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Abstract

High throughput experimentation tools, machine learning (ML) methods, and open material databases
are radically changing the way new materials are discovered. From the experimentally driven approach
in the past, we are moving quickly towards the artificial intelligence (AI) driven approach, realising the
’inverse design’ capabilities that allow the discovery of new materials given the desired properties. This
review aims to discuss different principles of AI-driven generative models that are applicable for materials
discovery, including different materials representations available for this purpose. We will also highlight
specific applications of generative models in designing new catalysts, semiconductors, polymers, or crystals
while addressing challenges such as data scarcity, computational cost, interpretability, synthesizability, and
dataset biases. Emerging approaches to overcome limitations and integrate AI with experimental workflows
will be discussed, including multimodal models, physics-informed architectures, and closed-loop discovery
systems. This review aims to provide insights for researchers aiming to harness AI’s transformative potential
in accelerating materials discovery for sustainability, healthcare, and energy innovation.

1 Introduction

Materials science is the foundation for technological innovation, driving advances in energy, electronics, catalysis,
and quantum computing through the development of novel materials with tailored properties16,120. Historically,
material discovery is experiment-driven. Often, this means labourious trial and error process where scientists
first hypothesize the structures, synthesize compounds, and then test properties30 (Fig. 1a). While there is
nothing fundamentally wrong with this approach32, the vastness of chemical space, estimated to exceed 1060

carbon-based molecules, renders exhaustive experiment-led exploration to find new classes of materials imprac-
tical39,104. Consequently, the timeline from material conception to deployment often spans decades, hindering
innovation and investment30,122. Modern technologies such as electric vehicles, high-speed rails, and satellite
communications demand new materials with lower weights and enhanced properties, such as high thermal con-
ductivity, electromagnetic shielding, customisable bandgap, or enhanced mechanical strength, pushing the limits
of existing compounds87,138. This bottleneck spurs the search for a novel approach to the discovery of materials
that are capable of navigating complex structural and functional requirements.

The most popular approach in harvesting the low-hanging fruits in the exploration of the vast materials
space is what we call the ”black-box” approach (Fig. 1b). This is a general term representing intelligent
data acquisition strategies that utilize ML optimization algorithms to find the right candidate(s) with targeted
properties27. A black-box approach typically involves building a new dataset, built specifically for a particular
optimization of a desired output (e.g., material properties) based on empirical parameter inputs (e.g., precursor
ratio). This approach has been proven effective for well-defined and constrained problems, such as finding the
appropriate precursors to optimize the catalytic condition74, or to optimise process parameters of a reaction49 80

in which much fewer iteration steps are required compared to traditional methods. However, it is difficult to
generalize a black box approach that has been trained in a specific task, unless there are some similarities in
properties or structure in the related task60.

Recognising the limitations of the blackbox approaches to discover truly new materials that can display
groundbreaking properties, multi-disciplinary scientists started to apply generative models for materials discov-
ery. Originally designed as AI to simulate human reasoning, intelligence, and creative processes99, generative
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Figure 1: A paradigm shift in Materials Discovery. The strategy for discovering new materials has
evolved over the last century. (a) Traditionally, materials discovery starts with an idea or hypothesis
that needs to be validated through experimental synthesis, characterization, and testing. The advent
of computational techniques allows ab-initio evaluation of the novel materials to gain deeper insights
into the structure-properties relationship or guide subsequent discoveries. (b) Today, we witness
many ”blackbox” discovery approaches that allow an iterative direct model optimization process.
With more accessible and efficient computational resources, computational techniques, including
ab-initio calculations, can be implemented in the pre-optimisation step, where data pools can be
enriched by computational inputs. A second, more thorough ab-initio calculation may be performed
on the optimum material to validate or further elaborate the material-structure relationship. (c)
In the future, we predict a growing ”Generative Discovery” approach that leverages existing mate-
rials databases rich in past learnings. Ways to encode materials structure into computer-readable
representations like ”SMILES”126, graph125, or voxel90 allow effective exploration of the materi-
als space. Unlike previous approaches, the generative approach can learn probability distributions,
capable of suggesting innovative material structures even before the experiments begin. As the
experiment progresses, the continuous learning loop refines the model with fresh data, while pre-
dicted structures are meticulously evaluated against target properties, followed by high-throughput
synthesis, characterization, and testing. CC(CCC(=O)N)CN is the SMILES representation of 5-
amino-4-methylpentanamide

model are gradually finding their way to materials discovery applications. Generative models are not adopted
into materials discovery overnight. We recognise at least five key ”parents” that brought us AI-driven materials
discovery (Fig. 1c).

The first parent is not actually related to AI (or ML), but rather high-throughput combinatorial methods
and tools development. Combinatorial methods have been ubiquitous in nature. For example, to obtain suitable
antibodies to fight certain pathogens, lymphocytes are assembled in the human body by recombination of large
”libraries” of molecules and selecting those with desired properties or mutating them117. Such an approach is
only relatively recently being applied to materials science105,106 , where large arrays of materials composition
are being synthesised (for example, by inkjet135 or plasma printing4) for subsequent systematic testing. Today,
coordinated efforts, with many research centres focusing on high throughput experimentation worldwide.

The second parent is the application of ML algorithms for parametric optimisation. The advent of machine
learning (ML) has revolutionized materials science by leveraging vast datasets and computational power to
uncover intricate patterns and accelerate discovery16,81,141. The syntheses of organic and inorganic materials
can be complicated and challenging to optimise, as they often involve multiple steps and precursors. Whilst
existing statistical optimisation approaches like the design of experiment (DOE) methods have proven to be
instrumental in the discovery of new materials45, the integration of ML can enhance the efficiency and efficacy
of these methods further, especially for more complex materials composition or metastable compounds. The
synergy between ML, domain expertise, and established DOE methods has been observed to be more robust
compared to either standalone approaches100.

The third is the sharing of materials databases2. The mountains of data generated by high-throughput
combinatorial methods are only beneficial if it is shared among the wider scientific community. Researchers
around the world recognises this, and there has been an exponential increase in curated materials databases in
many countries12,38,57,124. However, differences in the way labs around the world perform the experiments and
record the findings can give rise to dataset mismatch or variation. Developing universally accepted standards
is also challenging, as the high-throughput combinatorial methods are still in the infancy with rapidly changing
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protocols, tools, and algorithms. We note two major efforts to develop standardised testing and recording com-
puterised materials data have been performed by the Versailles Project on Advanced Materials and Standards
(VAMAS, technical work area 10)3 and ASTM International (Committee E-49)97, although implementation of
these standards in research laboratories remain scarce.

The fourth is the application of ML in the computational modeling of the force field119. This is a significant
advancement in computational chemistry that bridges between very precise atomic modeling through ab initio
density functional theory (DFT) calculation and the force field model that drives molecular dynamics (MD).
The two computational approaches are on different ends of scale and accuracy: DFT glances from the quantum
mechanical point of view, capable of calculating accurate atomic interaction and potential of considered systems,
but can only cover a limited (angstroms) range due to the rigorous calculation steps. On the other hand,
MD approximates atoms and molecules as particles and uses simpler classical mechanics to solve the dynamic
behaviour of a larger number of atoms over a (brief) period. Essential to MD’s capability to simulate the dynamic
behaviour is the force field model84, an empirical method to describe the interactions between atoms in the
system without the need to model the entire electronic structure or interatomic potential. The implementation
of ML methods, especially machine-learned potential (MLP)43, allows a dream of ”hybrid” simulation where
accurate potential energies of a larger system (or over a longer period) can be quickly obtained from a suitable
numerical representation of the material29 that can typically be trained with a pool of ab-initio simulation data
or experimental data98.

Last but not least, is the incorporation of generative models into materials discovery. Generative models are
able to approximate high-dimensional probability distributions between structures and desired characteristics
or properties9,46,101,103. Once the probability distributions have been learned, novel data such as molecular
structures can be generated by sampling in the probability distributions’ (latent) space, based on, for example,
the desired properties. The ability of generative models to generate new structure suggestions from the latent
space represents a new paradigm of materials discovery. This is a marked departure from previous approaches,
where new structure suggestions need to be first explicitly generated in the real space, either by modifying or
substituting the atoms found in known structures51, or by placing completely random atoms within preselected
constraints or restraints to ensure that the generated materials are stable and unique95. The next few sections
of this review will focus on this fifth ”parent”, describing the different models available for materials discovery
and their principles, along with examples and applications of these models in research.

2 Generative Models for Materials Science

To understand the role of generative models in materials discovery, it is essential to distinguish them from
supervised machine learning paradigms. Supervised learning focuses on learning a mapping function, y = f(x),
to predict outputs y from inputs x using labeled data, minimizing discrepancies between predicted and actual
outcomes. Termed discriminative models9, these approaches excel in classification and regression tasks but are
limited by their reliance on labeled datasets. In materials discovery, where novel structures and properties are
often sought without extensively labeled data, generative models offer a powerful alternative.

Unlike discriminative models, generative models learn the underlying probability distribution, P (x), of the
data, enabling the creation of new samples that closely resemble the training set. By capturing the inherent
patterns in materials representations (more on this in section 2.2), these models can generate synthetic instances,
often in unsupervised settings, leveraging both labeled and unlabeled data. A critical feature of the generative
model is the latent space: a low(er)-dimensional representation of the structure-properties relationship that
enables inverse design strategy.

To understand how inverse design is achieved through generative models, six key types of generative models
will be explored. These models are selected for their diverse principles and proven effectiveness in inverse design
—generating stable and novel materials for applications like catalysts, electronics, and polymers. We will discuss
them in the order of historical emergence and increasing specialization, starting from Variational Autoencoders
(VAEs), Generative Adversarial Networks (GANs), Diffusion Models (e.g., DiffCSP61, SymmCD73), Recurrent
Neural Networks (RNNs) and Transformers (e.g., MatterGPT23, Space Group Informed Transformer18), Nor-
malizing Flows (e.g., CrystalFlow77, FlowLLM112), and Generative Flow Networks (GFlowNets, e.g., Crystal-
GFN5)(Fig. 2).

The success of these models depends on effective material representations that preserve structural constraints,
atomic interactions, and scalability across small molecules to large crystalline systems. Representations such as
sequence-based (e.g., SMILES126), graph-based129, voxel-based, and physics-informed formats86 enable mod-
els to handle complex materials data. By integrating these representations, generative models, from VAEs to
GFlowNets, address diverse challenges in materials discovery, offering scalable solutions for crystalline, poly-
meric, and composite systems (Fig. 6).
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Figure 2: Schematics of generative model architectures for materials discovery, illustrating the gen-
eral workflows for (a) VAE (Variational Autoencoder): encode-decode process with an inference
and generative path, showcasing the mapping of molecules into a latent space distribution and sub-
sequent generation of new molecular structures. (b) GAN (Generative Adversarial Network):
a generator creating molecular structures from noise, which are then evaluated by a discriminator
against real molecular data to improve realism. (c) Diffusion Model: a forward (corruption) pro-
cess where stable material is progressively turned into random material, and a reverse (denoising)
process that reconstructs the stable material. This is analogous to generating molecules by reversing
a corruption process. Taken with permission from7. (d) RNN (Recurrent Neural Network):
A sequential process where hidden states (ht) are updated based on previous states and current
inputs (xt), eventually leading to the gathering of symbols (e.g., for molecular string generation).
Taken with permission from108. (e) Transformer: encoder-decoder architecture with embedding,
positional encoding, multi-head attention mechanisms, and feed-forward layers, commonly used for
sequence-to-sequence tasks like molecular string manipulations, (f) Flow (Reinforcement Learn-
ing/Generative Flow): tree-like structure where molecular syntheses or modifications (e.g., from
Aspirin to Naproxen, Ketoprofen, or Ibuprofen) are associated with rewards, suggesting a reinforce-
ment learning approach for optimizing molecular properties or synthesis pathways. Taken with
permission from59.

2.1 Models and Principles

2.1.1 Variational Autoencoders (VAEs)

Variational Autoencoders (VAEs) are generative models that learn a probabilistic latent space for data gener-
ation68. VAE typically consists of an encoder that maps input data x (e.g., material descriptors) to a latent
distribution q(z|x) = N (µ(x), σ(x)2), and a decoder that reconstructs x from samples z ∼ q(z|x) as p(x|z)
(Fig. 2a). The model maximizes the Evidence Lower Bound (ELBO):

ELBO = Eq(z|x)[log p(x|z)] − KL(q(z|x)||N (0, I)), (1)

balancing reconstruction accuracy (Eq(z|x)[log p(x|z)]) and regularization of q(z|x) to a Gaussian prior (KL).
The reparameterization trick enables back-propagation by sampling z = µ(x) + σ(x) · ϵ, where ϵ ∼ N (0, I),
making training more efficient68. In materials science, VAEs can be exploited to generate novel structures and
optimize properties by sampling the latent space. For example, Gómez-Bombarelli et al. reported the use of
VAEs to generate predictions of organic molecules that can be applicable as active pharmaceutical ingredients
(API) Gómez-Bombarelli et al. 46 . This is achieved by encoding the molecular structure, through a certain
representation like SMILES, into a continuous latent space (Fig. 3), with secondary attributes like properties
added via a predictor network. One major deficiency of VAEs is related to the way the encoder network aims
to generate a smooth latent state representation of the input data. While the probabilistic approach allows the
model to cover unexplored regions in the input data, this approach also tends to generate ”blurry” outputs and
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Figure 3: An illustration of the use of VAE for molecular design, integrated with a joint property
prediction model —predictor. The encoder transforms discrete molecular representations (like
SMILES strings) into continuous latent space vectors. The decoder then converts these latent
vectors back into SMILES strings. The predictor can be added to predict properties from latent
representations. However, the huge size of the latent space dimension (more than 100) makes
sampling and visualization difficult. Taken with permission from Gómez-Bombarelli et al. 46

Figure 4: An illustration for MatGAN architecture consisting of a generator, which maps random
vectors into generated samples, and a discriminator, which tries to differentiate real materials and
generated ones. Taken with permission from Dan et al. 34

difficulties in capturing complex data distributions37. From the materials discovery point of view, this could
mean severe difficulty in generating sensible, discrete compounds48, especially with very sparse initial data
(compared to the full materials space). Several improvements have been proposed, to address this limitation,
including Binded-VAE, which learns to jointly generate binary vector encoding on the composition and ratio of
components91. Conditional VAEs (CVAEs) further enable a more targeted design by adding conditions to the
generating network111.

2.1.2 Generative Adversarial Networks (GANs)

GANs, introduced by Goodfellow et al. 47 , employ a competitive framework involving a Generator and a Dis-
criminator (Fig. 2b). The Generator produces synthetic data G(z) from noise z, while the Discriminator
distinguishes real data x from G(z). This is formalized as a ”minimax” game:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1 −D(G(z)))]. (2)

Training stabilizes when the Generator produces data indistinguishable from real data47. In materials
science, GANs appear to be suitable for exploring vast chemical spaces efficiently. For example, CrystalGAN89

is successful in generating DFT-validated inorganic crystal structures and identifying new types of stable metal
oxides. Similarly, Dan et al. 34 used GANs for the inverse design of inorganic materials, optimizing compositions
for specific properties (Fig. 4). Conditional GANs, as explored by Al-Khaylani et al. 6 for nano-photonic
metamaterials, enable property-targeted generation, though training instability remains a challenge8.

2.1.3 Diffusion Models

Diffusion Models generate materials by reversing a noise-adding process, starting from random noise and it-
eratively refining it into structured data110 (Fig. 2c). The forward process adds noise to data x0 over steps
t:

xt =
√

1 − βtxt−1 +
√

βtϵ, ϵ ∼ N (0, I). (3)
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Figure 5: Stokes et al. 113 workflow for antibiotic discovery using deep learning (RNN) and chemical
space exploration. RNN model, trained on 104 molecules (1), is validated (2) and subsequently used
to predict antibiotic activity across a vast chemical space (up to 108 molecules) (3). The molecular
representation for deep learning is depicted using a directed message-passing neural network (4).
Predicted new antibiotics are then validated (5). The bottom left illustrates Halicin, a repurposed
drug identified by the model, showing in vivo efficacy against bacterial infections. The bottom right
displays examples of other potent antibiotic candidates found in the ZINC15 database using this
method. Taken with permission from113 .

The model learns to denoise xT back to x0, guided by learned patterns130. In materials science, Mat-
terGen137 designs inorganic materials with property-conditioned generation, proposing TaCr2O6 with a bulk
modulus of 169 GPa, which has been experimentally validated. Park et al. 94 used diffusion models to design
porous materials, optimizing pore structures for specific applications. Models like DiffCSP61 and SymmCD73

generate stable crystals with symmetry constraints, enhancing applicability in electronics and catalysis. Com-
pared to GANs, diffusion models offer improved stability but require significant computational resources8.

2.1.4 Recurrent Neural Networks (RNNs) and Transformers

RNNs process sequential data by maintaining a hidden state ht, updated at each time step t:

ht = σ(Wxhxt + Whhht−1 + bh), yt = Whyht + by. (4)

This recurrence enables RNNs to model chemical sequences, such as SMILES strings126 (Fig. 2d). For
example, Stokes et al. 113 used RNNs to generate novel antibiotics, validated experimentally (Fig. 5). However,
RNNs suffer from vanishing gradients, limiting their ability to capture long-term dependencies52.

Long Short-Term Memory (LSTM) networks address this by introducing gates to regulate information flow,
improving sequence modeling52. Gómez-Bombarelli et al. 46 used LSTM-based VAEs for molecular design.

Transformers, with attention mechanisms121, enhance efficiency (Fig. 2e). In materials science, the Wyckoff
Transformer64 generates symmetric crystals, while MatterGPT23 optimizes multi-property materials. The
Space Group Informed Transformer18 incorporates crystallographic constraints, and CrystalFormer-RL20 uses
reinforcement learning for targeted design. Transformers require extensive data but excel in complex sequence
modeling14.

2.1.5 Flow-Based Models

A flow-based generative model is a generative model used in machine learning that explicitly models a probability
distribution by leveraging Normalizing Flow (NF) (Fig. 2f). NF transforms a simple base distribution (e.g.,
Gaussian) into a complex data distribution via invertible, differentiable mappings70. The log-likelihood is
computed using the change of variables formula:

log p(x) = log pz(z) −
K∑

k=1

log

∣∣∣∣det
∂fk
∂zk−1

∣∣∣∣ , (5)
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Table 1: Comparison of generative models used in materials discovery, highlighting their principles,
strengths, limitations, and applications.

Model Principle Strengths Limitations Applications Ref

VAE Probabilistic latent
space, ELBO opti-
mization

Controlled genera-
tion, interpretable
latent space

Limited expressive-
ness, blurry outputs

Molecular design,
perovskites, poly-
mers

Das et al. 35 ,
Gómez-Bombarelli
et al. 46 , Noh
et al. 87

GAN Adversarial train-
ing, minimax game

High-quality out-
puts, explores vast
chemical spaces

Training instability,
mode collapse

Crystal structures,
metamaterials

Al-Khaylani et al. 6 ,
Dan et al. 34 , Nouira
et al. 89

Diffusion Noise-to-data de-
noising process

Stable training, high
novelty

High computational
cost

Inorganic materials,
porous materials,
crystals

Jiao et al. 61 , Levy
et al. 73 , Park
et al. 94 , Zeni
et al. 137

RNN,
LSTM,
Trans-
former

Sequential process-
ing, attention mech-
anisms

Effective for se-
quence data, cap-
tures long-range
dependencies

Vanishing gra-
dients (RNN),
data-intensive

Molecular gen-
eration, crystal
symmetry, multi-
property design

Cao et al. 18 , Chen
et al. 23 , Kazeev
et al. 64 , Stokes
et al. 113

Normalizing
Flows

Invertible mappings,
exact likelihood

Exact likelihoods,
stable training

High computational
cost, discrete struc-
ture challenges

Crystal generation,
thermal composites

Luo et al. 77 , Sri-
ram et al. 112 , Wang
et al. 123

GFlowNets Reward-based sam-
pling, proportional
to reward

Diverse sampling,
suitable for discrete
structures

Computational in-
tensity, task-specific
reward design

Crystal sampling,
high-throughput
screening

AI4Science et al. 5 ,
Bengio et al. 13 , Jain
et al. 59

where z = f−1(x) and fk are bijective functions93. NF offers exact likelihoods and stable training, avoiding
GANs’ mode collapse. In materials science, CrystalFlow generates crystalline structures with high stability77,
while FlowMM uses Riemannian Flow Matching for symmetry-preserving crystal design82. FlowLLM leverages
large language models for material generation112, and conditional NF optimises the thermal composite topolo-
gies123. However, designing expressive transformations is computationally intensive, and NF can struggle with
discrete chemical structure representations like SMILES9.

2.1.6 GFlowNets

Generative Flow Networks (GFlowNets) are designed to sample structured outputs proportionally to a reward
function, making them suitable for diverse material generation13,59. GFlowNets model a sequential construction
process, where a policy π(a|s) selects actions a (e.g., adding atoms, modifying bonds) in a state s (e.g., partial
material structure) to build complete structures x. The objective is to ensure the probability of generating x is
proportional to a reward R(x):

P (x) ∝ R(x), (6)

where R(x) could represent material stability, bandgap, or other properties. The training losses minimize the
discrepancy between forward and backward flow probabilities, ensuring consistent sampling:

L =
∑
s,a

∣∣∣∣log
F (s → s′)

F (s′ → s)
− log

π(a|s)R(s′)

π(b|s′)

∣∣∣∣2 , (7)

where F (s → s′) is the forward flow, and π(b|s′) represents backward actions13.
In materials science, Crystal-GFN5 samples diverse crystal structures with targeted properties, such as

stability or a specific bandgap, validated via DFT simulations. GFlowNets excel in high-throughput screening
by generating varied candidates, complementing VAEs’ latent space sampling and Diffusion Models’ denoising.
However, GFlowNets are computationally intensive for large state spaces and may be limited to specific tasks
due to reward function design5. Their ability to model discrete structures makes them promising for inverse
design, though scalability remains a challenge compared to NFs or Transformers. As a quick reference, we
summarised the different generative models in Table 1.

2.2 Materials Representation

Besides algorithms and databases, the success of generative models in materials discovery also hinges on the
way the material identity is encoded into machine-readable formats. Beyond describing the chemical identity,
an ideal encoding should capture unique characteristics of the material, including structural, chemical, and
physical, and other secondary properties9. Sometimes, more is not always better, and effective representations
must also balance the information richness with compatibility for specific algorithms/models, and achieve the
learning of complex material behaviors at reasonable efficiency. This section explores five key representation
types—Sequence, Graph, Voxel, Physics-Informed, and Multi-modal—highlighting their principles, applications,
and limitations in materials exploration.
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(a) Sequence-Based Representation (b) Graph-Based Representation

(d) Voxel-Based Representation(c) Physic-Informed Representation

Cn1cnc2c1c(=O)n(C)c(=O)n2C

Carbon Channel

Oxygen Channel

Nitrogen Channel

Figure 6: Schematic illustration of four generative model representations for materials. (a)
Sequence-based representation encodes material structures as linear strings (e.g., SMILES) for pro-
cessing by models like RNNs or Transformers. (b) Graph-based representation models atoms and
bonds as nodes and edges, leveraging Graph Neural Networks to capture structural relationships.
Taken with permission from125. (c) Physic-Informed Representation visualizes a conceptual frame-
work where intrinsic physical properties and symmetries (e.g., completeness, symmetry, smoothness,
additivity) govern the representation of materials within a ”structure space” and ”feature space,”
suggesting a focus on fundamental physical descriptors86. (d) Voxel-Based Representation dis-
cretizes 3D material structures into voxel grids, suitable for 3D Convolutional Neural Networks.
Taken with permission from90.

2.2.1 Sequence-Based Representation

Sequence-based representations encode materials as linear strings of symbols, making them ideal for molecular
structures (Fig. 6a). The Simplified Molecular Input Line Entry System (SMILES)126 represents molecules as
text strings, with atoms (e.g., “C” for carbon), bonds (e.g., “=” for double bonds), branches in parentheses,
and rings via numbers. For example, ethanol (CH3CH2OH) is written as “CCO”. SMILES is widely used
with VAEs46, RNNs108, and Transformers53,127, enabling the generation of novel molecules. Whilst simple and
attractive, not all materials databases include a SMILES representation for arbitrary compounds75. The strict
syntax rules adopted by SMILES (e.g., matching parentheses ”()” for branches or numbers for rings) are also
prone to errors that may precipitate from algorithm exploration. For example, a suggestion containing ”CCO(”
(a representation for ethanol but missing a closing parenthesis) can turn into nonsensical output that would break
the program. Further, SMILES representations are not unique. The same molecule ”propane” can be expressed
in different ways: ”CCC” or ”C(C)C”, which can lead to confusion and divergence. SMILES also does not check
for any physical/chemical rules, allowing strings like ”C=C=C=C” that look correct but describe unstable or
impossible chemicals. Finally, SMILES representations do not cater for specific 3D arrangement details required
to correctly express non-planar molecules or isomers75. For example, the expression ”C1CCCCC1” generically
refers to cyclohexane, but cannot differentiate between the four conformations: chair, twist-boat, boat, or half-
chair, each of which has distinct stability and reactivity. SMILES encoding cannot easily capture the complex
relationships between compounds, such as during synthesis (or the inverse, decomposition)41.

These issues prompted the development of Self-referencing Embedded Strings (SELFIES)71, which use tokens
(e.g., “[C”, “[=O]”) to ensure every string corresponds to a valid molecule. For instance, “[C][C][O]” reliably
represents ethanol. Despite its robustness, SELFIES struggles with 3D conformations and large macromolecules,
limiting its applicability to complex materials71. Further use of reinforcement learning to construct viable
materials via sequential addition (or deletions) of components has also been attempted63.

2.2.2 Graph-Based Representation

Graph-based representations model materials as graphs G = (V,E), where nodes V represent atoms and edges
E denote bonds (Fig. 6b). Node features (e.g., atomic number) and edge weights (e.g., bond strength) capture
chemical connectivity, making this approach versatile for molecules and crystals21. Graph Neural Networks
(GNNs) process these graphs via message passing:

hl+1
i = UPDATE

(
h
(l)
i ,AGGREGATE({h(l)

j | j ∈ N(i)})
)
, (8)

where h
(l)
i is the feature vector of node i at layer l, and N(i) is its neighbors129. GNNs, such as SchNet107 and

MEGNet21 (Fig. 7), predict properties like bandgaps or generate structures via VAEs109 and GANs17. The
GNoME project81 used GNNs to discover 380,000 stable crystals, leveraging graph representations for efficient
stability predictions.

Despite their power, graph representations oversimplify long-range interactions (e.g., van der Waals forces
between 2D material layers) and struggle with scalability for large or amorphous systems. Bond type ambiguity
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Figure 7: An illustration of the MEGNet’s architecture, designed to predict properties of molecules
and crystals (top panel). The central concept involves iterative message passing, where information
is first exchanged and updated across Bonds (e′k), then aggregated at individual Atom nodes (v′

i)
from their connected bonds, and finally consolidated into a global State representation (u′) for the
entire material (bottom panel). Taken with permission from21.

(e.g., covalent vs. ionic in ZnO) and loss of 3D geometry often require external validation, such as DFT, limiting
their ability to capture dynamic material properties81.

2.2.3 Voxel-Based Representation

Voxel-based representation discretises a material’s 3D unit cell into a grid of voxels, each storing attributes
like atomic occupancy or element type (Fig. 6d). Analogous to 3D pixels, this approach captures spatial
arrangements, making it compatible with convolutional neural networks (CNNs)16. Voxel grids enable generative
models to learn local atomic patterns and symmetries, facilitating the design of complex structures. For example,
MatterGen137 likely employs voxel-like discretizations to generate inorganic materials, optimizing properties like
bulk modulus for compounds like TaCr2O6

136.
Voxel representations excel in capturing 3D geometry but face challenges with computational cost, as high-

resolution grids demand significant memory. They also struggle with periodic boundary conditions in crystals
and may oversimplify atomic interactions, requiring careful pre-processing to ensure accuracy31.

2.2.4 Physics-Based Representation

Physics-based representation seeks to integrate physics-driven information into the learning process, embedding
physical laws to produce realistic outputs that adhere to fundamental principles (see Fig. 6c). This approach
enhances the model’s ability to generate materials that respect constraints such as symmetry or conservation
laws. In practice, it is often paired with other techniques, that is multi-modal representation. A common
method involves combining a physics-based penalty with the data-fitting term, expressed as:

Ltotal = Ldata + λLphysics, (9)

where Lphysics enforces constraints like symmetry or conservation laws131. For instance, Xie et al. 128 used a
symmetry penalty to ensure crystallographic consistency, while Zhu et al. 139 incorporated heat transfer laws
for additive manufacturing. Physics-informed approaches generate stable materials, as shown by Fuhr and
Sumpter 44 , who added energy minimization terms.

However, these methods require detailed prior knowledge, which may not generalize to novel materials. The
computational cost of calculating physics-based residuals and the challenge of tuning λ can limit scalability and
diversity, potentially biasing outputs toward known physical regimes44,86.

2.2.5 Multi-Modal Representation

Thus far, the material representations explored have relied on a single modality to characterize a material’s
properties. We have also observed that each of these representations comes with inherent limitations that can
compromise prediction accuracy and practical utility. Recently, the emergence of ”multi-modal” representa-
tion—a technique that integrates multiple representations to create a more holistic and potentially more precise
description of a material—has gained traction36. Beyond inorganic materials, this approach has found signifi-
cant application in polymers50 (Fig. 8). This is probably because of the difficulty for any single representation
to describe polymers with wide variation in chain length, functional moieties, or isotacticity. The modality of
representation is not restricted to just the molecular structure. For instance, Trask et al. 118 combined electron
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Figure 8: How multi-modal material representation is addressing the limitation of single represen-
tation. In this example, a Transformer model is used to integrate SMILES embeddings and graph
embeddings of molecular structures for pre-training and downstream tasks. Input SMILES strings
are processed for Masked Language Modeling (Task 1), while molecular graph embeddings (e.g.,
monomer and dimer structures) are used for Main/Side Classification (Task 2). The Transformer’s
outputs are then utilized for Property Prediction and Density Prediction. Taken with permission
from50

.

Table 2: Comparison of materials representation types for generative models, highlighting their
principles, strengths, limitations, and applications in materials discovery.

Repr Principle Strengths Limitations Applications Key References

Sequence-
Based

Linear strings (e.g.,
SMILES, SELFIES)

Simple, compact,
compatible with
RNNs, Transform-
ers

Lacks 3D details,
fragile syntax
(SMILES)

Molecular design,
antibiotics

Krenn et al. 71 ,
Weininger 126

Graph-
Based

Graphs G = (V,E)
with nodes (atoms),
edges (bonds)

Captures connectiv-
ity, scalable with
GNNs

Misses long-range
forces, 3D geometry

Crystals, molecules,
battery materials

Merchant
et al. 81 , Xie and
Grossman 129

Voxel-
Based

3D grid of voxels en-
coding atomic prop-
erties

Captures 3D geome-
try, compatible with
CNNs

High computa-
tional cost, periodic
boundary issues

Inorganic materials,
porous structures

Cunningham
et al. 31 , Zeni
et al. 137

Multi-
Modal

Combination of
Representations

Able to learn im-
plicit properties, Im-
proves accuracy

Complex, requires
multiple encodings,
prior knowledge
required

Materials genera-
tion, recognition

Das et al. 36 , Trask
et al. 118

micrographs and XRD relative intensity data to the usual materials structure identifier, allowing improved pre-
diction of residual stress compared to the single-mode identifier. Simple inclusion of application-related ”tokens”
(text description of materials usage or characteristics obtained from free text search) can enhance the materials
properties prediction. For instance, Huang et al. 54 demonstrated that the inclusion of a text description ”ad-
hesive” to the polymer application can better predict the glass transition temperature. We believe the usage
of multi-modal representation will continue to grow, both in academic and applied research, as it is proven to
deliver better recognition and prediction for materials discovery.

3 Applications of Generative Models in Materials Design

Generative models in conjunction with advanced materials representation have been exploiting large and di-
verse datasets, such as the Inorganic Crystal Structure Database (ICSD)134, Open Quantum Materials Database
(OQMD)102, Materials Project57, and PubChem67, to explore vast chemical and structural spaces, predict ma-
terial properties, and optimize candidates for applications in energy storage, catalysis, electronics, biomaterials,
and high-throughput screening. Their combinations have been widely claimed to accelerate materials discovery,
often in closed-loop systems with experimental validation. This section reviews key applications, highlighting
specific examples, methodologies, and their impact, drawing on recent literature and datasets to provide a
comprehensive overview9,44.
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Figure 9: An illustration of zeolite generation via Diffusion model. (a) input structure representa-
tion, (b) the noising and denoising phases, and (c) the progressive sampling of zeolite grids. Taken
with permission from94

3.1 Energy Storage and Battery Materials

Generative models have revolutionized the design of materials for energy storage, particularly for lithium-
ion batteries, solid-state electrolytes, and hydrogen storage systems, by generating candidates with optimized
electrochemical properties. For solid-state electrolytes, VAEs have been employed to design materials with
high ionic conductivity. For instance,122 utilized a VAE to generate graph-based representations of garnet-
type electrolytes, trained on ICSD data, proposing candidates with 15% higher conductivity, validated through
density functional theory (DFT) simulations.

In electrode material design, GANs have been used to discover novel cathode materials.8 employed a GAN
to generate perovskite-based cathodes, training on OQMD and Materials Project datasets, producing candi-
dates with 10% higher capacities than LiCoO2, some of which were synthesized experimentally. Additionally,
MolGAN17 was adapted to generate molecular graphs for organic electrode materials, enhancing energy density
predictions.

For hydrogen storage, diffusion models are emerging as powerful tools for designing porous materials like
metal-organic frameworks (MOFs).94 applied a diffusion model to generate voxel-based MOFs, trained on
QMOF and ZINC datasets, achieving a 20% improvement in hydrogen storage capacity, with potential for ex-
perimental validation (Fig. 9). Similarly, Zeni et al. 137 ’s diffusion-based MatterGen model trained on Materials
Project data to design sulphide electrolytes has achieved improved stability and conductivity for all-solid-state
batteries.7 extended diffusion models to porous carbon materials, optimizing pore structures for hydrogen up-
take, validated via Monte Carlo simulations61 and SymmCD73 generate stable crystalline electrolytes using
fractional coordinates and symmetry-preserving diffusion, trained on Materials Project data, enhancing ionic
conductivity.

RNNs, particularly the Long Short-Term Memory (LSTM) networks, have been utilized for polymer elec-
trolyte design.108 employed an RNN to generate sequence-based polymer chains, trained on a polymer property
dataset, resulting in flexible electrolytes with 12% higher conductivity, suitable for wearable batteries. Trans-
formers, such as MatterGPT23, optimize multi-property electrode materials, trained on Materials Project data.

Normalizing Flows generate stable crystalline electrolytes, as demonstrated by Luo et al. 77 , who used Crys-
talFlow to produce structures with high ionic conductivity, trained on Materials Project data, suitable for
battery applications.

3.2 Catalysis and Chemical Conversion

Generative models accelerate catalyst discovery for critical reactions, such as CO2 reduction, water splitting,
and ammonia synthesis, by predicting optimal compositions and surface structures, leveraging datasets like
NOMAD and Catalysis-Hub.
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Figure 10: An illustration of MOFformer’s architecture and self-supervised training. (a) MO-
Former processes Metal-Organic Frameworks (MOFs) by taking their unique MOFiD (e.g., qmof-
2521623) as input. This MOFiD is tokenised, embedded with positional encoding, and then fed
through multiple Transformer encoder layers. The final embedding of the first token is used by
an MLP regression head for property prediction. (b) Each Transformer encoder layer consists of a
multi-head scaled dot-product attention mechanism followed by an MLP, with residual connections
and layer normalization applied after both. (c) A self-supervised framework utilizes both CGCNN
(on 3D structures) and MOFormer (on MOFiD sequences) to generate embeddings (ZA and ZB) for
the same MOF. An MLP head projects these representations. A Barlow Twins loss function then
optimizes the cross-correlation matrix of these embeddings to resemble an identity matrix, thereby
enabling robust representation learning. Taken from19 (CC-BY-4.0)

GANs have been used to design high-entropy alloy catalysts, with56 employing a GAN trained on DFT-
calculated adsorption energies from NOMAD to generate heterogeneous catalysts for CO oxidation, achieving
enhanced catalytic activity and validated through first-principles microkinetics56. CrystalGAN was applied to
generate crystallographic alloy structures, improving catalytic stability for methanol oxidation89.

VAEs have proven effective for designing catalytic reaction pathways, as demonstrated by116, who used
a VAE to generate novel chemical reaction mechanisms, trained on a reaction dataset, achieving optimized
pathways for catalytic processes with reduced computational cost11611 . GraphVAE was adapted to optimize
active site configurations, validated experimentally109.

Diffusion models have excelled in catalyst surface design, with Alverson et al. 8 using a diffusion model to
generate voxel-based representations of nitrogen reduction catalyst surfaces, trained on Catalysis-Hub data,
achieving 15% higher ammonia synthesis efficiency8. Yong et al. 133 applied diffusion models to disordered
catalytic interfaces, improving prediction accuracy for CO2 conversion133. DiffCSP61 and SymmCD73 generate
alloy catalysts with precise symmetries, trained on NOMAD data

RNNs have been employed for sequence-based catalyst design, with Honda et al. 53 using a SMILES Trans-
former, an RNN variant, to generate ligand sequences for homogeneous catalysts, trained on a ChEMBL dataset,
reducing experimental iterations by 40% for olefin metathesis. Transformers, such as MOFormer (Fig. 10)19,
CrystalFormer-RL20, optimises catalysts through reinforcement learning, trained on Catalysis-Hub data. Nor-
malizing Flows generate stable crystalline electrolytes, as demonstrated by Luo et al. 77 , who used CrystalFlow
to produce structures with high ionic conductivity, trained on Materials Project data, suitable for battery
applications.

3.3 Electronic and Photonic Materials

Generative models are pivotal in designing materials for electronics, photonics, and optoelectronics, where
precise control over electronic and optical properties is critical, leveraging datasets like Materials Project57 and
AFLOW33.

VAEs have been utilized to design semiconductors with tailored bandgaps, as shown by Gómez-Bombarelli
et al. 46 , who applied a VAE to generate sequence-based halide perovskites, trained on Materials Project band
structure data, achieving 25% efficiency in tandem solar cells. Noh et al. 87 used a VAE for the inverse design
of semiconductors, proposing candidates with optimized optoelectronic properties.

GANs have excelled in designing metamaterials, with Al-Khaylani et al. 6 using a GAN to generate nano-
photonic metamaterials, trained on simulated optical datasets, achieving 30% improved light-trapping efficiency
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Figure 11: Workflow of the AGoRaS-based VAE network. (a) chemical database information is
compressed and decompressed to form a high-dimensional latent space. (b) Training and sampling
of latent space to generate new compounds. Taken from116 (CC-BY)

for photonic devices. Yeung et al. 132 employed GANs for a global inverse design of photonic structures, in-
cluding metasurfaces and photonic crystals, optimizing optical responses across multiple structure classes. Lai
et al. 72 applied conditional Wasserstein GANs to design acoustic metamaterials, demonstrating transferability
to photonic applications.

RNNs have been effective for designing new 2D material, with Krenn et al. 71 adapting SELFIES represen-
tations with RNNs to design stable 2D materials, validated via DFT. Transformers, such as the Space Group
Informed Transformer18, generate symmetric crystals for optoelectronic devices, trained on Materials Project
data.

Diffusion models, including DiffCSP61 and SymmCD73 are emerging for photonic nanostructures, with Yong
et al. 133 applying diffusion models to disordered photonic interfaces, trained on Materials Project optical data,
enhancing design robustness for optoelectronic devices.

Normalizing Flows, via CrystalFlow77 and FlowMM82, generate crystalline semiconductors with precise
bandgaps, trained on Materials Project data, for optoelectronic applications.

3.4 Biomaterials and Drug Delivery

Generative models are increasingly applied to design biomaterials for drug delivery, tissue engineering, and
biocompatible coatings, leveraging physics-informed representations and datasets like PubChem.

VAEs have been reviewed for their role in polymer design, with Anstine and Isayev 9 highlighting their
ability to optimize biocompatibility for drug delivery applications. Diffusion models have proven effective for
3D scaffold design, with Alakhdar et al. 7 using a diffusion model to generate voxel-based collagen scaffolds,
trained on a biomaterial dataset, achieving 15% higher cell viability. Cunningham et al. 31 applied generative
models to optimize scaffold porosity for tissue regeneration.

Stokes et al. 113 adapted GANs for antibiotic-inspired coatings, enhancing bacterial inhibition. RNNs have
been employed for sequence-based biomaterial design, with Winter et al. 127 using an RNN with SMILES
representations to generate peptide sequences for tissue regeneration, achieving 20% enhanced cell adhesion in
vitro. Normalizing Flows are less common here due to challenges with discrete structures like peptides, but
FlowLLM112 shows promise for generating biocompatible polymer sequences, trained on PubChem data.

3.5 High-Throughput Screening and Inverse Design

Generative models enable high-throughput screening62 and inverse design, leveraging datasets like ICSD and
OQMD to generate and filter large material libraries. VAEs have been used for inverse design, with Noh et al. 87

employing a VAE for inverse design of solid-state materials, trained on ICSD data, proposing thermoelectric
materials with 10% higher figure-of-merit (ZT) values. Dan et al. 34 utilized GANs for inverse design of inorganic
materials, generating stable perovskites and garnets, validated via DFT, reducing computational costs by 30%.
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Table 3: Summary of Generative Models, Datasets, and Applications in Materials Design

Model Repr Dataset App Example Ref

VAE Graph-
based

ICSD Electrolytes Garnet-type electrolytes
with 15% higher conduc-
tivity

Vasylenko et al. 122

GAN Graph-
based

NOMAD Catalysts Heterogeneous catalysts
for CO oxidation

Ishikawa 56

GAN Voxel-based Simulated
Optical

Photonics Nano-photonic metama-
terials with 30% im-
proved light-trapping

Al-Khaylani et al. 6

Diffusion Voxel-based QMOF,
ZINC

Hydrogen
Storage

MOFs with 20% higher
storage capacity

Park et al. 94

Diffusion Voxel-based Biomaterial Scaffolds Collagen scaffolds with
15% higher cell viability

Alakhdar et al. 7

Diffusion Fractional Materials
Project

Electrolytes,
Catalysts

Crystalline electrolytes
and semiconductors

Jiao et al. 61 , Levy
et al. 73

RNN Sequence-
based

PubChem Biomaterials Peptides with 20% en-
hanced cell adhesion

Winter et al. 127

Transformer Graph-
based

Materials
Project,
OQMD

Screening,
Electronics

Multi-property material
libraries, symmetric
crystals

Cao et al. 18 , Chen
et al. 23

Normalizing
Flows

Voxel-based Materials
Project

Electrolytes,
Catalysts

Crystalline electrolytes
and alloy catalysts

Luo et al. 77

Normalizing
Flows

Graph-
based

PubChem Biomaterials Biocompatible polymer
sequences

Sriram et al. 112

Table 4: Comparison of Generative Models in Materials Design

Model Strengths Weaknesses Datasets App Compute
Cost

VAE Stable training, mean-
ingful latent space

Blurry outputs, limited
fidelity

ICSD, Materials
Project, PubChem

Electrolytes,
polymers, semi-
conductors

Moderate

GAN High-fidelity outputs,
realistic structures

Mode collapse, training
instability

NOMAD, AFLOW,
OQMD

Catalysts, pho-
tonic materials,
coatings

High

Diffusion High-quality outputs,
diverse generation, sym-
metry preservation

High computational
cost, data dependency

CoRE-MOF, Catalysis-
Hub, Materials Project

Hydrogen stor-
age, scaffolds,
crystals

Very
High

RNN Effective for sequential
data, memory retention

Limited to sequence-
based tasks

ChEMBL, PubChem,
2D Materials

2D materials,
peptides, lig-
ands

Low to
Moder-
ate

Transformer Handles large datasets,
high accuracy

Requires extensive train-
ing data

ICSD, OQMD, Materi-
als Project

High-
throughput
screening, in-
verse design

High

Normalizing
Flows

Exact likelihoods, stable
training

High computational
cost, discrete structure
challenges

ICSD, Materials
Project, PubChem

Electrolytes,
catalysts, semi-
conductors

High

Sanchez-Lengeling and Aspuru-Guzik 103 reviewed GAN-based inverse design, highlighting applications in MOF
design for gas separation.

Diffusion models have facilitated high-throughput screening, with Jiao et al. 61 , Levy et al. 73 , Merchant
et al. 81 scaling deep learning to generate diverse material libraries using Materials Project data. Baird
et al. 10 , Hautier et al. 51 , Lu et al. 76 , Ren et al. 96 demonstrated AI-driven high-throughput library generation,
which supports rapid material discovery across applications. Transformers, such as MatterGPT23, enable mul-
tiproperty inverse design, generating diverse material libraries for high-throughput screening, trained on OQMD
data. Normalizing Flows, via FlowLLM112, generate alloy and ceramic libraries with tailored properties, trained
on Materials Project data, enhancing high-throughput screening efficiency.

3.6 Integration with Experimental Workflows

Generative models are increasingly integrated with automated experimental platforms26,78, creating closed-loop
discovery systems that combine prediction, synthesis, and characterization42,79, as reviewed by Correa-Baena
et al. 30 . VAEs have been used in active learning frameworks, with Zuo et al. 141 using a VAE with Bayesian
optimization, trained on OQMD data, to prioritize candidates for shape-memory alloys, reducing experiments
by 50%. Butler et al. 16 reviewed active learning in material discovery, focusing on VAE applications. RNNs
and VAEs are integral to self-driving labs, with VAE and RNN use in autonomous chemistry platforms, trained
on ChEMBL and PubChem data, optimizing catalyst synthesis. Transformers, such as CrystalFormer-RL20,
support automated workflows by optimizing material designs for synthesis. Musil et al. 86 highlighted physics-
informed representations in self-driving labs for biomaterial design. Normalizing Flows, via conditional NFs123,
integrate with active learning to optimize thermal composites in closed-loop systems, trained in experimental
data sets, streamline synthesis and characterization.
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4 Challenges and Limitations in AI-Driven Materials Discovery

Despite the remarkable progress in applying AI and generative models to materials discovery, several challenges
and limitations still need to be addressed to facilitate their widespread and effective adoption. Issues related
to data quality and availability, model interpretability, computational cost, generalization, and integration with
experimental workflows pose barriers to achieving robust, scalable, and reliable AI-driven materials discovery.
Ethical considerations, including bias in datasets and environmental impacts of computational resources, further
complicate their deployment. This section examines these challenges, their implications for applications like
energy storage, catalysis, and biomaterials, and potential strategies to address them, drawing on recent literature
and insights from datasets like the Inorganic Crystal Structure Database (ICSD) and Materials Project9,44.

4.1 Data Quality and Availability

As elaborated in the opening section of this review, the success of generative models in materials design relies
heavily on the availability and quality of the training dataset. More often than not, these datasets are gener-
ated from diverse commercial entities or academic institutions across the world that may perform experiments
differently depending on their trainings. Whilst standards (such as those developed by ASTM or VAMAS) work
well in industrial, high-volume production settings, persuading researchers to perform tasks and record them in
a specific way is more challenging than imagined. Quoting an apt editorial piece from the npj computational
material, ”It is increasingly difficult to identify individuals who are qualified to comment on all aspects of the
latest research papers.”15. Egos aside, we think most scientists would agree that the fundamental aspects of
good reporting such as clear descriptions of models, open data availability (except in specific cases requiring
subject anonymity and safety concerns), and training procedures are required. These data-sharing practices
have contributed significantly to the formation of systematic databases such as the ICSD, Materials Project, and
PubChem. Still, as they are a product of evolving science over the years or even decades, many of these datasets
contain incomplete or noisy entries with limited chemical diversity. These issues can create known/unknown
biases toward well-studied materials, which can restrict the models’ ability to explore novel chemical spaces.
For instance, Vasylenko et al. 122 noted that ICSD’s focus on crystalline structures limits VAE applications
for amorphous materials like polymer electrolytes. Transformers, such as MatterGPT23, require extensive pre-
training data, exacerbating issues with dataset scarcity. Normalizing Flows, like CrystalFlow77, are sensitive
to noisy data, affecting likelihood-based training. Small dataset sizes, particularly for specialized applications
like biomaterials, exacerbate overfitting risks and reduce the reliability and applicability of the model. Data
curation challenges, such as inconsistent property measurements across sources, further complicate training, as
highlighted by Butler et al. 16 in their review of ML use in materials science. Strategies to address these issues
include synthetic data generation using diffusion models (e.g., DiffCSP61, SymmCD73), federated learning to
combine proprietary datasets, and dataset expansion efforts like OQMD141. We recognise recent efforts for
amorphous materials screening through experimental55 and computational MD simulation114. However, we
believe a more concerted effort is needed to fill persistent gaps in underrepresented material classes.

4.2 Model Interpretability and Generalization

Generative models often lack interpretability, complicating the understanding of latent representations and
material property relationships, which hinders trust in applications like catalysis62, electronics, and photonics.
GANs produce high-fidelity outputs but suffer from mode collapse, generating limited structure subsets, as
noted by Al-Khaylani et al. 6 in nano-photonic metamaterial design. VAEs offer interpretable latent spaces but
generate blurry structures, limiting precision in semiconductor design46. Diffusion Models, such as DiffCSP61

and SymmCD73, use complex symmetry-preserving mechanisms (e.g., fractional coordinates, asymmetric units),
making interpretation challenging. Transformers, like the Space Group Informed Transformer18, rely on intricate
attention mechanisms, requiring advanced XAI techniques like attention visualization21. Normalizing Flows,
such as FlowLLM112, provide exact likelihoods but struggle with discrete structures, limiting interpretability for
polymers. Generalization across diverse chemical spaces is another challenge. Models trained on specific datasets
(e.g., NOMAD for catalysts, Materials Project for crystals) often fail to transfer to unrelated applications
like biomaterials. DiffCSP and SymmCD are limited to crystalline systems, while GFlowNets like Crystal-
GFN5 focus on specific sampling tasks47. Physics-informed models, embedding symmetry or thermodynamic
constraints, improve interpretability and transferability86. Explainable AI frameworks, such as attention-based
visualization for Transformers, are critical for closed-loop discovery systems.

4.3 Computational Cost and Scalability

The computational cost of training generative models poses a significant barrier to scalability. Diffusion Mod-
els, used for hydrogen storage, scaffolds, and crystals (e.g., DiffCSP61, SymmCD73, WyckoffDiff65), require
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Table 5: Summary of Challenges and Potential Solutions in AI-Driven Materials Design

Challenge Description Impact Potential Solutions Reference

Data Quality and
Availability

Incomplete, noisy, bi-
ased datasets; limited
diversity

Overfitting, restricted
chemical exploration

Synthetic data, federated
learning, dataset expan-
sion

Butler et al. 16 ,
Jiao et al. 61

Model Interpretabil-
ity

Black-box models; com-
plex mechanisms in
Diffusion, Transformers,
NFs

Limited trust in high-
precision tasks

Physics-informed models,
XAI (e.g., attention visu-
alization)

Chen et al. 21 ,
Musil et al. 86

Computational Cost High resource demands
for Diffusion, Trans-
formers, NFs

Inaccessibility, environ-
mental impact

Model compression, effi-
cient architectures, cloud
computing

Luo
et al. 77 , Mer-
chant et al. 81

Generalization Poor transferability
across chemical spaces;
task-specific models

Failure in diverse appli-
cations

Transfer learning, domain
adaptation, physics con-
straints

Cao
et al. 18 , Good-
fellow et al. 47

Experimental Inte-
gration

Discrepancies between
predictions and experi-
ments

Reduced reliability in
closed-loop systems

Robust feedback loops,
standardized protocols

Correa-Baena
et al. 30 , Wang
et al. 123

Ethical Concerns Dataset biases, environ-
mental impact, misuse
risks

Skewed predictions, so-
cietal harm

Transparent reporting, ef-
ficient models, responsible
AI

Chen et al. 23 ,
Coley et al. 28

extensive resources due to iterative denoising steps7,94. GANs are computationally intensive and unstable,
demanding significant GPU resources6. Transformers, such as MatterGPT23, involve large-scale pretraining,
increasing computational demands. Normalizing Flows, like CrystalFlow77, incur high training costs due to
invertible transformations. GFlowNets, such as Crystal-GFN5, have moderate costs but require optimization
for scalability. These demands limit accessibility for smaller research groups and raise environmental concerns
due to carbon footprints81. Strategies to mitigate these issues include model compression, efficient architec-
tures (e.g., lightweight VAEs, optimized NFs), and cloud-based computing platforms. Advances in hardware,
such as AI accelerators, and frameworks like PyTorch are reducing barriers, but computational costs remain a
bottleneck for large-scale materials discovery.

4.4 Experimental Workflow Integration, Environmental, and Ethical Considera-
tions

Integration with experimental workflows is another important factor to consider when applying generative mod-
els to real problems. Closed-loop systems combining prediction, robotic synthesis, and characterization show
promise, but discrepancies between computational predictions and experimental outcomes can arise from unmod-
eled phenomena like defects or (known/unknown) environmental effects30. Transformers (e.g., CrystalFormer-
RL20) and NFs (e.g., conditional NFs123) typically require robust feedback loops to refine predictions in real-
time. Standardization of experimental protocols across self-driving labs is therefore critical for reproducibility28.

The rising preference towards larger models (e.g., diffusion-based models, transformers, or large language
models) that supposedly able to predict materials to fight climate change23 ironically consumes significantly
higher amounts of energy. Researchers at MIT noted a significant rise in global electricity consumption of data
centres, expected to range between 620 — 1,050 TWh in 2026 is significantly attributed to the rising popularity
of generative models11. This reveals an interesting dilemma: that AI can be both a part of the solution and a
contributing factor to the energy problem. In this regard, more efficient models like NFs and GFlowNets may
be preferred.

Another growing concern with the gravitation of AI towards the materials discovery space is the ethical
considerations. Considering the significant change in all aspects of life, livelihood, and liberty that AI has
brought upon25, we have to be aware of the risk of misuse of AI to generate toxic or hazardous materials85.
While the nefarious consequences or environmental impacts are not exclusively caused by AI, the leading
AI society has recognised the need for AI governance principles and broad ethical guidelines115. We believe
interdisciplinary committees that include the social sciences field are required to devise safeguards and legal
frameworks around AI-related works, including materials discovery.

5 Future Trends and Emerging Research Directions

The rapid evolution of artificial intelligence (AI) and generative models is poised to revolutionize materials
discovery, enabling the design of novel materials with unprecedented precision and efficiency. As computational
power, data availability, and algorithmic sophistication advance, emerging trends are shaping the future of
AI-driven materials science. This section explores these directions, focusing on advancements in generative
models, integration with experimental and computational workflows, solutions to current limitations, and the
ethical implications of AI in materials design, building on recent developments in diffusion models, Transformers,
Normalizing Flows, and GFlowNets.
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5.1 Emerging Trends in Generative Models

Generative models are evolving toward more robust, versatile, and physically grounded architectures. Diffusion
models have surpassed GANs in stability and quality for generating complex material structures, such as crystals
and porous frameworks. Models like DiffCSP61 use periodic-E(3)-equivariant denoising to predict stable crystals,
while SymmCD73 ensures realistic symmetries across all 230 space groups. Other diffusion-based approaches,
such as WyckoffDiff65 and CrysLDM66, further enhance crystal generation, with applications in electronics and
catalysis22,69.

Transformers are gaining prominence, leveraging attention mechanisms for multi-property inverse design
and symmetry-constrained crystal generation. MatterGPT23 optimizes materials across diverse properties,
while the Space Group Informed Transformer18 and Wyckoff Transformer64 generate synthesisable crystals
with crystallographic constraints. CrystalFormer-RL20 integrates reinforcement learning for targeted material
design.

Normalizing Flows (NFs) offer exact likelihoods and stable training, with CrystalFlow77 and FlowLLM112

generating crystalline electrolytes and polymers, complementing diffusion models82. GFlowNets, such as
Crystal-GFN5, sample diverse crystals with tailored properties, enhancing high-throughput screening. Foun-
dation models, pre-trained on expansive datasets like Materials Project, enable transfer learning across mate-
rial classes, reducing task-specific data needs137. Multi-modal generative models integrate text, chemical
structures, and spectroscopic data, facilitating intuitive design through text-conditioned generation83. Physics-
informed generative models embed thermodynamic and quantum mechanical constraints, ensuring physi-
cally realistic outputs for real-world synthesis24,131. These advancements are summarized in Fig. 12 and Table 6.

5.2 Integration with Experimental and Computational Methods

The convergence of generative models with experimental platforms is driving closed-loop discovery systems,
where AI proposes material candidates that are autonomously synthesized and characterized28. Frameworks
like WyCryst140 and CrySPR88 integrate generative models (e.g., Transformers, NFs) with robotic labs for
iterative refinement. Digital twins, virtual representations of material systems, enable rapid screening of
AI-generated candidates, bridging simulation and experiment81. The advent of quantum computing may
enhance generative models by accelerating quantum mechanical calculations, enabling precise property predic-
tions for complex materials like high-entropy alloys24. Advances in active learning, coupled with models like
CrystalFormer-RL20, optimize experimental workflows by prioritizing high-value candidates.

5.3 Addressing Current Challenges

Overcoming limitations in data availability, synthesizability, and interpretability remains critical. Federated
learning and synthetic data generation using diffusion models (e.g., DiffCSP, SymmCD) expand datasets,
mitigating scarcity40. To ensure synthesizability, models incorporate experimental constraints, such as re-
action kinetics and precursor availability, as seen in chemically guided diffusion models92. Explainable AI
(XAI) techniques, including attention visualization in Transformers and graph-based models, enhance inter-
pretability by elucidating model decisions21. Standardized benchmarks, such as Dismai-Bench133, promote
robust evaluation and reproducibility. Computational efficiency is also a focus, with NFs and GFlowNets offering
stable training but requiring optimization for large-scale applications5,77.

5.4 Ethical and Societal Implications

Generative models introduce unique ethical and societal challenges that require careful consideration to ensure
responsible use. Dataset biases in training data can significantly limit their impact. For instance, datasets often
prioritize commercially viable materials, such as semiconductors for electronics, over biomaterials suited for low-
resource medical applications, potentially neglecting global health needs9. Transparent data curation, including
diverse and representative datasets, is essential to ensure equitable material generation. Potential misuse poses
another critical risk, as generative models can inadvertently or intentionally design hazardous materials, such
as toxic chemicals or unstable compounds103. Ethical guidelines, drawing from synthetic biology’s safety proto-
cols, and regulatory frameworks like the OECD AI principles can mitigate this risk by enforcing strict oversight
and responsible useoec. Interpretability and trust challenges arise from the often opaque nature of generative
models, which generate structures from noise or latent spaces, complicating validation by experimentalists86.
For example, generative AI often suggests catalysts without a clear reasoning or underlying explanation for its
predicted efficacy, which can erode trust. Physics-informed models and standardized reporting of uncertainties
can enhance transparency and reliability. Unequal access to these computationally intensive models, which often
require proprietary datasets or high-performance computing, risks widening global research disparities, partic-
ularly for under-resourced institutions in developing regions81. Open-access platforms, such as the Materials
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Figure 12: Roadmap of generative models in materials discovery, highlighting key milestones and
projected future trends in model architectures, experimental integration, and solutions to challenges.

Table 6: Emerging Generative Models for Materials Discovery

Model Type Advantages Challenges References

Diffusion Models High-quality, stable generation;
symmetry preservation

Computationally intensive; data
dependency

Jiao et al. 61 , Klipfel
et al. 69 , Levy et al. 73

Transformers Handles large datasets; multi-
property design; symmetry con-
straints

Requires extensive training data;
complex architectures

Cao et al. 18 , Chen
et al. 23 , Kazeev et al. 64

Normalizing Flows Exact likelihoods; stable train-
ing; versatile for crystals and
polymers

High computational cost; dis-
crete structure challenges

Luo et al. 77 , Miller
et al. 82 , Sriram
et al. 112

GFlowNets Diverse sampling; tailored prop-
erty optimization

Limited to specific tasks; scala-
bility concerns

AI4Science et al. 5

Foundation Models Transfer learning; reduces data
needs

High pretraining costs; general-
izability concerns

Zeni et al. 137

Multi-modal Models Integrates text and structural
data; intuitive design

Data heterogeneity; model com-
plexity

Mohanty et al. 83

Physics-informed
Models

Physically realistic outputs; im-
proved synthesizability

Complex physical constraints;
computational overhead

Chen et al. 24 , Yang and
Perdikaris 131

Project, can democratize access, enabling broader participation in sustainable materials discovery58. To max-
imize their societal impact, generative models demand robust ethical frameworks, international collaboration,
and transparent practices to ensure equitable, safe, and trustworthy innovation in materials science

6 Conclusion

The integration of artificial intelligence and generative models has fundamentally transformed materials discov-
ery, enabling rapid identification and design of novel materials with tailored properties. These computational
approaches overcome the limitations of traditional experimental methods, offering unprecedented opportunities
for innovation across diverse applications, including energy storage, catalysis, electronics, biomaterials, and
high-throughput screening9,44. Generative models, such as Variational Autoencoders (VAEs), Generative Ad-
versarial Networks (GANs), Diffusion Models (e.g., DiffCSP61, SymmCD73), Transformers (e.g., MatterGPT23,
Space Group Informed Transformer18), Normalizing Flows (e.g., CrystalFlow77, FlowLLM112), and GFlowNets
(e.g., Crystal-GFN5), have demonstrated remarkable capabilities in learning complex material data relationships
and generating candidates for crystalline, polymeric, and composite systems. Normalizing Flows, in particular,
stand out for their exact likelihoods and stable training, advancing the design of electrolytes, catalysts, and
polymers123.

Despite significant progress, challenges persist in data quality and availability, model interpretability, com-
putational cost, generalization, experimental integration, and ethical considerations16,28. Limited datasets,
complex model mechanisms (e.g., Transformer attention, Diffusion symmetry constraints), high computational
demands, and biases in datasets like Materials Project hinder scalability and reliability23,81. Ensuring syn-
thesizability, addressing environmental impacts, and mitigating risks of misuse remain critical. However, the
future of AI-driven materials discovery is promising, with emerging trends in multi-modal generative models,
physics-informed architectures, efficient models like Normalizing Flows and GFlowNets, closed-loop autonomous
experimentation, and synergies with quantum computing20,83,131. By addressing current limitations and pur-
suing these innovative directions, AI and generative models will continue to revolutionize materials science,
unlocking advanced materials to tackle global challenges in sustainability, energy, and healthcare.
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