
An Empirical Evaluation of Automated Machine Learning
Techniques for Malware Detection

Partha Pratim Kundu
I2R, A*STAR
Singapore

kundupp@i2r.a-star.edu.sg

Lux Anatharaman
I2R, A*STAR
Singapore

lux@i2r.a-star.edu.sg

Tram Truong-Huu
I2R, A*STAR
Singapore

truonght@i2r.a-star.edu.sg

ABSTRACT
Nowadays, it is increasingly difficult even for a machine learn-
ing expert to incorporate all of the recent best practices into their
modeling due to the fast development of state-of-the-art machine
learning techniques. For the applications that handle big data sets,
the complexity of the problem of choosing the best performing
model with the best hyper-parameter setting becomes harder. In
this work, we present an empirical evaluation of automated ma-
chine learning (AutoML) frameworks or techniques that aim to
optimize hyper-parameters for machine learning models to achieve
the best achievable performance. We apply AutoML techniques to
the malware detection problem, which requires achieving the true
positive rate as high as possible while reducing the false positive
rate as low as possible. We adopt two AutoML frameworks, namely
AutoGluon-Tabular and Microsoft Neural Network Intelligence
(NNI) to optimize hyper-parameters of a Light Gradient Boosted
Machine (LightGBM) model for classifying malware samples. We
carry out extensive experiments on two data sets. The first data set
is a publicly available data set (EMBER data set), that has been used
as a benchmarking data set for many malware detection works.
The second data set is a private data set we have acquired from a
security company that provides recently-collected malware sam-
ples. We provide empirical analysis and performance comparison of
the two AutoML frameworks. The experimental results show that
AutoML frameworks could identify the set of hyper-parameters
that significantly outperform the performance of the model with
the known best performing hyper-parameter setting and improve
the performance of a LightGBM classifier with respect to the true
positive rate from 86.8% to 90% at 0.1% of false positive rate on
EMBER data set and from 80.8% to 87.4% on the private data set.

CCS CONCEPTS
• Security and privacy → Malware and its mitigation; Intru-
sion/anomaly detection and malware mitigation.

KEYWORDS
Malware detection, automated machine learning, hyper-parameter
optimization

ACM Reference Format:
Partha Pratim Kundu, Lux Anatharaman, and Tram Truong-Huu. 2021.
An Empirical Evaluation of Automated Machine Learning Techniques for
Malware Detection. In Proceedings of the 2021 ACM International Workshop
on Security and Privacy Analytics (IWSPA’21), April 28, 2021, Virtual Event,
USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3445970.
3451155

1 INTRODUCTION
Malicious software (malware) detection is an important problem
in this current era of the growing sophistication of our digital world.
Malicious individuals and/or organizations, using some clevermeans,
put some malicious program(s) in the targeted computer systems to
prevent the computer systems from performing their usual opera-
tions and/or to steal sensitive data. Malware detection is therefore a
critical task to prevent any financial loss as well as any permanent
damage to the organization’s reputation. The emergence of ma-
chine learning (ML) and deep learning (DL) and their success stories
in other disciplines such as computer vision, natural language pro-
cessing, and robotics have motivated both industry and academia
to adopt ML/DL to the malware detection problem [10, 13, 14]. Mal-
ware samples are analyzed by static or dynamic analysis techniques
to extract useful features that are used to train ML models to learn
the difference between malware and goodware (i.e., benign pro-
grams)1. The number of extracted features of each sample is large
and goes up to a few thousand. The malware samples evolve very
quickly2. To incorporate all variants of malware including latest
ones, the data sets used for training ML models are significantly
large, requiring not only long training time but also a large amount
of computational resources before the models converge and can be
used in the malware detection phase.

While there exists a great variety of complex ML models and
each model has lots of hyper-parameters to tune to achieve its best
performance, it is increasingly difficult even for an ML expert to
follow all of the recent best practices into their modeling and their
task is becoming even more difficult due to the fast development
of state-of-the-art ML techniques. Thus, the AutoML frameworks
offer an attractive and alternative paradigm for the novice who may
not be aware of the intricacies of ML algorithms. Given sufficient
computational and storage resources, AutoML frameworks allow
ML practitioners to determine not only the ML model that works
the best for a specific data set but also the best hyper-parameter

1Static analysis does not require executing malware samples but uses a reverse engi-
neering tool to extract features from the files such as header information and byte
sequences. In contrast, dynamic analysis needs to execute samples in a secure virtual
box and captures their runtime behavior such as system calls.
2Every day, the AV-TEST Institute registers over 350, 000 new malware and potentially
unwanted applications (PUA).

https://doi.org/10.1145/3445970.3451155
https://doi.org/10.1145/3445970.3451155
https://doi.org/10.1145/3445970.3451155

setting for the chosen model to yield the best performance. With
AutoML frameworks, the best ML practices need to be implemented
only once and then being repeatedly deployed to various problems.
This allows ML practitioners to scale their knowledge to many
problems without the need for frequent manual intervention for
model selection, the selection of proper ensemble of models, hyper-
parameter tuning, feature engineering, data pre-processing, etc.

In this paper, we adopt AutoML to the malware detection prob-
lem. We present an empirical evaluation of two AutoML techniques
including AutoGluon-Tabular [6] and Microsoft NNI [12]. We use
twomalware data sets in our work to train a Light Gradient Boosted
Machine (LightGBM) model. The first data set named EMBER [1] is
a publicly available data set which is a labeled benchmarking data
set for training ML models for malware detection based on static
analysis of Windows portable executable (PE) files. With 2 million
samples, this data set is fairly big, open, and general enough to cover
several interesting use cases. The second data set named SecureAge
contains recently-collected benign and malware PE files that we
acquired from a local company3. In order to validate the malware
detection model on the SecureAge data set, we first extract static
features using the LIEF tool4, which provides 2381 features for each
sample. Training the detection models on these data sets require a
significantly long time, up to 10 hours for a hyper-parameter setting.
Thus, instead of manually performing hyper-parameter tuning, we
demonstrate that the use of AutoML techniques could mitigate the
complexity of the hyper-parameter optimization problem. Com-
paring the performance of the malware detection models obtained
with the hyper-parameter setting yielded by AutoML frameworks
with that of the known best performing or default setting, we see
that a significant improvement has been achieved.

The rest of this paper is organized as follows. Section 2 discusses
the state of the art of malware detection and AutoML. Section 3
describes the various AutoML frameworks and their operational
schematics. We present the experimental results and discussion in
Section 4 before concluding the paper in Section 5.

2 RELATEDWORKS
2.1 Malware Detection
Various ML/DL techniques have been developed for malware detec-
tion in order to filter out the samples that show malicious behavior.
In [7], Gavrilut et al. proposed a versatile framework, which em-
ploys different ML algorithms to successfully distinguish between
malware samples and benign samples while aiming to minimize the
number of false positives. The authors used a simple multi-stage
combination (cascade) of different versions of the perceptron algo-
rithm to achieve the goal. In [11], the authors proposed a machine
learning-based malware analysis system comprising three modules
namely data processing, decision making, and new malware de-
tection. The data processing module deals with gray-scale images,
opcode 𝑛-gram, and import functions, which are employed to ex-
tract the features of the malware. The decision-making module uses
the features to classify the malware and to identify suspicious sam-
ples. Finally, the detection module uses the shared nearest neighbor
(SNN) clustering algorithm to discover newmalware families. In [5],
3SecureAge: https://www.secureage.com/sg/
4Library to Instrument Executable Formats (LIEF): https://lief.quarkslab.com/

David et al. presented a novel deep learning-based method named
for automatic malware signature generation and classification. They
used a deep belief network (DBN), implemented with a deep stack
of denoising autoencoders, generating an invariant compact repre-
sentation of malware behavior. The authors showed that signatures
generated by the DBN were helpful for the accurate classification
of new malware variants.

All of the work mentioned above require significant involvement
of ML expertise to decide a proper set of hyper-parameters for the
ML algorithms used. However, a hyper-parameter setting may work
best only for a specific data set (i.e., data distribution). Given the
fast evolution of malware samples, the detection models have to
be frequently retrained with a tuned hyper-parameter setting to
achieve the desired performance. It is worth mentioning again that
retraining malware detection models and hyper-parameter tuning
are a laborious and challenging task. Thus, we believe AutoML
techniques will significantly contribute to the success of ML/DL
not only in malware detection but also in other disciplines.

2.2 Proliferation of AutoML
While AutoML has not been adopted for malware detection (and
cybersecurity in general), it has been widely used in healthcare
and the Internet of Things (IoT). A huge amount of healthcare data
is generated every day, thus requiring an automated process to
generate a set of actionable knowledge from the data. ML mod-
els, especially DL models, are very good at doing so by improving
patient safety, quality of care, and reducing healthcare costs. The
usage of AutoML would allow the healthcare industry to build,
validate, and deploy ML solutions rapidly, and therefore pass the
benefits of improving the quality of healthcare to patients effec-
tively [15]. AutoML techniques are also used to gain insights into
the colossal amount of 60 ZB data generated due to the streaming of
data between various IoT devices. To process this huge amount of
data, human ML expertise is a must but mostly non-expert ML prac-
titioners actually handle the whole operational ecosystem. Thus,
AutoML techniques could be used to support these practitioners.
One such AutoML framework is Decanter AI [4], which uses semi-
supervised ML algorithms to precisely select the optimal algorithms
to build a predictive model. It automates the data analytics work-
flow from feature engineering, algorithms selection, model building
and parameters tuning by evaluating the problem at hand. When
IoT devices stream data into this algorithm, it would efficiently
refine the model for the user’s data set. As IoT data that does not
have labels, it automatically assigns classes for data with similar
behaviors using clustering.

In this work, we demonstrate how AutoML is specifically useful
for the malware detection problem. As discussed earlier, the field
of malware detection is very dynamic due to the very frequent
addition of novel malwares. To the best of our knowledge, we are
the first to use AutoML in malware detection.

3 OVERVIEW OF AUTOML FRAMEWORKS
3.1 AutoGluon-Tabular
AutoGluon-Tabular is an easy and efficient Python framework for
tabular data. It is developed by Amazon Web Services (AWS) and

https://www.secureage.com/sg/
https://lief.quarkslab.com/

Input

Model 1 Model 2 Model n

Concat

Model 1 Model 2 Model n

Weighting

Output

Base

Stack

Figure 1: Operational schematic of AutoGluon-Tabular.

was open-sourced for public use in 2020. It allows us to train state-
of-the-art ML models for well-known applications such as object
detection, text and image classification, and tabular data prediction.
Unlike existing AutoML frameworks that primarily focus on model
and hyper-parameter selection, it succeeds by assembling multiple
models and stacking them in multiple layers as shown in Figure 1.
It can be run in Windows OS and Linux OS, using a workstation
or from a terminal. It works effectively when running on Amazon
elastic compute cloud (EC2) instances, as it can produce results
faster by taking advantage of the quasi-unlimited computational
resources of AWS. It provides a user-friendly API as it is designed
in such a way that users can input the raw data set without any
pre-processing and train ML models with a few lines of codes. It
also allows the users to set time constraints to build a model and
assures fault tolerance in case of any interruption.

AutoGluon supports algorithms such as Random Forests, Ex-
tremely Randomized Trees, 𝐾-nearest Neighbors, LightGBM, Cat-
Boost, and a deep neural network (Multi-Layer Perceptron) model.
AutoGluon shares similar design choices as the models presented
in [3] and [9]. It applies a separate embedding layer to each cate-
gorical feature, where the embedding dimension is selected propor-
tionally to the number of unique levels observed for this feature [8].
The individual embedding layers enable the network to separately
learn about each categorical feature before its representation is
blended with other variables for multivariate data. The embedding
of categorical features is concatenated with the numerical features
into a large vector, which is then fed into a 3-layer feed-forward
network as well as directly connected to the output predictions via
a linear skip-connection. It is the first AutoML framework to use
per-variable embedding that is directly connected to the output via
a linear shortcut path that can improve their resulting quality via
gradient flow. Most existing AutoML frameworks instead just apply
standard feed-forward architectures to one-hot encoded data.

3.2 Microsoft Neural Network Intelligence
Microsoft NNI is a toolkit to assist users to design and tune ML
models, neural network architectures, or the parameters of complex
systems, in an efficient and self-directing way. The properties like
ease-of-use, scalability, and flexibility make it appealing to non-
expertise ML practitioners. Using Python pip, a user could install
it on her machine. It could be used as a command-line tool or as a

WebUI. It has the capability to run parallel trails depending on the
capacity of training platforms, to access remote machines and vari-
ous training platforms (e.g., OpenPAI, Kubernetes). It allows users
to customize various hyper-parameter tuning algorithms, neural
architecture search algorithms, early stopping algorithms, etc. It
also leverages early feedback to speed up the tuning procedure.

As shown in Figure 2, NNI contains several components. Trial is
an individual attempt to run an MLmodel by applying a new config-
uration (i.e., a set of hyper-parameter values). Tuner is an AutoML
algorithm that generates a new configuration to run as a new Trial.
Assessor analyzes Trial’s intermediate results (e.g., periodically-
evaluated accuracy on the test data set) to decide whether the trial
is needed to be stopped early. An experiment starts running on NNI
platform when Tuner receives a search space. It then generates a
set of configurations that will be submitted to training platforms
such as a local machine, a remote machine, or a training cluster.
The performance is reported back to Tuner that in turn generates
a set of new configurations to be explored in the next trial.

3.3 Operational Schematics of
AutoGluon-Tabular and Microsoft NNI

Users can easily use AutoGluon for tabular data sets by setting a
few operational parameters including:

• time_budget: the duration of AutoGluon will run to search
for optimal parameters. The longer the time used for running,
the larger the search space will be covered.

• nthreads_per_trial: the number of threads used to run
for a trial, the higher the number of threads, the faster the
algorithm will converge.

• classifier: the classifier used for malware detection.
• evaluation metric: the objective of the optimization prob-
lem, e.g., maximizing the true positive rate given a fixed false
positive rate.

• search strategy: AutoGluon supports different search
strategies including random search and Bayesian optimiza-
tion search.

Users do not need to specifically define a search space for Auto-
Gluon. This is a great advantage for non-expertise ML practitioners.
Similar to AutoGluon, Microsoft NNI hides the technical complexity
from users, who can easily use NNI with the same parameters. Nev-
ertheless, with NNI, users need to define a specific hyper-parameter
space that it will explore. All the information needs to be written
in a config.xml file before running experiments.

In this work, we use AutoGluon and Microsoft NNI to perform
optimization of hyper-parameters of Light Gradient Boosted Ma-
chine (LGBM). We set nthreads_per_trial to 96 (as we use AWS
instances with 96 cores). We use AUROC (Area under the curve
of Receiver Operating System) as the evaluation metric and
Bayesian Optimization search for the search strategy. In the case of
NNI, we use Tree-structured Parzen Estimator (TPE) as Tuner, and
we set the number of parallel runs to 11, and the maximum number
of trials to 99999, time_budget to 700 hours for NNI configuration.
The objective of Tuner in NNI to achieve the maximum value of
the true positive rate at a fixed false positive rate (e.g., 0.1%). As
mentioned earlier, we define the search space for NNI with respect
to the EMBER data set in Table 1 and SecureAge data set in Table 2.

nnicli

nnictl

nni manager
Training

Service

Tuner Assessor

Advisor

W
e
b
U

I

R
e
s
t

S
e
rv

e
r

Python APIs

(Python)

means a process

(Python)

Start

NNI Core (TypeScript)

OR

This part runs on user's

computer/laptop or

any machine

Remote Servers

(Remote traning

service mode)

This part runs on

remote servers, or

AML, or OpenPAI

trial

trial

trial

Submit

trials

Figure 2: The high-level architecture of Microsoft NNI.

Table 1: Search Space of NNI used for EMBER data set

Parameter Name Minimum Value Maximum Value
n_estimators 2000 8000
learning_rate 0.02 0.6
num_leaves 40 4096
feature_fraction 0.50 1.00
bagging_fraction 0.50 1.00
min_data_in_leaf 4 65

Table 2: Search Space of NNI used for SecureAge data set

Parameter Name Minimum Value Maximum Value
n_estimators 50 4000
learning_rate 0.03 0.40
num_leaves 20 256
feature_fraction 0.80 1.00
bagging_fraction 0.70 1.00
min_data_in_leaf 3 50

4 EXPERIMENTS
We now present the experiments and analysis of results. We first
present the data sets used in our work and then describe the exper-
iments along with their analysis.

4.1 Malware Data Sets
4.1.1 EMBER Data Set. Working in malware detection is challeng-
ing due to the unavailability of a benchmark data set. The binary
files often contain sensitive information such as private intellectual
properties, personally identifiable information, sensitive network
infrastructure information, network infrastructure details, etc. We

use a publicly available data set named EMBER (Endgame Mal-
ware BEnchmark for Research) [1]. The authors of the data set
collected samples within 2 years (2017 and 2018), each containing
1 million samples. In this work, we use the data set collected in
2018. Rather than providing raw binary files, this data set provides
the features extracted from 1 million binary files including 800K
training samples (300K malicious samples, 300K benign samples,
and 200K unlabeled samples), and 200K test samples (100K mali-
cious samples and 100K benign samples). To train a ML model, we
do not use any unlabeled samples. The features and metadata are
extracted from PE files using the LIEF parser. The authors of the
data set also provided a benchmark LightGBMmodel that is trained
on the vectorized features.

4.1.2 SecureAge Data Set. This is a private data set that includes
raw binary files acquired from a company named SecureAge Tech-
nology. We used a subset of the data that includes 100K benign
samples and 100K malicious samples. We use the feature extractor
that was used for the EMBER data set to extract 2381 features for
each binary file. We randomly select 90% of benign and malware
PE files as the training set and the rest 10% as the test set. It is to
be noted that the samples from training and test set are mutually
exclusive, i.e., one PE file is either in training or test set. To gener-
alize the capability of AutoML frameworks, we used LightGBM for
training and testing on this data set.

4.2 Baseline Performance with Default
Hyper-parameters

In [2], the authors reported the performance of LightGBM on the
EMBER data set. At 0.1% of false positive rate (FPR), the reported
true positive rate is 86.8%. This performance is obtained with the
set of hyper-parameters presented in Table 3. The corresponding
AUROC curve of the LightGBM classifier is shown in Figure 3.
Here boosting type “gbdt” indicates the LightGBM classifier. The

Table 3: Hyper-parameters of LightGBM for Baseline perfor-
mance on two Data Sets

Parameter EMBER SecureAge
boosting gbdt gbdt

objective binary binary

num_boost_round 10000 10000
early_stopping_rounds 10 10
n_estimators 1000 100
learning_rate 0.5 0.1
num_leaves 2048 31
feature_fraction 0.5 1.0
bagging_fraction 1.0 1.0
min_data_in_leaf 50 20

number of leaves (num_leaves) indicates the leaf nodes of LGBM.
min_data_in_leaf indicates the minimum data in the leaf node of
LightGBM. This parameter regulates the over-fitting of the classifier.

We carried out similar experiments on the SecureAge data set.
The hyper-parameter setting of LightGBM used for this data set
is presented in Table 3. We achieved 80.8% of TPR at 0.1% of FPR.
The corresponding AUROC is shown in Figure 3. It is to be noted
that with default hyper-parameters, LightGBM achieves very high
TPR when FPR is greater than 0.1% for both data sets. For instance,
it achieves 99.99% of TPR at 1% of FPR. However, this affects the
practicality of the model as it requires significant users’ effort to
verify the samples that are actually false positive.

4.3 Efficacy of AutoML Techniques
To demonstrate the impact of AutoML techniques on the perfor-
mance of LightGBM in malware detection, we first used AutoML
techniques to fine-tune hyper-parameters of the LightGBM classi-
fier before testing on the test sets.

4.3.1 Performance on EMBER Data Set. For both platforms, we
used 10% of the training data as a validation set. In other words,
we trained the LightGBM model with 90% of the data that belongs
to the original EMBER training set. We used the AUROC score to
evaluate the validation results and set early stopping criteria to 10
training iterations. In Table 4, we present the hyper-parameters of
LightGBM after fine-tuned by AutoGluon on the EMBER data set.
Using this set of hyper-parameters, the trained LightGBM achieves
90% of TPR at 0.1% of FPR. This means that the fine-tuned LightGBM
outperforms the baseline model by increasing the TPR by 3.2%.
Given 1000 samples to be analyzed, the fine-tuned LightGBMmodel
correctly detects 32 malware samples more while raising only 1
false positive. This is a significant improvement as the number of
samples analyzed every day by a malware detection system is in
the order of a few hundreds of thousands.

Not only being able to fine-tune a specific model, AutoGluon also
has an option of ensemble framework. It uses a weighted combina-
tion of multiple base models namely neural network, LightGBM,
CatBoost, Random Forest, Extremely-randomized Trees, and 𝐾-
Nearest Neighbors. The weights and the hyper-parameters of base
models are learned in the framework. The fine-tuned ensemble
framework also achieves 90% of TPR @ 0.1% of FPR. This is similar

Table 4: Hyper-parameters values of LightGBM fine-tuned
by AutoGluon on two Data Sets

Parameter EMBER SecureAge
boosting gbdt gbdt

objective binary binary

boosting_iterations 10000 10000
learning_rate 0.0390167 0.03766
num_leaves 66 81
feature_fraction 0.89714 0.7645
bagging_fraction 1.0 1.0
min_data_in_leaf 6 4

to the performance of the LightGBM model alone. The correspond-
ing ROC curve of the ensemble of classifiers is shown in Figure 3.
Comparing the ROC curves in Figure 3, it is evident that the en-
semble of classifiers produces a more stable performance in terms
of TPR with respect to the low value of FPR.

We achieved similar performance when using Microsoft NNI for
fine-tuning hyper-parameters of LightGBM on the EMBER data
set. Using the hyper-parameter set optimized by NNI, the Light-
GBM classifier achieves 89% of TPR when FPR is fixed at 0.1%. This
corresponds to an improvement of 2.2% compared to the perfor-
mance when using default hyper-parameters. Unlike AutoGluon,
users could choose from different sets of hyper-parameters that
result in a similar performance to the LightGBM classifier at the
NNI framework. A trail represents a set of hyper-parameters at this
framework. In Table 5, we present such three best hyper-parameter
settings of the LightGBM Classifier optimized by NNI. The corre-
sponding ROC curve of the LightGBM classifier using the first set
of hyper-parameters is shown in Figure 3. The comparable per-
formance of the LightGBM models fine-tuned by AutoGluon and
NNI demonstrates that using an AutoML framework to optimize
model hyper-parameters has a great impact on the classifier per-
formance while hiding all technical complexity of ML models from
non-expertise ML practitioners.

4.3.2 Performance on SecureAge Data Set. In this section, we eval-
uate the impact of AutoGluon and NNI on the performance of the
LightGBM classifier when testing on the SecureAge data set. It
is worth mentioning again that the LightGBM classifier achieves
only 80.8% of TPR when the FPR is fixed at 0.1%. Similar to the
experiments on the EMBER data set, we used 10% of the training
data as a validation set. We also used the AUROC score to evaluate
the validation result and set early stopping criteria to 10 iterations.

The LightGBM classifier after being fine-tuned by AutoGluon
achieves 87.4% of TPR at 0.1% FPR. This corresponds to an improve-
ment of 6.6% compared to the baseline performance. We note that
unlike the EMBER data set that is a benchmarking but old data set,
the SecureAge data set contains samples that are recently collected
(i.e., in 2019 and 2020). Thus, it contains more sophisticated samples
that have been enhanced by the malware authors to evade detec-
tion systems. This improvement is therefore more significant when
applying to practical scenarios. The best hyper-parameter setting
of the LightGBM classifier fine-tuned by AutoGluon is presented
in Table 4 and the corresponding ROC curve is shown in Figure 4.

Figure 3: AUROC of LightGBM Fine-tuned by AutoGluon and NNI on EMBER Data Set compared with Baseline performance.

The LightGBM model after being fine-tuned by NNI also sig-
nificantly improves the performance. TPR is increased to 85.4%
when FPR is fixed at 0.1%. This corresponds to an improvement
of 4.6%. The three best hyper-parameter settings of the LightGBM
classifier optimized by NNI on the SecureAge data set are presented
in Table 5. The corresponding ROC curve of the model using the
first set of hyper-parameters is shown in Figure 4.

The comparison of time (in hrs) and physical RAM memory con-
sumption (in GB) between AutoGluon and NNI for LGBM classifier
on two Data Sets are presented in Table 6. Time and resource con-
sumption depends on how many parallel threads are running and
the parameters used by the model. We present the performance of
the fine-tuned LightGBM model on test data that are split in time
with respect to training data in Figure 5. We trained the models with
EMBER training data and test them using SecureAge data. These
two datasets were generated in diff rent time frame: EMBER in 2018
and SecureAge in 2020. Still, the models fine-tuned by the AutoML
platform better with respect to the Baseline model especially at the
low value of FPR. We used the LightGBM as Baseline model here,
which was used as a Baseline model for EMBER data.

In summary, using two AutoML frameworks to fine-tune the
models on two different data sets yields similar performance trends:
improving the model performance compared to the cases without
hyper-parameter optimization and also split data in time environ-
ment as EMBER and SecureAge data were generated in separate
time frame. This demonstrates the generalized efficacy of AutoML
techniques in helping non-expert ML practitioners fine-tune the
hyper-parameters of ML models without the need for domain-
specific knowledge. This is actually very useful for ML practitioners
as well as end-users in the era that witnessed the proliferation of
data analytics in any discipline.

4.4 Cost-performance Trade-off
Despite the efficacy of AutoML techniques, a challenging issue
while using them is the requirement of large-scale computational

Table 5: Hyper-parameters values of LightGBM fine-tuned
by NNI on two Data Sets

Set Index Parameter EMBER SecureAge
boosting gbdt gbdt
objective binary binary
n_estimators 5000 3000

1 learning_rate 0.035 0.0390167
num_leaves 72 81
feature_fraction 0.8714 0.7
bagging_fraction 0.8 1.0
min_data_in_leaf 8 6
boosting gbdt gbdt
objective binary binary
n_estimators 3800 3800

2 learning_rate 0.0390167 0.0390167
num_leaves 66 81
feature_fraction 0.89 0.7
bagging_fraction 1.0 1.0
min_data_in_leaf 7 6
boosting gbdt gbdt
objective binary binary
n_estimators 3900 2800

3 learning_rate 0.0390167 0.0390167
num_leaves 66 81
feature_fraction 0.89 0.7
bagging_fraction 0.80 1.0
min_data_in_leaf 7 6

and storage resources. Due to limited resources in our lab, we run
our experiments in Amazon web Service (AWS) environment. We
used one instance with 96 cores and 192GB RAM (c5.24xlarge)
and another instance with 72 cores 192GB RAM (c5n.18xlarge) for
around 10 days. These two instances cost US$4.704 and US$4.464
per hour. To complete all the experiments on the EMBER data set

Figure 4: AUROC of LightGBM Fine-tuned by AutoGluon
and NNI on SecureAge Data Set compared with Baseline per-
formance.

Table 6: Comparison of time and resource consumption be-
tween AutoGluon and NNI for LightGBM on two Data Sets

Platforms EMBER SecureAge
Time (hrs) RAM (GB) Time (hrs) RAM (GB)

AutoGluon 24 192 24 64
NNI 120 192 120 64

Figure 5: AUROC of LightGBM Fine-tuned by AutoGluon
and NNI using EMBER training data and test on SecureAge
Data Set and compared them with Baseline performance.

for both AutoGluon and NNI, we have spent in total US$5000.00.
We also observe that to run the ensemble framework of AutoGluon,
large-scale storage space is required to store all intermediate models
produced by it. The experiments on the EMBER data set consumed
4 TB hard disk space in AWS S3. As SecureAge is private data
set binding with the usage policy of the company, we could not
run the experiments in the AWS environment. We used our in-
house workstation with 20 cores 64GB RAM. Due to the storage
resource constraint, we were not able to run the experiments with
the ensemble framework with the SecureAge data set. Therefore,
the trade-off between the performance and the cost needs to be
taken into account while using AutoML techniques.

5 CONCLUSION
In this paper, we presented a comprehensive empirical evaluation of
AutoML frameworks on hyper-parameter optimization. We consid-
ered two AutoML frameworks including AutoGluon and Microsoft
NNI to optimize hyper-parameters of a LightGBM model for mal-
ware detection. We carried out experiments with two malware data
sets including a publicly available benchmarking data set and a
private data set which includes very recent malware instances. The
experimental results show that AutoML techniques have a great
impact on the performance of ML models by optimizing the hyper-
parameters with respect to these data sets. After being fine-tuned
by the AutoML frameworks, the performance of ML models is sig-
nificantly improved compared to the baseline performance obtained
with the with the known best performing or default parameter set-
ting. Moreover, AutoML frameworks hide technical complexities
from ML practitioners, thus the use of ML become more elegant
to them, especially for non-expert ML users. Using a few lines
of codes, users can integrate their ML models to those AutoML
frameworks for fine-tuning and repetitive experiments. Through
the empirical analysis, we also highlighted the trade-off between
performance and cost of using AutoML frameworks as they require
a large amount of computational and storage resources to run the
optimization of hyper-parameters of ML models.

REFERENCES
[1] Hyrum S. Anderson and Phil Roth. 2018. EMBER: An Open Dataset for Training

Static PE Malware Machine Learning Models. CoRR abs/1804.04637 (Sept. 2018).
[2] Hyrum S. Anderson and Phil Roth. 2020. The baseline perfor-

mance of EMBER2018 on LGBM classifier. Retrieved 2020-12-28
from https://docs.google.com/presentation/d/1A13tsUkgWeujTy9SD-
vDFfQp9fnIqbSE_tCihNPlArQ/mobilepresent?slide=id.g6318784c2c_0_1088

[3] H. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson,
G. Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque, L. Hong, V. Jain, X. Liu, and
H. Shah. 2016. Wide & Deep Learning for Recommender Systems. In Proc. 1st
Workshop on Deep Learning for Recommender Systems. Boston, USA, 7–10.

[4] C. Chung, C. Chen, W. Shih, T. Lin, R. Yeh, and I. Wang. 2017. Automated machine
learning for Internet of Things. In IEEE ICCE-TW 2017. 295–296.

[5] O. E. David and N. S. Netanyahu. 2015. DeepSign: Deep learning for automatic
malware signature generation and classification. In 2015 International Joint Con-
ference on Neural Networks (IJCNN). 1–8.

[6] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, M.
Li, and Alex Smola. 2020. AutoGluon-Tabular: Robust and Accurate AutoML for
Structured Data. In 7th ICML Workshop on Automated Machine Learning (2020).

[7] D. Gavrilut, M. Cimpoesu, D. Anton, and L. Ciortuz. 2009. Malware detection
using machine learning. In 2009 International Multiconference on Computer Science
and Information Technology. 735–741.

[8] Cheng Guo and Felix Berkhahn. 2016. Entity Embeddings of Categorical Variables.
arXiv:1604.06737 [cs.LG]

[9] Jeremy Howard and Sylvain Gugger. 2020. Fastai: A Layered API for Deep
Learning. Information 11, 2 (Feb. 2020), 108.

[10] Sai Praveen Kadiyala, Akella Kartheek, and Tram Truong-Huu. 2020. Program
Behavior Analysis and Clustering using Performance Counters. In Proc. 2020
DYnamic and Novel Advances in Machine Learning and Intelligent Cyber Security
(DYNAMICS) Workshop. Virtual Event.

[11] Liu Liu, Bao sheng Wang, Bo Yu, and Qiu xi Zhong. 2017. Automatic malware
classification and new malware detection using machine learning. Frontiers of
Information Technology & Electronic Engineering 18 (2017), 1336–1347.

[12] Microsoft. 2020. Neural Network Intelligence (NNI).
[13] Dima Rabadi and Sin G. Teo. 2020. Advanced Windows Methods on Malware

Detection and Classification. In Proc. Annual Computer Security Applications
Conference (ACSAC ’20). Austin, USA, 54–68.

[14] Wee Ling Tan and Tram Truong-Huu. 2020. Enhancing Robustness of Malware
Detection using Synthetically-adversarial Samples. In Proc. IEEE Globecom 2020.
Taipei, Taiwan, 1–6.

[15] Jonathan Waring, Charlotta Lindvall, and Renato Umeton. 2020. Automated
machine learning: Review of the state-of-the-art and opportunities for healthcare.
Artificial Intelligence in Medicine 104 (2020), 101822.

https://docs.google.com/presentation/d/1A13tsUkgWeujTy9SD-vDFfQp9fnIqbSE _tCihNPlArQ/ mobilepresent?slide=id.g6318784c2c_0_1088
https://docs.google.com/presentation/d/1A13tsUkgWeujTy9SD-vDFfQp9fnIqbSE _tCihNPlArQ/ mobilepresent?slide=id.g6318784c2c_0_1088
https://arxiv.org/abs/1604.06737

	Abstract
	1 Introduction
	2 Related Works
	2.1 Malware Detection
	2.2 Proliferation of AutoML

	3 Overview of AutoML Frameworks
	3.1 AutoGluon-Tabular
	3.2 Microsoft Neural Network Intelligence
	3.3 Operational Schematics of AutoGluon-Tabular and Microsoft NNI

	4 Experiments
	4.1 Malware Data Sets
	4.2 Baseline Performance with Default Hyper-parameters
	4.3 Efficacy of AutoML Techniques
	4.4 Cost-performance Trade-off

	5 Conclusion
	References

