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Abstract—The performance of deep learning models are driven
by various parameters but to tune all of them every time, for
every given dataset, is a heuristic practice. In this paper, unlike
the common practice of decaying the learning rate, we propose
a step-wise training strategy where the learning rate and the
batch size are tuned based on the dataset size. Here, the given
dataset size is progressively increased during the training to
boost the network performance without saturating the learning
curve, which is seen after certain epochs. We conducted extensive
experiments on multiple networks and datasets to validate the
proposed training strategy. The experimental results proves our
hypothesis that the learning rate, the batch size and the data
size are interrelated and can improve the network accuracy if
an optimal progressive step-wise training strategy is applied. The
proposed strategy also reduces the overall training cost compared
to the baseline approach.

I. INTRODUCTION

The revolutionization of deep learning (DL) [1] in field
of computer vision (CV) has changed the way the visual
learning takes place. Because of which today transfer learning
is very much feasible even with small datasets, by simply
sharing the useful knowledge from one domain to another.
A well-established pre-trained model helps to achieve decent
performance by fine-tuning to the target training dataset. The
success of AlexNet [1] led to a rapid development of large
convolutional neural networks (CNN) to achieve state-of-the-
arts in several vision tasks such as image classification [2], [3],
object detection [4], [5], [6], image segmentation [7], action
recognition [8] and zero-shot learning [9].

In DL-based image classification, huge amount of data are
involved like ImageNet [10], which requires manual labeling.
This data annotation is a very tedious and costly job. As one
of the solution, Yalniz et al. [11] proposed a teacher-student
model where a strong teacher model is trained to label an
unlabeled billion-scale image dataset as a training dataset for
student network. Unlike the teacher model, the student model
trained on these pseudo labeled data, now has a better weight
initialization that helps network to fine-tune on the original
labeled data. This provides a significant improvement in the
student model performance compared to the teacher. However
in a real-world scenario, collecting such a huge dataset and
then use it for training is infeasible with a given limited
computing resources. In DL, decaying of learning rate and
adjusting batch size is a common practice [12], [13], [14],
[15]. Touvron et at. [16] proposed a simple training-testing
strategy to optimize the classifier performance by employing

different resolutions to train and test. Such strategy boosts the
top-1 classification accuracy of ImageNet to 86.4% (till now
the best, as claimed).

Inspired by the aforementioned ideas, in this paper we first
show that adjusting data distribution while training can lead to
a significant performance improvement without any additional
data contribution. Then, we show that this strategy actually
works for various different state-of-the-art image classification
architectures such as ResNet [17], ResNeXt [18], Res2Net [19]
and Res2NeXt [19]. In general, the proposed training strategy
randomly splits the data into small subsets and incrementally
train the classifier by updating the dataset with other subsets
in a progressive step-wise fashion.

The proposed approach is based on a rigorous experimental
analysis of the effect of data distribution to optimize the
deep learning models. The experiments are performed on two
different types of datasets: interclass and intraclass; and their
results can answer questions like Can the learning performance
be improved without additional data?, Can accuracy be in-
creased for the same architecture with the same dataset?, Can
data distribution strategy boosts the accuracy and reduces the
training cost? and Can it reduce network over-fitting?

The main contributions of this paper are summarized as:
• We propose a simple step-wise hyper-parameter tuning

strategy to boost the network classification performance
without using any additional data.

• We evaluated the proposed strategy to be consistently
valued for several state-of-the-art image classification
network architectures.

• Compared with the baseline training, the proposed strat-
egy significantly achieves uprise in top-1 and top-5 clas-
sification accuracies on CIFAR-100 [20], Birdsnap [21],
Food-101 [22] and COVID-19 mask-nomask datasets for
different networks.

• The proposed step-wise training reduces the overall train-
ing cost by ≈ 40%.

The rest of the paper is summarized as follows. Section II
briefly introduces the related works done in this field. Sec-
tion III describes the proposed approach followed by Sec-
tion IV that provides an extensive experimental analysis for
the classification task. Finally, Section V concludes the paper.

II. RELATED WORK

In computer vision (CV), one of the core challenging
problem is image classification which is used to understand the



natural scene images. Since 2012, starting from AlexNet [1] to
GoogleNet [23] in 2014 to SENet [24] and GPipe [25] in 2018,
the network keeps on growing their parameters to train for
image classification task. Although these models are mainly
designed for ImageNet dataset but they are also proved to be
the better pre-trained model for variety of transfer learning
datasets such as CIFAR-100.

In recent CV research on image classification, the trend
is now more shifting towards larger networks and higher
resolution such as ResNeXt-101 32x48d [26] and EfficientNet
[27]. ResNeXt-101 32x48d is a huge network with roughly 829
million parameters for 224 × 224 input image when used for
image classification task. Whereas, EfficientNet-b7 with only
66 million parameters for 600 × 600 training image, achieves
state-of-the-art in ImageNet classification. In evaluation, it is
seen that the top-5 metric is more robust and tends to saturate
with the modern architectures while the top-1 accuracy is more
sensitive in network improvements.

On the other side, efficient models are also explored that can
suit devices like smartphones which is becoming ubiquitous.
Researchers proposed SqueezeNets, MobileNets, ShuffleNets,
Onces-for-all [28] and EfficientNet-B0 as an alternative so-
lution to the above heavy networks with a trade-off between
accuracy and efficiency [27]. Yet it is unsure how to design
efficient mobile-size CNN for larger models that have much
more expensive tuning cost but acquires higher accuracy.
Moreover, these CNN models requires more data to acquire
better training and here the question still remains unanswered,
i.e., how much data is enough to train a deep model.

In this paper, we aim to study different training strategies
for efficient learning using the same data that surpass the
traditional or baseline training approach in terms of accuracy.
We also study the data-accuracy dependency in CNN models
and to achieve this, we propose a simple progressive step-wise
training strategy to apply on state-of-the-art CNN models.

III. OUR TRAINING STRATEGY

In this section, we describe and derive the data distribution
problem in image classification, then study different training
approaches and finally propose our new training strategy to
optimize the learning.

A. Problem Definition

Let’s say N be a CNN model where it’s ith layer is defined
as Yi =Fi(Xi) such that Yi is the output, Fi is the operator and
Xi is the input to the ith layer with tensor shape (b,hi,wi,Ci).
Here, (hi,wi) is the spatial dimension, Ci is the channel number
and b is the batch size. Then, according to [27], N can be
mathematically represented as:

N =� j = 1, ...s
i = 1, ...k

F
l j
i (X(b,hi,wi,Ci)) (1)

where F
l j
i denotes a repeated Fi operator for l j times in jth

stage with an input tensor X of ith layer. Here, j represents the
number of convolutional layers stages used in CNN model,

just like ResNet has five stages. Now, if model N has α

parameters then to minimize the loss, L (α) is defined as:

L (α) =
1
M

M

∑
m=1

Lm(α) (2)

where M is the training set size and Lm(α) denotes the loss
for the mth training sample.

Currently in CNN, stochastic gradient optimization algo-
rithms are used to update the parameters which is based on
the gradient averages over a mini-batch size of the complete
training set M. This mini-batches, also known as batch size b,
is commonly used in network parameter tuning. According to
Stochastic Gradient Descent (SGD) optimization, the weight
learning can be formated as:

αm+1 = αm +λ∆αm (3)

where
∆αm =− 1

m

m

∑
i=1
5αLi(αm) (4)

where λ is network learning rate and m is the training example
in a batch. In general, according to Smith and Li [29], the scale
of fluctuation in SGD is defined as:

G = λ (
M
b
−1) (5)

In [12], author proved empirically that b ∝ λ , i.e., decaying
λ can be directly proportional to increasing of b.

Now, unlike the regular CNN training that uses loss Eq. 2,
if the training set M is split into several small subsets, i.e.,
M = {m1,m2, ...mn} and they are gradually added for training
the network N , then the new updated loss function L ′(α)
can be defined as:

L ′(α) =
1

∑
d
i=1 Mi

∑
d
i=1 Mi

∑
m=1

Lm(α) (6)

where Mi is the subset of M s.t. Mi = (m1 +m2 + ...mi). This
approach will not add on the computation overhead but will
gradually increase the learning capacity of N . In each training
subset implementation, we typically use a weight correction
based on the average of their local gradients according to
Eq. 3. Therefore, since b ∝ λMi, the noise scale can be
approximated as Gi ≈ λMi

b . In this paper, to avoid the data
subset division argument, we simply take a random equal
splitting to simplify our focus on the proposed hypothesis.

Another important factor to regulate the CNN learning is
mini-batch b, as discussed in Eq. 1. So using the sum of the
gradients, the SGD parameter update rule for αm can be re-
written as:

αm+1 = αm−λ
′

b

∑
i=1
5αLb(αm) (7)

where λ ′ = λ

b . This way, the network weights generated by
Mi will be used as an initializer for network with Mi+1 data.

Our ultimate target is to maximize the model accuracy A
for a given dataset, say D , by optimizing the data size, batch
size and learning rate and thus, can be formulated as:



maximize
(M,b,λ )

A (N (α(M,b,λ )) (8)

B. Training Approaches

To optimize the data usage and implement problem 8, there
are some issues which needs to be discussed first.

1) Dataset Size: According to [11], DL-based models are
data hunger networks and the more data we provide, the better
N performance is. Similarly, in case of transfer learning, the
better the weight initialization is, the better the performance
is. Yalniz et al. used a semi-supervised billion-scale training
set for a student model to train first before it is fine-tuned
on the original labeled dataset [11]. This introduces a better
initializer and thus acquire a higher accuracy compared to its
teacher. Figure 1a shows the testing accuracy on CIFAR-100
dataset. According to this accuracy curve, we observe that the
larger M acquires higher accuracy for a given network N (α)
and also the learning process is faster.

2) Batch Size: In general, DL model uses batch size b
to control the weights update, as explained previously. By
word batch size, we actually mean that a random set of b
images from the training dataset, say D , are taken to estimate
the error gradient to update weights. Figure 1b shows an
accuracy performance comparison on 20% of CIFAR-100
dataset which is again trained from scratch for 20 epochs
with a constant λ but varying b. Different b achieves different
accuracy performance for the same dataset (see Figure 1b).
According to Eq. 7, small b results in rapid learning while the
large ones leads to a slow learning process but the convergence
is more stable, which is not in the prior case [30]. Small b
are usually noisy with lower generalization error. Figure 1b
validates these observations and encourage to choose a proper
b for the best N (α) output.

3) Learning Rate: In neural networks, weights cannot be
calculated by using any analytical method, instead are discov-
ered using SGD optimizer and the amount of change in weight
during this search is called the learning rate. Its a configurable
hyper-parameter and CNN models can potentially update their
weights more optimally [31]. Generally, it is observed that
larger λ allows N (α) to learn faster by arriving on a sub-
optimal final set of weights [32]. Whereas, small λ allows
N (α) to learn slowly but a more optimal or globally optimal
set of weights. Figure 1c experimentally represents the above
concept by keeping b constant. When λ is too large (λ = 0.1),
the weight update is also too large (refer Eq. 7) and thus, the
model N (α) performance oscillates over the training epochs.
On the other hand, when λ is too small (λ = 0.0001), the
model never converge or stuck on sub-optimal minima and
requires more training epochs. Therefore, its important to get
an optimal λ with learning decay to achieve higher A .

C. Training Strategy

Based on the above experiments, we observed that scaling
up the dataset with an optimal batch size and learning decay
gives better performance. Hence, it is important to obtain an
optimal set of (M,b,λ ).

We pragmatically observe that fine-tuning only one of these
three hyper-parameters will not give the best solution as they
are interrelated and needs to be tuned together. In this paper,
we introduce a new step-wise training strategy where with the
same computation cost, N (α) achieves higher performance
compared to old strategy. The new learning rate λ ′ for given
dataset size Mi is calculated as

λ
′ =

{
λ

b for Mi where i = 1 or n
(λ/10)

n×b for Mi where 1 < i < n
(9)

where n is the total number of subsets of M dataset used
in training process and λ = λ ′ for next i. Intuitively, b is
a user-defined hyper-parameter which is set according to the
available resources while λ regulates the learning speed of
N (α). With gradual increase in Mi, we increase the batch
size such that Mi/b is constant. This controls the learning
of N (α) and when Mi = M, the model is fine-tuned with
λ ′ = λ/b to regulate the learning curve. For simplicity, let λ ′

be λi. Therefore, the noise scale can be equated as:

Gi ≈
λ ′Mi

bi
≈ λi×Mi (10)

where i represents the progressive update during the training.
In the next section, we experimentally proves the proposed
hypothesis.

IV. IMAGE CLASSIFICATION EXPERIMENTS AND
ANALYSIS

In this section, we firstly describe the dataset and the imple-
mentation details used in this paper followed by various sets
of experiments and there analysis to uphold our hypothesis.

A. Dataset and Implementation

All experiments in this paper are based on SGD optimiza-
tion. For training and testing, we used two different types of
datasets: interclass CIFAR-100 dataset and intraclass Birdsnap
and Food-101 datasets. CIFAR is a natural object dataset of
100 classes with 50k training samples and 10k testing samples.
Each class has 500 images for training and 100 for testing.
The image resolution is 32 × 32 which is scaled to 224
× 224 for our experiments. Birdsnap is the second dataset
used in this paper which includes 500 North American bird
species collected from Flicker. It has total 49,829 images out
of which 2443 images are used for testing. The third dataset
is the Food-101 which consists of 101 food categories with
total 101k training and testing images. Among 1000 images
per food category, 750 are involved in training and 250 is used
for testing. This dataset includes 512×512 images with some
wrong labels and high color intensity. This adds a different
level of challenge to validate the proposed training strategy. In
all datasets, the testing set is not disturbed and the original test
evaluation set are used. In addition, for further experiments and
ablation studies, we introduce a new COVID-19 mask-nomask
dataset with 2,509 train images and 539 test images which is
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Fig. 1: Training approaches with different settings: (a) dataset size Mi is {20%,40%,60%,80%,100%}, (b) batch size b =
{12,24,48,72,96} and (c) learning rate λ = {0.1,0.01,0.001,0.0001}. The baseline network used for these graphs is ResNet-
18 with an input tensor (3, 224, 224) from CIFAR-100 dataset. Note, all the trainings are from the scratch and are trained for
20 epochs with a milestone at 10. The X-axis and Y-axis are the epochs and the testing top-1 accuracy, respectively.

Fig. 2: Architectural network comparison of: ResNet, ResNeXt, Res2Net (scale=4) and Res2NeXt (scale=4).

a combination of three smaller datasets1 for masked and non-
masked face classification. The purpose of introducing such a
small datasets is to test the robustness of proposed hypothesis
on dataset size. The sample images are shown in Figure 3.

Fig. 3: COVID-19 mask-nomask dataset. Details: train (1050
mask, 1459 no-mask) and test (264 mask, 375 no-mask)
images.

Recently, numerous new backbone networks are introduced
which achieves state-of-the-art performance in image classi-
fication [27], [19], [17]. These four datasets are investigated
on different versions of widely used ResNet architecture, i.e.,
ResNet-50 and ResNeXt-50. The hypothesis is also tested on

11. covid mask images: https://www.kaggle.com/danielferrazcampos/
face-mask-images
2. mask dataset: https://www.kaggle.com/ahmetfurkandemr/
mask-datasets-v1
3. COVID19 mask image dataset: https://github.com/UniversalDataTool/
coronavirus-mask-image-dataset

different version of recently proposed Res2Net2 architecture,
i.e., Res2Net-50, Res2Net-50 v1b 26w 4s and Res2NeXt-50.
Note that the networks chosen here are almost equivalent in
terms of depth and performs best in image classification task.

For the implementation of ResNet and Res2Net, we used
Pytorch3. We used a set of step-wise batch sizes β = {b1, ...bi}
and initial learning rate λ = 0.001 (the best and stable case
in Figure 1c). The momentum φ is set to 0.9, gamma γ

is 0.1, weight decay ω is fixed to 1× e−4. In this paper,
all the network models N are trained from scratch (except
Section IV-C) to count the real contribution of the proposed
step-wise training strategy. Because if we use the pre-trained
weights for initialization, the model learning task will be
highly influenced by transfer learning. Also note that there
are no data augmentation algorithms involved in any of the
experiments shown in this paper.

The comparison matrices used in this paper are top-1 and
top-5, as they are the most used matrices by other image
classification researchers [27], [11], [19]. The experiments was
performed on a Titan X GPU cards with 12GB RAM in Linux
environment.

2Res2Net source code: https://github.com/Res2Net/
Res2Net-PretrainedModels

3Pytorch: https://pytorch.org/
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Fig. 4: top-1 (left) and top-5 (right) accuracy comparison used in this paper: a) ResNet-50 with the traditional training strategy
on set O and b) ResNet-50 with the proposed training strategy with A-B-C-D-O sets.

B. Experiments
We first provide meticulous experimental results on CIFAR-

100 dataset and then validate the hypothesis on Birdsnap
dataset followed by ablation study on Food-101 and COVID-
19 mask-nomask datasets. This subsection is segmented into
various deep learning models, N with different number of
parameters α . The basic block diagram difference of the
networks used in this paper are shown in Figure 2. The
network size in terms of parameters are 25.56M, 25.02M,
25.70M and 24.67M respectively for ResNet-50, ResNeXt-50,
Res2Net-50 and Res2NeXt-50.

1) ResNet: We exploited the proposed step-wise training
strategy on various different networks and achieved significant
improvements for all. In ResNet family [17], we adopted
ResNet-50 due to its wide popularity and are used by most of
the researchers. Table I shows top-1 and top-5 accuracy mea-
sures for CIFAR-100 dataset using ResNet-50. The baseline
experiment, i.e., when ResNet-50 is trained on the complete
training set O for 100 epochs (refer Eq. 5) acquires 64.94%
top-1 accuracy and 88.62% top-5 accuracy. While when it is
trained on sets A, B, C, D and O for 20 epochs, the same
model with the same number of parameters α , managed to
secure 35.79%, 46.73%, 52.52%, 55.29% and 57.28% top-1
accuracy, respectively without sharing the weights. In the last
row, Table I represents the accuracy achieved by the proposed
step-wise training strategy where it achieves 66.34% (top-
1) and 90.72% (top-5) accuracy when trained using different
batch sizes (batch sizes are mentioned along the arrows) with
increase in data size (following Eq. 7). It shows an uprise
of 1.4% (top-1) and 2.1% (top-5) for the same dataset with
the less computation cost. A step-wise learning rate decay is
used in all training process, refer Eq. 10. For the baseline
performance computation, the learning rate decay is used at
every 30th epochs while for all other experiments the decay is
at every 10th epochs.

Figure 4 shows the accuracy curve in terms of top-1 and top-
5 accuracy for CIFAR-100 dataset, comparing the baseline and
the proposed step-wise training strategy progress. From this
graph, we observe that the basic training strategy gets saturated
after few epochs, in this case, it’s after 30 epochs. While in the
proposed strategy, the dataset images are progressively added

TABLE I: ResNet-50 performance analysis on CIFAR-100
dataset. Letters A, B, C, D, and O respectively represents 20%,
40%, 60%, 80% and 100% training sets of CIFAR-100, as
discussed in Section III-A. Note: all the trainings are from the
scratch and the bold is the best results.

CIFAR-100 Dataset ResNet-50
top-1 top-5 Epochs

with set O (baseline) 64.9400 88.6200 100
with set A 35.7900 66.3300 20
with set B 46.7300 77.4700 20
with set C 52.5200 81.9900 20
with set D 55.2900 84.3500 20
with set O 57.2800 85.8100 20

with set A 2b→ B 3b→ C 4b→ D b→ O 66.3400 90.7200 20 each

with different learning rate and batch size which generates
an impulse fluctuation to the network’s learning capability to
further drive the accuracy curve with updated noise scale G
(Figure 4).

Next, the computation cost involved in step-wise training
is 40% less4 than the traditional training approach where
complete data is used throughout the training.

2) Res2Net: We perform similar experiments with other
networks to validate the proposed hypothesis functioning that
is not biased with the network architecture. Recently, Gao et al.
[19] proposed Res2Net constructed by adding a hierarchical
residual-like connections with in a single residual block, as
shown in image of Figure 2. Using Res2Net-50, we plot the
accuracy graph (Figure 5) and observed that the proposed
training strategy continuously boosts the network performance
while the baseline curve gets saturated after 31 epochs. The
proposed approach achieves 67.04% (top-1) and 90.65% (top-
5) accuracy which is 0.39% (top-1) and 1.50% (top-5) higher
than the baseline training.

In [19], another version of Res2Net-50 with filter width of
26, scale size of 4 and trainable parameters of 25.72M is also
trained and tested. By following the same training strategy, it
achieves 66.11% top-1 accuracy while the baseline saturates
at 64.79%.

4Training cost (epoch×M): 1. Traditional approach ≈ 100×M
2. Proposal ≈ 20× (0.2M+0.4M+0.6M+0.8M+M)≈ 60×M
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Fig. 5: top-1 (left) and top-5 (right) accuracy comparison of: a) Res2Net-50 with the traditional training strategy on set O and
b) with the proposed training strategy, i.e., A-B-C-D-O sets.

(a) (b)

Fig. 6: top-1 (left) and top-5 (right) accuracy comparison of ResNeXt-50 and Res2NeXt-50 with O set and with the proposed
training strategy, i.e., A-B-C-D-O sets.

3) ResNeXt and Res2NeXt: Xie et al. [18] and Gao et
al. [19] proposed a finer version of ResNet and Res2Net,
respectively. The difference between ResNeXt and Res2NeXt
models are respectively shown in Figure 2b and Figure 2d.
These upgraded models are bit lighter than their original
versions (Section IV-B). The performance of Res2NeXt-50 vs
ResNeXt-50 is shown in Figure 6 and also quantified in Table
II. ResNeXt-50 and Res2NeXt-50 using the proposed training
strategy achieved 1.22% and 0.57% rise in the top-1 accuracy.

4) Birdsnap: After we tested the proposed training hy-
pothesis on CIFAR-100 dataset, we examined it on a totally
different dataset, i.e., Birdsnap dataset in which all the classes
belong to a single ’Bird’ category. Therefore, the challenge of
image classification here is more harder. Following the similar
splitting as in CIFAR-100, we used the recent Res2Net-50 and
Res2NeXt-50 networks to train and test with 500 different
bird species. Compared to the baseline training, the proposed
training strategy achieved 0.35% and 1.77% improvement in
top-1 accuracy and 0.47% and 0.98% in top-5 accuracy for
Res2Net-50 and Res2Next-50, respectively. This validate that
the hypothesis is also true for the intraclass datasets too.

C. Ablation Study

The proposed step-wise training strategy is further examined
for a detailed ablation studies on Food-101 dataset with
different combinations of M and b, keeping λ constant, see
Tables IV-VI. In Table IV, unlike CIFAR-100 and Birdsnap

datasets, Food-101 dataset compares the proposed step-wise
training strategy with the baseline training strategy using with
and without pre-trained weights. In this ablation study, it is
observed that the proposed training strategy shows significant
improvement in both the cases. The top-1 accuracy is raised
by 0.97% and 1.43% for with and without pre-trained weights,
respectively. Table IV also details the intermediate accuracies
with and without weight sharing between transit from one
data set to another and noticeably found that sharing weight
boosts the network learning more efficiently compared to
without sharing. The proposed step-wise training strategy
achieves 86.71% and 97.26% in top-1 and top-5 accuracy,
respectively when weights are shared while without weight
sharing it’s limited to 54.99% and 81.50%. Note that the
settings are all kept same in with and without sharing and no
data augmentation algorithms are used. Also, the pre-trained
weights used in this paper are from ImageNet.

In Table V, similar experiments are conducted by varying
the batch size and keeping other settings same as in Table IV.
It shows a noteworthy improvement even with different batch
sizes when compared to the baseline approach. We also tested
the proposed strategy for k-fold by keeping b=24 and varying
M splits, i.e., splitting the given dataset into three subsets
of 20%, 60% and 100%, as shown in Table VI. Compared
to Table IV, we perceive that the larger the dataset split the
better the performance is. When the dataset splits into three
subsets, the top-1 and top-5 accuracy reached to 86.37% and



TABLE II: Performance analysis of ResNeXt-50 and Res2NeXt-50 on CIFAR-100 dataset.

CIFAR-100 Dataset ResNeXt-50 CIFAR-100 Dataset Res2NeXt-50
top-1 top-5 Epochs top-1 top-5 Epochs

with set O (baseline) 65.5800 88.6700 100 with set O (baseline) 66.4100 88.7400 100

with set A 2b→ B 3b→ C 4b→ D b→ O 66.8000 90.1900 20 each with set A 2b→ B 3b→ C 4b→ D b→ O 66.9800 90.5900 20 each

TABLE III: Performance analysis of Res2Net-50 and
Res2NeXt-50 on Birdsnap dataset.

Birdsnap Dataset Res2Net-50
top-1 top-5 Epochs

with set O (baseline) 61.7901 83.3790 100

with set A 2b→ B 3b→ C 4b→ D b→ O 62.1391 85.150 20 each

Birdsnap Dataset Res2NeXt-50
top-1 top-5 Epochs

with set O (baseline) 61.9900 84.0025 100

with set A 2b→ B 3b→ C 4b→ D b→ O 62.4611 84.9875 20 each

97.13%, respectively. Whereas, when its split into five subsets,
the accuracy outstretched to 86.71% top-1 and 97.26% top-
5. These experimental analysis proves that if the batch size
b successively keeps changing along with the data size M,
the gradient optimization is more efficient without letting the
learning curve get saturated.

This gives a second thought, what if the dataset is too small?
Will this noise scaling be still valid? To exploratory examine
the above questions, we further test the hypothesis on COVID-
19 mask-nomask dataset where the experiments are split into
four possibilities of Eq. 10, i.e., G ≈ λiMi

bi
, G ≈ λiMi

b , G ≈ λMi
bi

and G ≈ λMi
b . Table VII shows the experimental results on

various methods and evident that due to G ≈ λiMi
bi

the proposed
step-wise training strategy performs better. The first two set
of experiments where two different b = {16,24} are chosen
as initial batch size, validates that the hypothesis work well
with different batch size settings too. From the table, it is
also clear that if only λ and M are updated according to Eq.
9 and 10, the noise scale is disturbed which results in poor
network performance. As from the previous Table VI, it is
observed that the higher n results better and so we tested
it on COVID-19 mask-nomask dataset too. For k-fold test,
we tested Res2Net-50 on set A 2b→ C b→ O and obtained an
accuracy of 99.5305%, whereas for A 2b→ O the accuracy is
limited to 98.4351% (detailed in supplementary section).

D. Discussion

We summarize the major observations from these experi-
ments, which are as follows:

• In the proposed step-wise training strategy, similar to
[11], the Mi trained network weights are uses as the new
initializer for Mi+1 subset training that boost the learning
curve without saturating.

• This study analyzes a close interrelation between M, b
and λ and propose a step-wise training to uprise the
performance instead of traditional baseline training.

• The proposal proves that the learning curve can still be
improved by using an optimal step-wise training without

performing any change in the network architecture. It also
validates that the higher M, the better A of N (α) is.

• The experiments also confirms that the proposed step-
wise training reduces the risk of over-fitting by adopting
different b and also reduces the training cost by 40%.

• Lastly, the experiments endorse the hypothesis to be true
for different architectures as well as different data types.

The experiments conducted in this paper, constructs a re-
thinking of data distribution while training the deep models to
obtain much better performance with the given dataset.

V. CONCLUSION

We presented simple yet effective step-wise training strategy
to further improve the learning curve with the same given
dataset. The strategy proposed is a combination of data size,
batch size and learning rate in such a way that it generates
impulse to update the weights. This adds a significant improve-
ment to ResNet, Res2Net, ResNeXt and Res2NeXt architec-
tures. The evaluation of the proposed hypothesis is performed
on multiple types of datasets: CIFAR-100, Birdsnap, Food-101
and COVID-19 mask-nomask.

Although the proposed training strategy significantly works
for image classification tasks, in future we would like to
explore other aspects of CV such as object detection and seg-
mentation where annotation is the biggest challenge. There can
be another dimension of data distribution for such processes.
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