaining the aggregated representations, delivering more

accurate pose estimation results.

Our contributions are summarized as follows.
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Fig. 1. An illustration of the motivation for our method. (a) Original frame sequence in the PoseTrack

dataset. The goal is to detect the pose of the persons in the key frame Ft . We show three diferent

schemes: (b) image based approaches ([40]) employ only the information of the key frame; (c) several

recent methods ([4]) incorporate the temporally nearby frames into the pose estimation of the key

frame; and (d) we propose to aggregate global semantic information and local visual context for efective

pose estimation. By exploiting richer cues from both non-local and local frames, our method learns

a comprehensive representation that is robust to challenging dynamic scenes. Inaccurate keypoint

detections are highlighted with the white solid circles.

• We propose to incorporate global semantically similar information and local temporal visual context to

deliver more comprehensive and more robust representations for human pose estimation.
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• The proposed global-local enhanced pose estimation network is able to fully leverage video information by

conditional feature aggregation and complementary feature enhancement, efectively competing against

frame degradation.

• Our method achieves new state-of-the-art results on three benchmark datasets, namely PoseTrack2017,

PoseTrack2018, and Sub-JHMDB.

2 RELATED WORK

2.1 Human Pose Estimation in Static Images

Conventional image-based human pose estimation approaches consider probabilistic graphical models or

the pictorial structure models [12, 36, 41, 46, 48, 59] to represent relations between connected body parts.

Notwithstanding the eicient inference, they rely heavily on hand-craft features and tend to fail in uncommon

situations. More recently, deep convolutional neural networks have emerged as dominant solutions [2, 10, 24, 39,

43, 45, 57] due to their superior performance. One line of work [6] directly regresses skeletal keypoint coordinates

from the input image, which has later been surpassed by the heatmap based methods [28, 40].

In general, heatmap estimation based methods broadly fall within two paradigms, top-down and bottom-up.

Bottom-up paradigm irst detects individual body joints and then assembles them into entire persons. [5] presents

a bottom-up architecture that leverages part ainity ield to represent pairwise relationships between body parts.

Conversely, top-down paradigm irst detects persons in an image and then proceeds with single-person pose

estimation on each individual. [31] designs a symmetric stacked hourglass architecture based on the successive

steps of pooling and upsampling, incorporating features across all scales to yield a robust representation. [15]

presents a regional multi-person pose estimation framework to tackle the problem of pose estimation within

inaccurate human bounding boxes. A recent work in [40] proposes a HRNet architecture that maintains high

resolution features through the whole process, achieving state-of-the-art results in static images.

2.2 Human Pose Estimation in Videos

For human pose estimation in videos, a principle problem is to utilize the abundant temporal information

(e.g., local temporal consistency and global semantic cues) to improve the accuracy of joints detectors. Some

previous approaches propose to integrate temporal information from neighboring frames into pose estimation of

current frame. [4] presents a PoseWarper which is able to incorporate spatiotemporal pose information from

adjacent frames in the inference stage. [28] proposes a DCPose framework, which encodes keypoint context over

consecutive frames into localized search scopes and further resample heatmap within this range according to the

pose residuals. These methods perform temporal aggregation across local adjacent frames while disregarding

global semantic information, which potentially limits their performance.

Another line of work focus on capturing video-level information to facilitate human pose estimation. [34, 38]

propose to compute optical low between video frames and employs low based representation for feature

calibration. However, motion blur and video defocus hinder optical low computation which translates to

performance drop. [2, 30] propose to employ convolutional LSTM to model the sequential spatiotemporal features,

achieving good results on single person scenes. [47] presents a 3D-HRNet that incorporates temporal dimension

into the original HRNet [40], performing successive feature aggregation for pose tracking and estimation. Unlike

previous methods, our global-local enhanced pose estimation (GLPose) network combines global semantic

information and local visual context to provide more robust representations for human pose estimation, achieving

state-of-the-art performance.
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3 OUR APPROACH

Motivation In order to cope with video frame degradation for multi-frame human pose estimation, feature

aggregation is an efective solution, in which there are two main issues: (1) selecting suitable features for

aggregation; and (2) adopting a valid strategy to aggregate multiple features. Several previous approaches

[4, 28, 56] intuitively incorporate the temporally nearby frames. However, contiguous frame degeneration often

occurs over a wide time window, which limits the efectiveness of local cues. Moreover, existing methods directly

perform concatenation or element-wise summation among features for aggregation, without highlighting the

information that is overlooked by the key frame. To tackle the above problems, we propose to aggregate both

global semantically similar information and local temporal visual context to generate more robust representations.

We further mine discriminative information from this aggregated representation to enhance the features of key

frame, delivering efective feature aggregation.

Method Overview The pipeline of our proposed global-local enhanced pose estimation (GLPose) network is

illustrated in Fig. 2. To improve pose estimation for person i in key frame Ft = f it , we simultaneously incorporate

local temporal information from Fl = { f
i
t−k
, ..., f it−1, f

i
t+1, ..., f

i
t+k
} and global semantic cues from Fд = { f

j
n }

j ∈J
n∈N

.

Note that N represents the number of video frames, symbol J denotes the number of human proposals within

a video frame, and subscripts i and j denote ith and jth person, respectively. Speciically, we irst extract the

features of frames {Ft , Fl , Fд } and feed them into our Feature Processing module, which outputs the spatiotemporal

aggregation Si . The aggregated representation Si and the keyframe features are then processed through our

Feature Enhancement module, which delivers the inal enhanced features Fi . Fi is then handed to a detection

head to yield the inal estimated heatmaps Hi . In what follows, we introduce the proposed key modules in detail.

3.1 Feature Processing Module

Ideally, incorporating features within the tracklet of person i will produce optimal representations. However,

the ground truth association for human proposals across frames is not available in the test stage. We instead

propose the Feature Processing module that combines temporally proximate information within short tracklet

Fl and semantically similar cues from non-local frames Fд to yield a robust representation. There are three key

procedures: feature extraction, similarity deinition, and conditional feature aggregation.

Feature Extraction We irst employ a shared feature extract network ϕ to extract the visual features

{V i
t ,V

i
l
,V i

д } from frames {Ft , Fl , Fд }, respectively:

V
i
z = ϕ (Fz ), z = {t , l ,д}. (1)

In order to obtain more representative features for subsequent computations, we implement the networkϕ through

current state-of-the-art human joints detector HRNet-W48 [40]. The extracted features are then leveraged for

similarity deinition and conditional aggregation.

Similarity Deinition We compute the similarity between reference frames {Fl , Fд } and key frame Ft to

guide the following aggregation. For the localized tracklet Fl , each frame in Fl shares the identical person with

key frame Ft , and thus they are supericially similar. As a result, intuitively leveraging such low-identiied feature

similarity to guide feature aggregation is problematic. To address this issue, we explicitly consider the temporal

distance between frames Fl and Ft . In other words, we assign higher weights to the frames that are temporally

nearer to the key frame Ft , and vice versa. This computation can be expressed as follows:

W
i
l = T (Fl , Ft ), (2)

where T (·) denotes the distance function, and W
i
l
denotes the similarity between Fl and Ft .

Conversely, the reference human proposals within non-local frames Fд are not temporally associated to the

key frame Ft , and we treat the feature semantical similarity between V i
д and V i

t as guidance for aggregation. In
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Fig. 2. Overall pipeline of our GLPose network. The goal is to detect the pose of person i in the keyframe

Ft . We first sample the local tracklet Fl and non-local similar frames Fд , and feed them into the Feature

Processing module, which performs conditional feature aggregation and outputs Si . The aggregated

features Si is then processed by the Feature Enhancement module, which provides the enhanced

keyframe features Fi . Finally, a detection head is leveraged to output the pose estimation.

particular, given featuresV i
д andV i

t , their semantical similarityWi
д can be computed by the following procedures.

(i) Feature tensors V i
д and V i

t are fed into a shared feature embedding layer, which translates the feature space

and outputs an embedding for each frame. (ii) The frame level embeddings are then employed to compute

corresponding similarity:

W
i
д = So f tmax (φ (V

i
д ) ⊙ φ (V

i
t )), (3)

where φ (·) and ⊙ indicate the feature embedding layer and Hadamard matrix product operation, respectively. It

is worth mentioning that the similarity between features V i
д and V i

t is built upon the frame level, which provides

a more robust guidance for feature aggregation than pixel-level models ([7, 34]).
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Conditional Feature Aggregation Given visual features V i
t ,V

i
l
,V i

д and corresponding similarityW
i
l
and

W
i
д , the feature aggregation conditioned on semantical similarity is deined as:

V i
t ⊕W

i
lV

i
l ⊕W

i
дV

i
д

stack of
−−−−−−−−−→
Basic Blocks

Si , (4)

where ⊕ denotes the concatenation operation. We modify a residual structure from [19] to implement the Basic

Blocks in Eq. 4. By conditionally aggregating global semantic information and local visual context across multiple

frames, the new representation Si contains more abundant information that allows efectively competing against

appearance degeneration such as pose occlusion and motion blur.

3.2 Feature Enhancement Module

Despite allowing for incorporation of richer features within the Feature Processing module, straightforwardly

weighted aggregation across multiple features still has diiculties in perceiving information that is valuable for the

pose estimation of key frame Ft . Previous approaches [9, 51] directly output inal estimations according to such

features, incurring undesirable results. Instead, we propose the Feature Enhancement module that purposefully

excavates discriminative cues from the aggregated representation Si to enhance the keyframe features V i
t .

The architecture of our Feature Enhancement module is illustrated in Fig. 2. Speciically, we irst encode the

keyframe features V i
t into a weight matrix, which reveals the activeness of each pixel location within feature

maps V i
t . The weight matrix is then used as a mask to mine the information that is overlooked by the key frame

from Si . Finally, keyframe features and complementary information are aggregated to yield the enhanced features

Fi . This computation can be deined as follows:

Fi = A (
(

1 − σ (ψ (V i
t ))
)

︸             ︷︷             ︸

weight matrix

⊙Si ,V
i
t ),

(5)

whereψ (·), σ , and A denote feature encoder, Sigmoid function, and aggregation transformation, respectively.

After obtaining the inal enhanced features Fi of key frame, we adopt a detection head to output the heatmaps

Hi of person i . Note that the detection head is implemented with a regular 3 × 3 convolution layer.

Ultimately, the above procedure is performed for each individual person i . By adequately aggregating the

auxiliary features and purposefully digging the efective cues in them, the inal estimated pose heatmaps are more

spatially accurate. We also demonstrate the efectiveness of our Feature Enhancement module in the ablation

experiments (Sec. 4.3).

3.3 Implementation Details

Frame Sampling Given an input video, we irst employ an object detector (Cascaded-RCNN) to detect

human bounding boxes for each person in all frames. To obtain the localized short tracklet Fl , the bounding

box of person i in the key frame Ft is enlarged 25% and then utilized to crop the identical person in a temporal

window [t − k, ..., t − 1, t + 1, ..., t + k]. For the non-local frames Fд , we irst sample 20 human proposals in the

video level, then rank them according to the semantical similarity between them and the human proposal of the

key frame, and inally select the top n frames for feature aggregation.

Network Structures We leverage the HRNet-W48 [40] pretrained on the COCO and PoseTrack dataset

as our feature extractor. In fact, HRNet-W48 usually serves as an out-of-box human joints detector which

directly gives the inal pose heatmaps, whilst we adopt the output of HRNet-Stage3-Branch0 as the visual features

{V i
z }z=t,l,д . The shared feature embedding layer φ in Similarity Deinition is implemented with a Global Average

Pooling (GAP) layer, which adaptively performs average pooling over an input signal composed of several input

planes. Three basic blocks are employed for conditional feature aggregation.

ACM Trans. Multimedia Comput. Commun. Appl.
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Table 1. uantitative comparisons with state-of-the-art methods on the PoseTrack2017 validation set.

Method Backbone Additional Training Data Head Shoulder Elbow Wrist Hip Knee Ankle Mean

Dataset: PoseTrack2017 Validation set.

PoseTracker [17] ResNet-3D COCO 67.5 70.2 62.0 51.7 60.7 58.7 49.8 60.6

PoseFlow[54] - MPII Pose + COCO 66.7 73.3 68.3 61.1 67.5 67.0 61.3 66.5

JointFlow[13] - - - - - - - - - 69.3

FastPose[58] - - 80.0 80.3 69.5 59.1 71.4 67.5 59.4 70.3

SimpleBaseline[52] ResNet-50 COCO 79.1 80.5 75.5 66.0 70.8 70.0 61.7 72.4

SimpleBaseline[52] ResNet-152 COCO 81.7 83.4 80.0 72.4 75.3 74.8 67.1 76.7

STEmbedding[22] 4-stage Stacked Hourglass - 83.8 81.6 77.1 70.0 77.4 74.5 70.8 77.0

HRNet[40] HRNet-W48 COCO 82.1 83.6 80.4 73.3 75.5 75.3 68.5 77.3

MDPN[18] SimpleBaseline MPII Pose + COCO 85.2 88.5 83.9 77.5 79.0 77.0 71.4 80.7

Dynamic[56] HRNet-W48 COCO 88.4 88.4 82.0 74.5 79.1 78.3 73.1 81.1

PoseWarper[4] HRNet-W48 COCO 81.4 88.3 83.9 78.0 82.4 80.5 73.6 81.2

GLPose (Ours) HRNet-W48 COCO 88.1 88.9 84.1 78.1 83.5 81.5 74.2 83.1

Loss Function The standard pose estimation loss function [40, 52] is adopted as our cost function. Training

aims to reduce the total Euclidean or L2 distance between the prediction and the ground truth heatmaps for all

joints. The loss function is deined as:

L =
1

M

M∑

m=1

vm × ∥G (m) − P (m)∥2 , (6)

where G (m), P (m), vm denote the ground truth heatmap, prediction heatmap, and visibility of jointm. During

the training phase, the total number of joints is set toM = 15. The ground truth heatmaps are generated by a 2D

Gaussians centered on the positions of the joints.

4 EXPERIMENTS

In this section, we present our experiments on three widely used benchmark datasets PoseTrack2017, Pose-

Track2018, and Sub-JHMDB. We irst introduce the detailed experimental settings in Sec. 4.1, including datasets

and parameter settings. We then compare our GLPose method with state-of-the-art methods in terms of quantita-

tive results and visual results (Sec. 4.2). Finally, we conduct extensive ablation experiments in Sec. 4.3 to examine

the efectiveness of each proposed component in our method.

4.1 Experimental Setings

Datasets PoseTrack is a large-scale benchmark video dataset for human pose estimation and articulated

tracking. The PoseTrack2017 dataset contains 514 videos with 16,219 pose annotations, in which 250 videos are

for training and 50 videos are for validation. The PoseTrack2018 dataset increases the number of videos to 1,138

and contains 153,615 pose annotations. These are split into 593 and 170 videos respectively for training and

validation. In training videos, dense annotations for 30 center frames of a video are provided. In validation videos,

human poses are annotated every four frames. Both datasets label 15 joints, with an additional annotation label

for joint visibility. We benchmark our model on PoseTrack2017 and PoseTrack2018 datasets with the metric of

ACM Trans. Multimedia Comput. Commun. Appl.
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Table 2. uantitative comparisons with state-of-the-art methods on the PoseTrack2018 validation set.

Method Backbone Additional Training Data Head Shoulder Elbow Wrist Hip Knee Ankle Mean

Dataset: PoseTrack2018 Validation set.

TML++ [20] OpenPose COCO - - - 60.2 - - 56.9 67.8

STAF [35] VGG - - - - 64.7 - - 62.0 70.4

AlphaPose [15] 8-stage Stacked Hourglass COCO 63.9 78.7 77.4 71.0 73.7 73.0 69.7 71.9

MDPN [18] SimpleBaseline MPII Pose + COCO 75.4 81.2 79.0 74.1 72.4 73.0 69.9 75.0

PGPT [3] - - - - - 72.3 - - 72.2 76.8

Dynamic [56] HRNet-W48 COCO 80.6 84.5 80.6 74.4 75.0 76.7 71.9 77.9

PoseWarper [4] HRNet-W48 COCO 79.9 86.3 82.4 77.5 79.8 78.8 73.2 79.7

GLPose (Ours) HRNet-W48 COCO 84.0 86.9 82.4 77.6 80.4 79.3 73.8 80.8

average precision (AP). Note that only the visible joints are used for performance evaluation. The Sub-JHMDB

dataset includes 319 videos for a total of 11, 200 frames. The annotations are provided for 15 joints but only for

visible joints. Following previous works [30, 32, 60], we perform three diferent data splits for this dataset, each

with a training to testing ratio of 3 : 1, and report the mean accuracy over the three splits.

Parameter Settings Our GLPose is implemented on PyTorch. During training, we incorporate data augmen-

tation strategies including random rotation [−45◦, 45◦], random scaling [0.65, 1.35], truncation and horizontal

lip. Input image size is ixed to 384 × 288. We utilize a total of 8 local frames (k = 4) and 6 non-local frames

(n = 6) for feature aggregation. All subsequent weight parameters are randomly initialized from a Gaussian

distribution with µ = 0 and σ = 0.001, while bias parameters are initialized to 0. We employ the Adam optimizer

for parameter updates. The basic learning rate is set to 1e − 3, which is reduced to 1e − 4, 1e − 5, and 1e − 6 at the

6th , 12th , and 18th epochs, respectively. The training process is terminated at 20 epochs. We train our model on 4

Nvidia GeForce 2080Ti GPUs. We adopt the identical settings for both PoseTrack2017 and PoseTrack2018.

4.2 Comparison with State-of-the-art Approaches

Results on the PoseTrack2017 Dataset We irst evaluate our model on PoseTrack2017 validation set with

the widely adopted average precision (AP) protocol. Quantitative results including the APs for each joint as well

as the mAP for all joints are reported in Table 1. We benchmark our GLPose network against 11 current state-of-

the-art methods, PoseTracker [17], PoseFlow [54], JointFlow [13], FastPose [58], SimpleBaseline (ResNet-101,

ResNet-152) [52], STEmbedding [22], HRNet [40], MDPN [18], Dynamic [56], and PoseWarper [4]. Surprisingly,

our model achieves a remarkable 83.1 mAP on the validation set, consistently outperforming existing methods.

The performance improvement in challenging joints is also encouraging: we obtain an mAP of 74.2 for the ankle

and an mAP of 78.1 for the wrist. We also present some visual results of our method in Fig. 3, which demonstrate

the efectiveness of our method on degraded frames within dynamic environments.

Results on the PoseTrack2018 Dataset We then evaluate our model on the PoseTrack2018 dataset, and

tabulate the AP results of validation set in Table 2. As shown in this table, the proposed GLPose achieves the best

performance, delivering a 1.1 mAP boost over the previous state-of-the-art method [4]. We reach a inal average

accuracy of 80.8 mAP, and obtain an accuracy of 77.6 for the wrist and an accuracy of 73.8 for the ankle. Some

visual results are depicted in Fig. 3.

Results on the Sub-JHMDB Dataset To further evaluate the proposed method, we compare GLPose with

existing methods in the Sub-JHMDB dataset. The results on the test set are tabulated in Table 3. As shown in the

ACM Trans. Multimedia Comput. Commun. Appl.
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Fig. 3. Visualization of the results of our GLPose on PoseTrack2017 and PoseTrack2018 datasets. Various

challenging dynamic scenes are involved: multiple persons, severe pose occlusions, and fast motion.

table, the current state-of-the-art method MotionAdaptive has achieved an impressive accuracy of 94.7 mAP,

while our model is able to achieve the best performance of 95.1 mAP. We also attain a 98.9 mAP for the head

joint and a 98.1 mAP for the shoulder joint. The visual results are provided in Fig. 4.

Visual Comparison with Existing Methods To verify the generalization of our approach in dynamic

environments, we illustrate in Fig. 5 the side-by-side comparisons of the proposed GLPose with state-of-the-art

approaches. Each column shows diferent challenging scenarios including rapid motion, pose occlusions, self-

occlusions, and video defocus, whereas each row gives the pose estimates of diferent approaches. We can observe

that our method yields more robust and accurate results on such challenging situations. HRNet-W48 [40] is

designed for static images and inherently has diiculties in capturing temporal nearby context or global semantic

information, leading to suboptimal results. On the other hand, PoseWarper [4] performs spatiotemporal pose

aggregation at the inference stage but only leveraging temporal information from nearby frames, ignoring global

semantic cues. Our GLPose jointly incorporates global semantically similar information and local temporal visual

context, establishing new state-of-the-arts for multi-frame human pose estimation.

4.3 Ablation Experiments

We perform extensive ablation experiments focused on investigating the inluence of each component in

the proposed GLPose framework. The irst key component of our GLPose is the Feature Processing module

that incorporates global semantic information and local visual context, and we mainly examine the impact of

the number of local frames and non-local frames within this module. The second component is the Feature

Enhancement module that mines discriminative cues from the aggregated representation to enhance the features

of key frame. We would like to point out that we ablate each component to evaluate its contribution to the

complete network.

Feature Processing Module We irst investigate the efects of using diferent number of temporally nearby

frames (i.e., local frames) for feature aggregation. The estimation results are presented in Table 4. We experiment

ACM Trans. Multimedia Comput. Commun. Appl.
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Table 3. uantitative comparisons with state-of-the-art methods on the Sub-JHMDB test set.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Avg

Dataset: Sub-JHMDB Test set.

Part Models [33] 79.0 60.3 28.7 16.0 74.8 59.2 49.3 52.5

Joint Action [53] 83.3 63.5 33.8 21.6 76.3 62.7 53.1 55.7

Pose-Action [21] 90.3 76.9 59.3 55.0 85.9 76.4 73.0 73.8

CPM [50] 98.4 94.7 85.5 81.7 97.9 94.9 90.3 91.9

Thin-slicing Net [38] 97.1 95.7 87.5 81.6 98.0 92.7 89.8 92.1

LSTM PM [30] 98.2 96.5 89.6 86.0 98.7 95.6 90.0 93.6

DKD(ResNet-50) [32] 98.3 96.6 90.4 87.1 99.1 96.0 92.9 94.0

K-FPN(ResNet-18) [60] 94.7 96.3 95.2 90.2 96.4 95.5 93.2 94.5

K-FPN(ResNet-50) [60] 95.1 96.4 95.3 91.3 96.3 95.6 92.6 94.7

MotionAdaptive [14] 98.2 97.4 91.7 85.2 99.2 96.7 92.2 94.7

GLPose-Split 1 (Ours) 99.1 98.5 95.0 92.2 99.0 90.0 93.2 95.5

GLPose-Split 2 (Ours) 98.7 97.5 91.1 87.8 98.4 90.6 93.8 94.3

GLPose-Split 3 (Ours) 99.0 98.3 94.7 92.4 98.9 88.7 94.8 95.6

GLPose (Ours) 98.9 98.1 93.6 90.8 98.7 89.8 93.9 95.1

Fig. 4. Visualization of the results of our GLPose on the Sub-JHMDB dataset.
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Fig. 5. Visual comparisons of c) our GLPose method against a) HRNet-W48 [40] and b) PoseWarper [4]

on the challenging dynamic environments. Each column from let to right denotes the Pose Occlusions,

Rapid-Motion, Self-Occlusions, and Video Defocus. Inaccurate results are highlighted with the red

solid circles.

with ive diferent settings: k = 0, k = 1, k = 2, k = 3, and the default setting k = 4. From the Table 4, we observe

that the gradual improvement of mAP with increasing number of local frames, from 82.2 → 82.6 → 82.7 →

83.0→ 83.1. This is in line with our intuition, (i) temporally nearby frames provide more credible contextual

information, which ensures the stability of feature aggregation; (ii) more local frames provide richer temporal

visual cues, delivering robust human representations for pose estimation.

We then study the contribution of the non-local frames Fд . We experiment with decreasing the number of

non-local frames, where n is set to 6, 5, 4, 3, 2, 1, and 0. The results in Table 4 relect a performance reduction

with a decrease in n, and the mAP diminishes from 83.1 for n = 6 to 83.0, 83.0, 82.8, 82.7, 82.7, 82.5 at n = 5, 4, 3, 2,

1, 0, respectively. We also observe that incorporating non-local frames could improve accuracy by 0.6 mAP. This

is not contrary to our expectation, i.e., by aggregating semantically similar information (e .д., analogical action

information), the Feature Processing module is able to access more available cues that are favorable for the pose

estimation of the key frame.

Feature Enhancement Module We also explore the contribution of the proposed Feature Enhancement

module. In the empirical study of this module, we explore the inluences of the feature enhancement and the

detection head. (1) For the feature enhancement, we remove complementary enhancement for the keyframe

features from this module, and obtain the inal pose estimates directly using the detection head (3× 3 convolution

layer by default): Si
3×3

−−−−−−−−−→
convolution

Hi . As shown in Table 4, the mAP result falls from 83.1 to 82.6. This signiicant

performance drop upon the removal of the Feature Enhancement module highlights the important role of this

component in providing discriminative information for the key frame. Through the mining of complementary

cues from aggregated representation Si to efectively enhanced keyframe features, we obtain more spatially

ACM Trans. Multimedia Comput. Commun. Appl.
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Table 4. Ablation experiments of diferent components in our GLPose. "r/m X" refers to removing X

module in the network. We focus on two aspects: Feature Processing module and Feature Enhancement

module. The complete GLPose consistently achieves the best results which are highlighted. Note that

all ablation experiments are performed on the PoseTrack2017 dataset.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean

GLPose, complete, k = 4, n = 6 88.1 88.9 84.1 78.1 83.5 81.5 74.2 83.1

Ablation Analysis of the Feature Processing module

r/m local frames k = 0 87.6 88.3 83.3 77.1 82.9 80.5 73.2 82.2

k = 1, a total of 2 local frames 87.7 88.5 83.4 77.4 83.3 81.0 73.8 82.6

k = 2, a total of 4 local frames 87.8 88.8 83.4 77.3 83.3 80.9 73.8 82.7

k = 3, a total of 6 local frames 88.1 88.9 83.8 77.8 83.5 81.4 74.1 83.0

k = 4, a total of 8 local frames 88.1 88.9 84.1 78.1 83.5 81.5 74.2 83.1

r/m non-local frames, n = 0 87.6 88.6 83.9 76.7 83.3 80.8 73.9 82.5

n = 1 87.8 88.6 83.6 77.6 83.4 81.2 74.0 82.7

n = 2 88.0 88.7 83.7 77.7 83.4 81.3 73.6 82.7

n = 3 87.7 88.9 83.7 77.8 83.3 81.3 74.0 82.8

n = 4 88.0 88.9 83.9 78.0 83.5 81.5 74.0 83.0

n = 5 88.0 88.9 83.8 78.0 83.4 81.6 74.2 83.0

n = 6 88.1 88.9 84.1 78.1 83.5 81.5 74.2 83.1

Ablation Analysis of the Feature Enhancement module

r/m Feature Enhancement 87.8 88.6 83.5 77.4 83.3 81.0 73.8 82.6

MLP (Detection Head) 87.8 88.8 83.7 77.6 83.4 81.0 73.9 82.7

3x3 Conv (Detection Head) 88.1 88.9 84.1 78.1 83.5 81.5 74.2 83.1

5x5 Conv (Detection Head) 88.0 88.9 83.8 78.0 83.6 81.3 74.0 82.9

accurate pose heatmaps. (2) For the detection head, we investigate its network structure and experiment with

three settings: Multilayer Perceptron (MLP), 3 × 3 convolution, and 5 × 5 convolution. Speciically, we adopt

a channel-wise MLP which takes the features Si as input to output the keypoint heatmaps Hi , and obtain the

accuracy of 82.7 mAP. In contrast, GLPose achieves an 83.1 mAP with 3 × 3 convolution and an 82.9 mAP with

5 × 5 convolution. We conjecture that adopting a medium receptive ield in the detection head is more suitable

for the conversion of the enhanced features to the inal heatmaps. Therefore, we implement the detection head

by using the 3 × 3 convolution.
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5 CONCLUSION

In this paper, we present a global-local enhanced pose estimation network for multi-frame human pose

estimation. We design a Feature Processing module that aggregates global semantically similar information

and local temporal visual context to yield more comprehensive and more robust representations. Our Feature

Enhancement module further mine discriminative cues from the aggregated representation to enhance the

features of key frame, endowing it with the ability to cope with challenging dynamic environments. Extensive

experiments show that our GLPose achieves state-the-art performance on PoseTrack2017, PoseTrack2018 and

Sub-JHMDB datasets.
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