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Abstract 36 

Use of high-throughput, in vitro bioactivity data in setting a point-of-departure (POD) has the potential to 37 

accelerate the pace of human health safety evaluation by informing screening level assessments. The 38 

primary objective of this work was to compare PODs based on high-throughput predictions of bioactivity, 39 

exposure predictions, and traditional hazard information for 448 chemicals. PODs derived from new 40 

approach methodologies (NAMs) were obtained for this comparison using the 50th (PODNAM,50) and the 41 

95th (PODNAM,95) percentile credible interval estimates for the steady-state plasma concentration used in 42 

in vitro to in vivo extrapolation of administered equivalent doses (AEDs). Of the 448 substances, 89% had 43 

a PODNAM,95 that was less than the traditional POD (PODtraditional) value. For the 48 substances for which 44 

PODtraditional < PODNAM,95, the PODNAM and PODtraditional were typically within a factor of 10 of each other, and 45 

there was an enrichment of chemical structural features associated with organophosphate and carbamate 46 

insecticides. When PODtraditional < PODNAM,95, it did not appear to result from an enrichment of PODtraditional 47 

based on a particular study type, (e.g. developmental, reproductive, chronic studies). Bioactivity:exposure 48 

ratios (BERs), useful for identification of substances with potential priority, demonstrated that high-49 

throughput exposure predictions were greater than the PODNAM,95 for 11 substances. When compared to 50 

threshold of toxicological concern (TTC) values, the PODNAM,95 was greater than the corresponding TTC 51 

value 90% of the time. This work demonstrates the feasibility, and continuing challenges, of using in vitro 52 

bioactivity as a protective estimate of POD in screening level assessments via a case study. 53 

Keywords 54 

High-throughput screening; high-throughput toxicokinetics; threshold of toxicological concern (TTC), 55 

point of departure (POD); new approach methodologies 56 
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1 Introduction 70 

 71 

The future of chemical risk assessment is moving towards high-throughput approaches that can 72 

provide preliminary estimates of hazard and exposure. The utilization and sharing of these new 73 

approaches and associated data internationally is imperative because each regulatory authority is 74 

addressing distinct but related challenges in chemical screening and evaluation. A commonality among 75 

these challenges is the need to prioritize chemicals for further evaluation and conduct screening-level 76 

assessments, as there are thousands of chemicals with potential human exposures but with minimal 77 

hazard information (Egeghy et al., 2012; Judson et al., 2009). New approach methodologies (NAMs) 78 

(ECHA, 2016; EPA, 2018a) include in vitro and in silico approaches for prediction of hazard and exposure, 79 

thereby enabling solutions to some of these regulatory challenges. NAMs for hazard evaluation can be 80 

used in high-throughput formats, and in some cases may identify chemical mechanisms of action. NAMs 81 

for exposure provide rapid estimates using limited information for more chemicals than lower-throughput 82 

models can achieve. The promise of NAMs is motivating regulatory authorities to define and adopt fit-for-83 

purpose NAMs, and support efforts to reduce, refine, and replace resource-intensive vertebrate animal 84 

tests. International collaborative efforts that deepen understanding of NAMs and their application while 85 

preventing duplicative efforts have become a salient need. 86 

There are several key regulatory drivers of international use of NAMs in toxicology applications. In the 87 

US, the amended Toxic Substances Control Act (TSCA) (Lautenberg, 2016) requires a risk-based screening 88 

process for prioritizing chemicals as high-priority substances for risk evaluation or low-priority sibstances 89 

for which risk evaluations are not warranted. The amended TSCA requires the U.S. Environmental 90 

Protection Agency (EPA) to develop a plan, “to promote the development and implementation of 91 

alternative test methods and strategies to reduce, refine, or replace vertebrate animal testing and provide 92 

information of equivalent or better scientific quality and relevance for assessing risks of injury to health 93 

or the environment” (EPA, 2018a). In the European Union (EU), the European Chemical Agency (ECHA) 94 

regulates chemical substances under the Registration, Evaluation, Authorisation and Restriction of 95 

Chemicals (REACH) (Commission, 2007), that also promotes the use of NAMs as a means to increase the 96 

data availability for data poor substances (ECHA, 2016, 2017). Health Canada (HC) and Environment and 97 

Climate Change Canada (ECCC) are continuing work under the Chemicals Management Plan (CMP) to 98 

address human health and ecological concerns for approximately 4,300 prioritized substances on the 99 

Canadian Domestic Substances List (DSL) by the year 2020 (ECCC/HC, 2016a). High-throughput NAMs have 100 
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been identified as a possible means to meet near-term timelines for screening assessments and to inform 101 

selection of future priorities as the program continues to evolve post-2020 (ECCC/HC, 2016b). These and 102 

other regulatory drivers underscore the need for an international discussion about how to apply NAMs in 103 

a transparent and effective way. 104 

One aspect of prioritization and screening-level assessment strategies is a trade-off between speed 105 

and uncertainty. Though the specific implications of these strategies are likely to differ by regulatory 106 

authority, each of the aforementioned regulatory agencies are responsible for protecting human and 107 

environmental health and have traditionally relied on in vivo studies in efforts to achieve this mission. 108 

Despite increasing interest in prediction of human health hazard directly, rather than relying on animal 109 

models and associated extrapolation concerns, a conceptual bridge for toxicologists to understand how 110 

current practice could be augmented by incorporation of NAMs will enable greater discussion and 111 

progress. Thus, there is a clear need and opportunity to demonstrate how preliminary screening-level risk 112 

assessment using a NAM-based approach would perform when compared to traditional points of 113 

departure (PODs). Acknowledging and documenting the caveats and limitations of this comparison is 114 

central to building the confidence and insight needed to employ NAMs. Hence, the study documented 115 

here sought to use as many chemicals as possible to illustrate how the current state-of-the-science would 116 

support NAM-based screening-level risk assessment. 117 

NAMs for exposure, bioactivity, and in vitro to in vivo extrapolation are available, for differing 118 

numbers of substances, to inform this exercise of demonstrating a risk-based screening-level assessment 119 

approach. High-throughput exposure predictions have been generated using a series of computational 120 

models under the ExpoCast project, the second version of which used a series of heuristics (Wambaugh 121 

et al., 2014) including chemical use type (Dionisio et al., 2015) and production volume to quantitatively 122 

predict exposure for thousands of chemicals. The US Environmental Protection Agency (EPA) Toxicity 123 

Forecaster (ToxCast) program (Kavlock et al., 2012) and the interagency Tox21 project (Thomas et al., 124 

2018; Tice et al., 2013) provide publicly available, high-throughput in vitro bioactivity information for a 125 

diverse biological and chemical space. Additionally, for this case study, researchers at the Singapore 126 

Agency for Science, Technology, and Research (A*STAR) provided high-throughput phenotypic profiling 127 

information from three cell-based toxicity models for lung, kidney, and liver toxicity for a subset of 128 

substances (Lee et al., 2018; Su et al., 2016). Using high-throughput toxicokinetic (httk) information and 129 

reverse dosimetry, all of these bioactivity data, i.e. the micromolar concentration of a substance that 130 

altered an assay signal in vitro, were transformed into administered equivalent doses (AEDs) in milligram 131 
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per kilogram bodyweight per day (mg/kg/day) units within a complex process referred to as in vitro to in 132 

vivo extrapolation (IVIVE). The reverse dosimetry component of IVIVE in this case relies on the assumption 133 

that a nominal in vitro assay concentration approximates an in vivo serum concentration using steady 134 

state kinetics, and then involves a toxicokinetic model to estimate the external exposures (in mg/kg/day 135 

units) that may have resulted in that concentration (Bell et al., 2017; Jamei et al., 2009; Sipes et al., 2017b; 136 

Wambaugh et al., 2018; Wetmore et al., 2014; Wetmore et al., 2015; Wetmore et al., 2013; Wetmore et 137 

al., 2012). A NAM-based POD, or PODNAM, can be selected from the range of AEDs. This PODNAM can be 138 

compared to exposure predictions to develop a bioactivity:exposure ratio (BER) to provide a risk-based 139 

context.  140 

To understand the possible added benefit of in vitro bioactivity-derived PODNAM, a well-known, 141 

protective in silico approach that can be used in the absence of in vitro bioactivity information, the 142 

threshold of toxicological concern (TTC), was also included for comparison to PODNAM and exposure values. 143 

In addition, the PODNAM can be compared to traditional in vivo data for these chemicals, aggregated and 144 

summarized as the traditional POD (PODtraditional). Curation of these traditional data from in vivo toxicity 145 

testing has provided an important resource to evaluate whether PODNAM is protective relative to the 146 

PODtraditional (understanding that the PODtraditional itself is an approximation using animal models). Two 147 

examples of publicly-available curated traditional data include the Toxicity Reference Database 148 

(ToxRefDB) (Martin et al., 2009a; Martin et al., 2009b) and the Toxicity Value Database (ToxValDB) 149 

(Williams et al., 2017) the latter of which aggregates summary level information from over 40 sources, 150 

including ToxRefDB; EPA sources, such as the High Production Volume Information System (HPVIS), 151 

Integrated Risk Information System (IRIS) (https://www.epa.gov/iris), Provisional Peer-Reviewed Toxicity 152 

Values (PPRTVs) (https://hhpprtv.ornl.gov/), curated data from Office of Water (OW), Office of Land and 153 

Emergency Management (OLEM), and the Office of Pollution Prevention and Toxics (OPPT); other US state 154 

and federal sources, such as the Food and Drug Administration (FDA), U.S. Geological Survey (USGS), 155 

Department of Defense (DOD), Department of Energy (DOE), and California EPA (CalEPA); and 156 

international sources, such as ECHA via eChem Portal 157 

(https://www.echemportal.org/echemportal/index.action) and EFSA via the Chemical Hazards Database 158 

(https://www.efsa.europa.eu/en/data/chemical-hazards-data), the World Health Organization (WHO), 159 

the Cosmetics Ingredients Safety (COSMOS) database 160 

(https://cosmosdb.eu/cosmosdb.v2/accounts/login/?next=/cosmosdb.v2/), Health Canada, and the 161 

Hazard Evaluation Support System (HESS) (Williams, et al., 2017). The traditional data included for 162 

derivation of a PODtraditional included many study designs, including repeat-dose studies such as subacute, 163 

https://hhpprtv.ornl.gov/
https://www.echemportal.org/echemportal/index.action
https://www.efsa.europa.eu/en/data/chemical-hazards-data
https://cosmosdb.eu/cosmosdb.v2/accounts/login/?next=/cosmosdb.v2/
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subchronic, chronic, reproductive, developmental and/or multi-generation reproduction studies, among 164 

others. Given that most of the in vitro bioactivity data measures disruption of a molecular target, pathway, 165 

or cellular function, rather than adversity at the tissue, organism, or population level as measured in in 166 

vivo toxicity studies, this work evaluates the hypothesis that the PODNAM would be protective relative to 167 

the PODtraditional across multiple study types and durations of exposure. 168 

Several examples and case studies have considered the possibility of using high-throughput data in 169 

various regulatory decision contexts, from prioritization, to test replacement, to use in chemical-specific 170 

assessment (Browne et al., 2015; Cote et al., 2016; Judson et al., 2014; Judson et al., 2011; Kleinstreuer 171 

et al., 2017; Paul Friedman et al., 2016; Pradeep et al., 2017; Thomas et al., 2013). Progress has been 172 

made in the acceptance of NAMs for prioritization of chemicals subject to the US EPA Endocrine Disruptor 173 

Screening Program (EDSP) (Browne, et al., 2015; Kleinstreuer, et al., 2017) and as alternatives for existing 174 

in vivo endocrine disruptor-related test guidelines (EFSA, 2018; USEPA, 2015). Further regulatory 175 

acceptance of NAMs is demonstrated by the development of defined approaches for assessment of skin 176 

sensitization, with the goal of developing an internationally-recognized test guideline using an integrated 177 

set of NAMs to predict human skin sensitization hazard potential (Casati et al., 2018). The use of NAMs 178 

for determination of either the dose that may alter specific biological pathway activities of interest (e.g. 179 

nuclear receptor signaling) or general in vitro bioactivity has also demonstrated promise for prioritizing 180 

substances (Judson, et al., 2014; Judson, et al., 2011; Wetmore, et al., 2013). However, as with some in 181 

vivo toxicity studies, for many substances it may not be possible to identify a specific human health 182 

outcome, predominant mode-of-action (MoA), or adverse outcome pathway (AOP) based on the in vitro 183 

bioactivity data. Hence, screening-level assessment may require identification of a threshold dose at 184 

which no bioactivity would be observed in assays covering a broad biological space (Thomas, et al., 2013). 185 

Prioritization based on the integration of bioactivity data and predicted exposures has been suggested as 186 

a path forward for addressing the problem of thousands of chemicals with limited information for 187 

assessment by many groups, including Health Canada in their approach to the Chemical Management Plan 188 

(ECCC/HC, 2016a), academics, government scientists, and chemical industry scientists (Becker et al., 2015; 189 

Embry et al., 2014; Perkins et al., 2017; Sipes, et al., 2017b). The retrospective case study presented herein 190 

advances the integrated use of NAMs for in vitro bioactivity and exposure by addressing the following 191 

questions: can the proposed workflow to derive a PODNAM be shown to be broadly protective for potential 192 

application to screening-level chemical assessments independent of the biological events or adverse 193 

outcome pathways involved? Further, does in vitro bioactivity combined with exposure estimates provide 194 

a useful risk-informed prioritization metric?  195 
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Importantly, this work asks these questions as viewed through a multi-agency, international lens. The 196 

Accelerating the Pace of Chemical Risk Assessment (APCRA) initiative is an international cooperative 197 

collaboration of government agencies convened to address barriers and opportunities for the use of 198 

NAMs in chemical risk assessment (Kavlock, 2016; Kavlock et al., 2018). This initiative includes participants 199 

from across offices of the EPA, ECHA, EFSA, the U.S. National Toxicology Program (NTP), CalEPA, Health 200 

Canada, the European Commission’s Joint Research Center (JRC),the Organisation for Economic 201 

Cooperation and Development (OECD), France’s INERIS, the Australian National Industrial Chemicals 202 

Notification and Assessment Scheme (NICNAS), the  National Institute for Public Health and the 203 

Environment (RIVM) of the Netherlands, the Japanese Ministry of Health, Welfare, and Labour, Korea’s 204 

Ministry of Environment, Singapore’s Agency for Science and Technology Research (A*STAR), and the 205 

Taiwanese Safety and Health Technology Center (SAHTECH). An initial goal of this group was to directly 206 

identify and address obstacles to adoption of NAMs in regulatory decision-making, considering the 207 

geographic differences in regulatory perspectives and requirements while understanding that generation 208 

and analysis of the data for substances of concern can be shared. This first APCRA case study is the result 209 

of a collaborative discourse within APCRA that aims to evaluate how the PODNAM compares to the 210 

PODtraditional across 448 chemicals with high-throughput hazard and toxicokinetic information in the 211 

context of screening-level assessments. We evaluate whether the PODNAM can serve as a “lower bound” 212 

estimate of the PODtraditional. In addition, this case study incorporates high-throughput exposure 213 

information to examine the BER as a potential metric for prioritization. This work intends to increase 214 

confidence in NAM-based workflows that could be used in regulatory decision making by presenting a 215 

case study of how this might be applied.  216 

2 Methods 217 

2.1 Overview of the approach 218 

This section gives a brief overview of the approach, as illustrated in Figure 1 and with additional details 219 

provided in subsequent sections of the Methods and the Supplemental Appendix.  220 

First, in vitro bioactivity data were aggregated to develop PODNAM estimates. Data were available from 221 

ToxCast for all 448 substances, and high-throughput phenotypic profiling toxicity (HIPPTox) data from 222 

A*STAR was available for 57 substances in this case study. For each ToxCast substance, a 5th percentile 223 

was calculated based on the distribution of 50% maximal activity concentration (AC50) values. For the 224 

HIPPTox data, a POD was defined differently (and referred to as the HIPPTox-POD). The HIPPTox-POD 225 

attempts to identify the lowest concentrations for any change in the measured cellular phenotypes of 226 
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three cell models and uses EC10 to represent a threshold for this activity. For the HIPPTox data for kidney, 227 

liver, and/or lung toxicity, the minimum 10% effect concentration (min EC10) was calculated. The intent in 228 

selecting the minimum of either the 5th percentile of the ToxCast AC50 values or the minimum HIPPTox 229 

value was to provide a “lower bound” estimate on a bioactive concentration in vitro. The lower value of 230 

either the ToxCast 5th percentile or the HIPPTox min EC10 was assumed to represent the steady state 231 

plasma concentration that was then used to calculate the administered equivalent dose (AED) values using 232 

high throughput toxicokinetic (HTTK) information from the httk R package (Pearce et al., 2017). The HTTK 233 

model (built into the R package) used Monte Carlo simulation to incorporate population variability. The 234 

PODNAM values used in this work correspond to the 50th and 95th percentile in the population distribution 235 

of steady state AED values and are referred to as the PODNAM,50 and the PODNAM,95, respectively.  236 

Second, after derivation of PODNAM values based on in vitro data, a series of comparisons to other 237 

values were made. The intersection of CASRN between ToxCast and HTTK information was used to obtain 238 

PODtraditional from ToxValDB and sources from the case study partners, including ECHA, EFSA, and Health 239 

Canada. The PODNAM was compared to the PODtraditional to derive a POD ratio (log10 PODtraditional:PODNAM) 240 

for both PODNAM,50 and PODNAM,95. Exposure predictions for the total U.S. population from the ExpoCast 241 

Systematic Empirical Evaluation of Models version 2 (SEEM2) framework (Wambaugh, et al., 2014) were 242 

used to derive a bioactivity:exposure ratio (BER). To understand how NAMs in this work compared to the 243 

TTC (HealthCanada, 2016; Kroes et al., 2004; Patlewicz et al., 2008), the PODNAM,95 was also compared to 244 

a TTC to derive a PODNAM,95:TTC ratio. The PODtraditional:PODNAM ratios, the BER, and the PODNAM,95:TTC ratio, 245 

expressed as logarithms in base 10, are the main metrics employed to evaluate the hypotheses in this 246 

study.  247 

All of the data sources used in this case study, including chemical use type, high-throughput bioactivity 248 

data, HTTK, in vivo data, and exposure information, are summarized in Table 1, including the version and 249 

citations if applicable. Supplemental File 1 contains all of the in vivo POD information used, and 250 

Supplemental File 2 contains all of the values derived in this work (including BER and POD ratio). The 251 

software (written using R version 3.5.1) and all required source files are available via the US EPA GitHub 252 

repository (https://github.com/USEPA/-Examining-the-Utility-of-In-Vitro-Bioactivity) and FTP 253 

(ftp://newftp.epa.gov/COMPTOX/NCCT_Publication_Data/FriedmanPaul_K/APCRA_retrospective). 254 

 255 

 256 

https://github.com/USEPA/-Examining-the-Utility-of-In-Vitro-Bioactivity
ftp://newftp.epa.gov/COMPTOX/NCCT_Publication_Data/FriedmanPaul_K/APCRA_retrospective
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2.2 Comparison of high-throughput bioactivity, in vivo point-of-departure, and 257 

exposure information 258 

 259 

2.2.1 Substance identification 260 

 261 

Compilation of the data for this case study resulted in a total of 448 chemicals with the requisite 262 

in vitro bioactivity, high-throughput toxicokinetic, exposure prediction, and traditional animal in vivo 263 

toxicity values. Each CASRN from the intersection of data sources was mapped to a registered substance 264 

identifier (DTXSID) in EPA’s DSSTox database through the Batch Search feature of the EPA CompTox 265 

Chemicals Dashboard (https://comptox.epa.gov/dashboard/dsstoxdb/batch_search) (Williams, et al., 266 

2017). Mapping to DTXSID enabled mapping from substance to identifiers that indicate specific 267 

structure(s) needed for use in evaluation of enrichment of structural features and generation of TTC 268 

values. Linking data records to DTXSID promotes data interoperability and clarity on the specific chemical 269 

structures used as databases including ToxCast, ToxValDB, and HTTK databases, among others, rapidly 270 

evolve. 271 

 The substance use categories utilized in ExpoCast SEEM2 modeling (Dionisio, et al., 2015; 272 

Wambaugh, et al., 2014) and available via the Aggregated Computational Toxicology Online Resource 273 

(ACToR) were retrieved to evaluate the functional diversity of the 448 substances examined in this case 274 

study. In some cases, a substance may be associated with multiple functional uses. 275 

2.2.2 In vitro bioactivity data  276 

 277 

In vitro bioactivity data from two sources were used: ToxCast data from the US EPA ToxCast 278 

program and HIPPTox data from the A*STAR program. The details of data extraction and selection of an 279 

in vitro bioactivity concentration to use for in vivo-to-in vitro extrapolation of AEDs is described in detail 280 

below. Briefly, the minimum of either the 5th percentile of the filtered ToxCast AC50 values or the HIPPTox-281 

POD, if available, was used as the in vitro bioactive concentration for each substance in the case study.  282 

2.2.2.1 ToxCast data 283 

 284 

The ToxCast high-throughput bioactivity data were obtained from the MySQL database, invitrodb 285 

(version 3) (EPA, 2018b), for all 448 chemicals. Only multi-concentration screening data were used, as 286 

single concentration screening data were not considered quantitatively informative of a PODNAM. The 287 

https://comptox.epa.gov/dashboard/dsstoxdb/batch_search
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structure of information in invitrodb and the R package used to maintain the database and perform curve-288 

fitting are described in detail elsewhere (Filer et al., 2017; NCCT, 2018; Watt et al., 2018). The data 289 

retrieved included the AC50 and hit-call determination (from level 5 of invitrodb), caution flags on the 290 

curve-fitting for each AC50 (from level 6), and quantitative uncertainty associated with the curve-fitting 291 

(from level 7). The caution flag and uncertainty information from levels 6 and 7 were used to filter the 292 

ToxCast dataset, with the intent of removing AC50 values from the dataset that originate from curve-fits 293 

that may be less informative on a quantitative basis. As the ToxCast data pipeline is a semi-automated, 294 

first-tier analysis tool for heterogeneous data, using these data on a single substance-basis presents a 295 

challenge as a subset of the potency values may be from curve fits that may be artefacts of the curve-296 

fitting workflow. In this work, we implemented a filtering of the curves available for each substance prior 297 

to estimation of the 5th percentile on the distribution of ToxCast AC50 values by substance.  298 

Level 6 caution flag information denotes curve behavior that may indicate a less quantitatively-299 

informative AC50 value, such as curves based on a single active concentration, AC50 value lower than lowest 300 

concentration screened, borderline activity, efficacy less than 50%, and general indicators of excessive 301 

noise and overfitting. There are currently 10 possible caution flags, and the curves for the substances in 302 

this case study had zero to six flags associated with them prior to filtering (Supplemental Appendix). Level 303 

7 uncertainty information was generated (Brown et al., in prep) using bootstrap resampling to define the 304 

reproducibility of the curve fits (Watt and Judson, 2018; toxboot R package v0.2.0). Briefly, toxboot uses 305 

smooth, nonparametric bootstrap resampling to add random normally distributed noise to give a 306 

resampled set of concentration-response values. The resampled data is fit to the three ToxCast models 307 

(constant, Hill, gain-loss), repeated 1000 times, and the variables relating to model fitting parameters are 308 

stored in a Mongo database. The resulting data were used to generate point estimates, winning model, 309 

and hitcall for each of the 1000 resamples. Summary statistics (hit percent, median AC50, and AC50 95% 310 

confidence interval) were generated based on the toxboot resampling. Hit percent is the probability of a 311 

positive hitcall given the collection of resampled data. Filtering criteria using level 5, 6, and 7 information 312 

were as follows: curves were required to have less than 3 flags, and AC50 value greater than the lowest 313 

concentration screened, and a hit percent of greater than or equal to 50%.  314 

Prior to curve filtering, for the 448 chemicals in this case study, the number of ToxCast concentration-315 

response assay endpoints in which each substance was screened varied from 211 to 4557, with a median 316 

of 883 assay endpoints; the differences in numbers of assays screened may affect the observed positive 317 

hit rate. The filtering criteria described above reduced the total number of curves used from 54,048 to 318 
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46,735 (approximately 14% removed). The remaining curves are each associated with zero to 2 caution 319 

flags, and a median hit percent of 100, indicating that post-filtering most curves were highly reproducible 320 

(ranging 13 to 100). Following filtering, the number of positive hitcalls per substance ranged from 0 to 321 

1351, with a median of 56 positive hitcalls per substance. Most substances (297 out of 448) had hitcall 322 

sums of less than 100, and only 36 substances had 5 or fewer positive hitcalls. One substance, 323 

phenobarbital (CASRN 50-06-6), was active in 4 out of 290 assay endpoints screened, but all of these were 324 

dropped during the filtering process. Thus, for phenobarbital, a single AC50 of 100 µM was used as a 325 

representative AC50 at the maximum concentration screened in ToxCast to derive a threshold AED. For 326 

phenobarbital, a concentration of 100 µM is actually fairly consistent with in vitro bioactivity from other 327 

reports that typically use phenobarbital to induce CYP2B6 in vitro at concentrations ranging from the 100 328 

µM to 2 mM (Faucette et al., 2004; Hariparsad et al., 2017). No cytotoxicity filtering of the ToxCast data 329 

was performed. All of the positive data in ToxCast for a given chemical, after the curve filtering described 330 

here, were included in the AC50 distribution. The 5th percentile of that distribution was used to identify a 331 

minimum bioactive concentration for each chemical in ToxCast, regardless of the specific biological 332 

pathways involved. The effects of filtering the ToxCast AC50 values (Supplemental Figures 1-2) and of using 333 

the 5th percentile versus the minimum AC50 (Supplemental Figure 3) are further described in the 334 

Supplemental Appendix. 335 

2.2.2.2 HIPPTox data 336 

In vitro bioactivity data from the high-content-imaging-based HIPPTox platform were also included 337 

for a subset of 57 chemicals examined in this case study. Three human cell lines were tested with the 338 

chemicals. They include a bronchial epithelial cell line, BEAS-2B (Lee, et al., 2018), a proximal tubule cell 339 

line, HK-2 (Su, et al., 2016), and a hepatocarcinoma cell line, HepG2. Up to 165 phenotypic readouts (Lee, 340 

et al., 2018) were measured from the images of the cell models using the cellXpress software v1.4.2 341 

(Laksameethanasan et al., 2013). For each cell model, a series of multivariate classifiers were trained to 342 

distinguish the cells treated with a chemical at seven concentrations (0.87 to 500 µM) from the cells 343 

treated with DMSO. The classifiers used multivariate phenotypic profiles constructed from all the 344 

readouts, and produced a series of classification accuracy values at all the tested concentrations (Loo et 345 

al., 2007). Then, the values were fitted using a standard log-logistic model and a flat constant model. The 346 

best fitted curve was determined using the Akaike information criterion (AIC). An EC10 was derived from 347 

the best fitted curve for each cell model. For curves based on the flat constant model, an arbitrary large 348 

number (namely, 105 µM) was used. Finally, the minimum EC10 across the three cell models was supplied 349 

for use in this case study as the HIPPTox-POD. Calculation of AEDs and calculation of PODNAM 350 
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 351 

The minimum of the ToxCast 5th percentile of the AC50 distribution or the HIPPTox-POD was 352 

converted to administered equivalent doses (AEDs) using the concept of reverse dosimetry and HTTK 353 

information, largely from in vitro experiments. The approach taken using the httk R package (v1.8) was 354 

similar to the approach used by Wetmore et al. (2012, 2014), as represented by the following Equation 1: 355 

𝐸𝑞 1.              𝐴𝐸𝐷 (

𝑚𝑔
𝑘𝑔

𝑑𝑎𝑦
) =  𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑏𝑖𝑜𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 (µ𝑀)  ∗

1
𝑚𝑔
𝑘𝑔

𝑑𝑎𝑦

𝐶𝑠𝑠 (µM)
 356 

Where the Css is the steady state plasma concentration estimated based on a 3-compartment steady 357 

state model assuming 100% bioavailability. Monte Carlo simulation was used to vary the pharmacokinetic 358 

parameters to represent inter-individual variability in a population. Population variability was 359 

incorporated into the first-order hepatic metabolic clearance, plasma protein binding, liver blood flow, 360 

and the rate of clearance via the kidney (Pearce, et al., 2017; Wetmore, et al., 2012). Dosing assumes oral 361 

infusion at a constant rate (Pearce, et al., 2017). More specifically, the AEDs were calculated 362 

programmatically using the “calc_mc_oral_equivalent” function in the httk R package (v1.8), with the 363 

following options: the 95th quantile (which.quantile = c(0.95)); restrictive clearance 364 

(restrictive.clearance=T); selection of species (species=’Human’); direct resampling of the population data 365 

(method=’dr’); a correction for the amount of unbound chemical in whole blood versus plasma 366 

(well.stirred.correction=T); the default 3 compartment model (model=’3compartmentss’); the output unit 367 

as mg/kg-bw/day (specific in httk as output.units=’mg’). Although many AEDs could be calculated, the 368 

PODNAM,50 and PODNAM,95 were derived from AEDs that resulted from the 50th and 95th percentile, 369 

respectively, of the Monte Carlo simulation of Css. For clarity, the PODNAM,95 is a lower AED than PODNAM,50. 370 

Additionally, the maximum AED (max AED) achievable was calculated using the 95th percentile Css 371 

prediction and the typical maximum in vitro concentration screened in ToxCast of 100 µM. 372 

 373 

 374 

 375 

 376 
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2.2.3 Selection of the PODtraditional 377 

 378 

The largest source of summarized in vivo point-of-departure (POD) information that was publicly 379 

available for this case study was the US EPA Toxicity Value Database (ToxValDB) (Table 1). ToxValDB 380 

includes summary study information and POD information from 40 sub-sources, including sources such 381 

as: COSMOS, ToxRefDB, HPVIS, HESS, and PPRTVs. This database is currently publicly viewable on a single-382 

substance basis using the CompTox Chemicals Dashboard (Williams, et al., 2017), under the Hazard tab 383 

and the Point-of-departure sub-tab. Additionally, as part of the efforts of APCRA, POD information for a 384 

subset of the chemicals in this case study was contributed by collaborators from ECHA (61 substances), 385 

EFSA (46 substances), and Health Canada (29 substances), which generally increased the amount of hazard 386 

data for chemicals already in ToxValDB, but also expanded the chemical space overall by 6 chemicals.  387 

Following this data aggregation step, several filters were applied. First, only oral exposures in units of 388 

mg/kg-bw or mg/kg-bw/day, or units that could be converted to mg/kg-bw/day values such as parts per 389 

million or parts per billion in the diet or mg/kg in the diet, were used, thereby including systemic exposures 390 

and excluding inhalation and dermal routes. The factors used to convert parts per million in diet to mg/kg-391 

bw/day units were as follows: 0.05 (rat); 0.15 (mouse); 0.025 (dog); and, 0.03 (rabbit). Study type was not 392 

constrained to allow for inclusion of the highest number of substances in the case study; acute, chronic, 393 

developmental/reproductive, neurotoxicity and developmental neurotoxicity, and other repeat dose 394 

study designs were all included (though there were only 66 records associated with an acute exposure 395 

design, which is less than 0.3% of the 22627 total study records included). Only the following POD types 396 

were included: no observable or no observable adverse effect levels (NOEL, NOAEL) or lowest observable 397 

or lowest observable adverse effect levels (LOEL, LOAEL). The PODtraditional was then calculated as the 5th 398 

percentile of the distribution of PODs from all sources for a given substance, in an effort to approximate 399 

a reasonable low POD value. Given that the number and distribution of POD records vary by substance, 400 

and that the majority of substances are associated with fewer than 100 POD observations, the 5th 401 

percentile was calculated using a discontinuous function with averaging between discontinuities (see type 402 

2 for the quantile() function in the R stats package). 403 

 404 

 405 

 406 
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2.2.5 Calculation of the POD ratio 407 

 408 

The log10POD ratio indicates whether the PODNAM is less than the PODtraditional. A log10POD ratio of 409 

less than zero indicates that the PODNAM is greater than the PODtraditional, whereas a log10POD ratio of 410 

greater than zero indicates that the PODNAM was less than the PODtraditional. Using POD values in log10-411 

(mg/kg-day) units, the log10POD ratio is given by the difference between the log10PODtraditional and the 412 

log10PODNAM
 as in Equation 2:  413 

𝐸𝑞. 2                     𝑙𝑜𝑔10𝑃𝑂𝐷 𝑟𝑎𝑡𝑖𝑜 =  𝑙𝑜𝑔10𝑃𝑂𝐷𝑡𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 − 𝑙𝑜𝑔10𝑃𝑂𝐷𝑁𝐴𝑀, 414 

 415 

Where the log10PODNAM employed may be the log10PODNAM,50 or log10PODNAM,95, resulting in log10POD 416 

ratio50 or log10POD ratio95, respectively. In this work, the log10POD ratio50 was computed for comparison 417 

with log10POD ratio95, but log10POD ratio95 was used as the primary value for further analyses study type 418 

enrichment and chemotype enrichment. As the ratios calculated in this work are on a log10 scale, it is 419 

important to note that the log of a ratio (log10(x/y)) is the difference of the logs (log10(x) – log10(y)).  420 

2.2.6 Allometric scaling of the PODtraditional 421 

 422 

 To at least partially address cross-species differences in the PODtraditional values, a second iteration 423 

of the case study was performed using allometrically-scaled human equivalent doses for POD information 424 

from mouse, rat, guinea pig, rabbit, dog, and hamster studies. Allometric scaling was performed based on 425 

data adapted and modified from the U.S. Food and Drug Administration (FDA) guidelines (Nair et al., 2016) 426 

using the following scaling factors for each species to convert mg/kg/day values to human equivalent 427 

doses: mouse (0.081), rat (0.162), guinea pig (0.216), rabbit (0.324), dog (0.541), and hamster (0.135). The 428 

POD ratio was then recalculated using these allometrically scaled PODs, per equation 3 below: 429 

𝐸𝑞. 3                           𝑃𝑂𝐷𝑡𝑟𝑎𝑑𝑖𝑜𝑛𝑎𝑙,ℎ𝑢𝑚𝑎𝑛 = 𝐹 𝑥 𝑃𝑂𝐷𝑡𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙,𝑎𝑛𝑖𝑚𝑎𝑙 430 

 Where F is the species-specific scaling factor as indicated above. 431 

 432 

2.2.7 Exposure data 433 

 434 

To enable exposure comparison for the largest number of substances possible, exposure 435 

predictions from the US EPA ExpoCast program Systematic Empirical Evaluation of Models version 2 436 
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(SEEM2) model (Wambaugh, et al., 2014) were used for all 448 substances in the case study (the SEEM2 437 

model was run de novo for a single substance, raloxifene hydrochloride, that did not appear in the 2014 438 

publication). The ExpoCast SEEM2 model was calibrated to existing human exposure predictions inferred 439 

from human biomonitoring data, and further relies on production volume and four binary use categories 440 

from the ACToR use database that indicate if a substance had industrial and consumer product use, 441 

consumer produce use alone, industrial use without consumer product use, and/or use as a pesticide 442 

active or inactive ingredient. The model can be used to generate predictions for a large number of 443 

substances, but these predictions are associated with large credible intervals. From the SEEM2 model, the 444 

“US Total Exposure” median and 95th percentile on the credible interval for the median prediction were 445 

used in calculation of the BER, as described in section 2.2.7. 446 

Additionally, Health Canada provided exposure values from published screening level risk 447 

assessments conducted for existing substances under the Canadian Environmental Protection Act (1999) 448 

for consumer product and environmental exposures to the Canadian population; there were 18 chemicals 449 

in this case study with these values. These data were used only as a comparison to ExpoCast SEEM2 450 

exposure values, and not in computation of the BER. Such a comparison is challenging due to differences 451 

in pathways, populations and metrics underlying the Health Canada traditional estimates and SEEM2 452 

predictions. The Health Canada estimates used in screening level assessments for environmental media 453 

consider exposure for an individual from all sources, whereas screening level assessments for consumer 454 

products consider exposures for the users of such products on a product by product basis. Both 455 

environmental media and consumer product exposure estimates often make use of conservative 456 

assumptions. Further, the SEEM2 model prediction in the case study is based on the U.S population 457 

median and the credible interval around this median value. With these differences in mind, a comparison 458 

between the two was conducted as follows. For the Health Canada environmental exposure data, the 459 

total, or aggregate exposure from multiple media, for the 20-59 years age group were considered. For the 460 

consumer exposure data, daily exposure estimates for adults from the use of certain sentinel consumer 461 

products, where use was considered to be chronic, were examined where available (e.g. personal care 462 

products, cleaning products, textile, foam, plastics). The consumer product resulting in the highest 463 

exposure estimate was carried forward for analysis and no aggregation of exposure estimates across 464 

consumer products was performed. The highest exposure estimate from the combined data set of the 465 

selected consumer product and environmental media intakes were used for comparison to the 95th 466 

percentile on the credible interval for the median general population exposure estimate from ExpoCast 467 

SEEM2. 468 
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2.2.8 Calculation of the BER 469 

 470 

Using the PODNAM and 95th percentile on the prediction of the median exposure from ExpoCast, 471 

both in log10(mg/kg-day) units, the log10BER95, is given by the difference between the log10PODNAM,95 and 472 

the log10ExpoCast95 prediction (Equation 4): 473 

𝐸𝑞. 4                            𝑙𝑜𝑔10𝐵𝐸𝑅95 = 𝑙𝑜𝑔10𝑃𝑂𝐷𝑁𝐴𝑀,95 − 𝑙𝑜𝑔10𝐸𝑥𝑝𝑜𝐶𝑎𝑠𝑡95 474 

 475 

2.2.9  Enrichment calculations 476 

2.2.9.1 Chemotype enrichment 477 

 Enrichment of chemical structural features for substances for which the log10POD ratio95 is less 478 

than zero makes it possible to investigate possible limitations in the NAM-based approach that might lead 479 

to PODNAM values greater than PODtraditional. For this purpose, a recently developed chemotype-enrichment 480 

workflow (CTEW) was utilized, based on the ToxPrint structure feature set developed by Altamira 481 

(Altamira, Columbus, OH USA) and Molecular Networks (Molecular Networks, Erlangen, GmbH) under 482 

contract from the U.S. Food and Drug Administration (Yang et al., 2015). Chemotype enrichment 483 

calculations were carried out by defining chemicals with a log10POD ratio95 of less than zero as the 484 

“positive” enriched space of interest, relative to the remaining case study set, i.e., the “negative” space. 485 

The general approach has been previously described (Strickland et al., 2018; Wang et al., 2019). The set 486 

of DTXSIDs corresponding to the 448 CASRN in this case study provide input to the CTEW and were used 487 

to retrieve DSSTox structures and compute a ToxPrint feature fingerprint for each structure using a Linux 488 

implementation of the CORINA software (Molecular Networks, GmbH). Of the 448 substances, 445 were 489 

mapped to a single DSSTox structure and further processed. The mixtures dipropylene glycol monomethyl 490 

ether (CASRN 34590-94-8) and abamectin (CASRN 71751-41-2) could not be mapped to a single structure, 491 

nor could the isomeric mixture 3-[(dimethoxyphosphinyl)oxy]-2-butenoic acid, methyl ester (CASRN 7786-492 

34-7). ToxPrint chemotype (CT) enrichment statistics were evaluated for presence in the “positive” space. 493 

Enrichment was based on a computed odds ratio (OR) for each CT according to the following logic: a true 494 

positive indicates a chemical in the log10POD ratio95 < 0 space contained the CT; a true negative indicates 495 

a chemical in log10POD ratio95 that did not contain the CT; false positive indicates a chemical in the 496 

log10POD ratio95 > 0 space that contained the CT; and, false negative indicates a chemical in the log10POD 497 

ratio95 < 0 space that did not contain the CT. Quantitative metrics were used to evaluate the resultant 498 

confusion matrix and the significance of any enrichment. The Fischer’s exact test (as implemented in 499 

Python, scipy.stats, alternative=greater) was used to compute the significance of the enrichments as 500 
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indicated by p-value, which tends to yield greater weight to enrichments of CTs that are associated with 501 

a higher number of chemicals. To identify the most interesting associations, OR values ≥3 and p-value 502 

≤0.05 thresholds were used to filter the CT results for significance and further examination. This statistical 503 

test does not account for activating or deactivating effects when multiple CTs are present and is only 504 

indicative of the chemical features that may lead to an underestimation of potential hazard by the 505 

log10PODNAM,95. 506 

2.2.9.2 Study type enrichment 507 

 508 

 To understand the possibility that certain in vivo endpoints, as represented by study types, might 509 

drive PODtraditional values for which the corresponding PODNAM values were not lower, an analysis of 510 

whether certain study types included as described in Section 2.2.4, might disproportionately define the 511 

log10POD ratio95 < 0 space was undertaken. The study types were programmatically reduced to: acute 512 

toxicity studies; repeat dose toxicity studies, defined by any study from 7 to 90 days in duration, including 513 

subacute and subchronic studies; chronic/carcinogenesis, defined by any repeat dose study in adult 514 

animals for greater than or equal to one year; reproductive/developmental, defined by any study 515 

including more than one generation, including developmental, reproductive, multigeneration 516 

reproductive studies, or similar designs; and, neurotoxicity studies. Following this programmatic 517 

simplification and standardization of study type, a Fischer’s exact test (R stats package) was used to 518 

indicate the significance, or p-value, of any enrichment of study type underlying the minimum PODtraditional 519 

value for the log10POD ratio95 < 0 space. Separate tests were run to understand potential enrichment of 520 

(1) reproductive/developmental studies and (2) chronic/carcinogenesis studies for the log10POD ratio95 < 521 

0 space. The confusion matrices were defined per the following logic: true positive indicated that the 522 

minimum PODtraditional value for a given substance with log10POD ratio95 < 0 was derived from a 523 

reproductive/developmental study or chronic/carcinogenesis study; true negative indicated that the 524 

minimum PODtraditional value for a given substance with log10POD ratio95 > 0 was not derived from a 525 

reproductive/developmental study or chronic/carcinogenesis study; false positive indicated that the 526 

minimum PODtraditional value for a given substance with log10POD ratio95 > 0 was derived from a 527 

reproductive/developmental or chronic/carcinogenesis study; and, a false negative indicated that the 528 

minimum PODtraditional value for a given substance with log10POD ratio95 < 0 was not derived from a 529 

reproductive/developmental or chronic/carcinogenesis study. Like the CTEW described above, 530 

significance thresholds of a p ≤0.05 and OR ≥ 3 were used to determine significance of any association.  531 
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2.2.10 TTC values 532 

 533 

The PODNAM,95 was compared to the TTC approach that is often proposed for rapidly screening 534 

chemicals for priority (EFSA, 2012; HealthCanada, 2016; WHO, 2016). TTC values for the substances that 535 

could be associated with distinct structures were assigned using the software ToxTree [v2.6.6] (Patlewicz, 536 

et al., 2008) which implements the TTC decision-tree as described in Kroes et al., 2004. The DSSTox 537 

chemical structure-data (SD) file generated within the CompTox Chemicals Dashboard was converted 538 

from V3000 to V2000 format using ACD/Spectrus DB 2017.2 and where necessary organic substances with 539 

counter ions (e.g. sodium salts) were converted to their neutral form with KNIME (v 3.2.1) and the RDKit 540 

salt stripper node. The structure file was imported into ToxTree, where the Kroes TTC decision tree was 541 

run in batch mode. The daily intake was set at > 90 µg/day for each chemical to run through the entire 542 

decision tree. A separate approach was required for organophosphates (OPs) since ToxTree does not 543 

correctly interpret the Kroes decision tree for these chemicals. First, each OP was screened using the 544 

carcinogenicity and mutagenicity rule-base by ISS within ToxTree to screen for genotoxicity alert (GA). If 545 

an OP triggered a GA then it was assigned a TTC value of 0.0025 µg/kg bw/day; otherwise, the OP was 546 

assigned the default Kroes TTC value for this class of chemicals, which is 0.3 µg/kg bw/day. Moreover, 547 

custom structural profilers built in OASIS LMC Pipeline Profiler [v1.0.53] were used to exclude benzidines, 548 

steroids and organo-silicon compounds from TTC value assignment. More recent scientific opinions 549 

related to TTC have recommended expansion of the original Kroes et al. 2004 exclusion criteria to maintain 550 

the conservative nature of the approach and/or that these compounds are not well represented in the 551 

dataset from which the TTC values were derived. Likewise, based on these opinions, carbamate 552 

substances were assigned a TTC value of 0.3 µg/kg bw/day (EFSA, 2012; HealthCanada, 2016; WHO, 2016).     553 

3 Results 554 

 Al of the inputs and calculated metrics are summarized in Table 2. 555 

 556 

3.1 Substance diversity 557 

 558 

 The extent of substance diversity in this case study was demonstrated using the same functional 559 

use categories that inform the ExpoCast SEEM2 exposure model. Multiple general functional use 560 

categories (Dionisio, et al., 2015; Wambaugh, et al., 2014) may be associated with a given substance.  The 561 

possible functional use categories included: industrial process with no consumer use; pesticide active with 562 
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no consumer use; pesticide inert; consumer and industrial process; personal care product; flame 563 

retardant, consumer and no industrial process; pesticide active with consumer use; herbicide; colorant; 564 

fertilizer; petrochemical; food additive; and fragrance. Examination of these use categories demonstrated 565 

that substances with at least one use as a pesticide active (categories denoted as: pesticide active no 566 

consumer, pesticide active and consumer, herbicide, and/or antimicrobial) comprised nearly 70% 567 

(314/448) of the case study substances (Figure 2). This result is expected because the ToxCast Phase I 568 

chemical library was originally selected (Richard et al., 2016) in part to maximize the overlap with the 569 

ToxRefDB (Martin, et al., 2009a; Martin, et al., 2009b).  Hence, pesticide active ingredients represent a 570 

significant percentage of the union of the ToxRefDB and ToxCast phase 1 libraries and supply much of the 571 

POD information available from summaries of registrant-submitted toxicity studies, known as data 572 

evaluation records (DERs), from the U.S. EPA’s Office of Pesticide Programs (OPP). Further, HTTK 573 

information are available largely for the ToxCast phase 1 and phase 2 chemical libraries (Pearce, et al., 574 

2017). 575 

3.2 BER for the 448 chemicals 576 

 577 

 The exposure predictions from ExpoCast, the PODNAM estimates based on ToxCast and HIPPTox 578 

data, and the PODtraditional information are compared and visualized in Figure 3, all on a log10-mg/kg-bw/day 579 

basis. In this comparison, two estimates of the PODNAM have been included: the PODNAM,50 and the 580 

PODNAM,95, with the PODNAM,95 representing a lower dose and therefore more conservative estimate. For 581 

the majority of substances, the upper 95th percentile on the credible interval for the median total US 582 

exposure from the ExpoCast SEEM2 model corresponded to a daily log10-mg/kg-bw/day dose well below 583 

that anticipated to have bioactivity as well as the log10-mg/kg-bw/day dose at which effects were observed 584 

in traditional animal studies. Even using the PODNAM,95 estimate 95th percentile estimate from ExpoCast 585 

(Figure 4A black line), only 11 substances had a log10-BER95 of less than zero, indicating the potential for 586 

exposure to occur within the dose range that was bioactive in vitro (Figure 4B). Further examination of 587 

Figure 4 suggests that using the 95th percentile from the credible interval for the median total US exposure, 588 

rather than the predicted median or 50th percentile, significantly decreased the log10BER (shifting the 589 

BER95 values and BER50 values approximately 2 log10 orders of magnitude to the left in Figure 4A). Of 590 

course, given that the BER juxtaposes exposure and bioactivity predictions, uncertainty in the IVIVE 591 

methods applied to bioactivity can also result in a “shifting” of the BER estimate; using the PODNAM,50 592 

results in a log10BER95 that is “right-shifted” in comparison to the log10-BER values from the PODNAM,95, as 593 

expected since for the substances in this case study the PODNAM,50 was 1.7 to 19-fold higher than the 594 
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PODNAM,95 (see Supplemental Appendix Figure 5 for more details). Although the BER values provide an 595 

indication of risk-based priority, the BER values may be smaller given the nature of the ExpoCast 596 

predictions, i.e. predictions that have large uncertainty may result in the prediction of high exposures at 597 

the 95th percentile, and in vitro bioactivity data, i.e. very low AC50 values that were the result of permissive 598 

approaches in curve-fitting. The nature of the BER values were further explored in Figure 5 via 3 599 

comparisons: ExpoCast versus PODNAM,95, followed by a side-by-side comparison of ExpoCast and ToxCast 600 

in vitro bioactivity data for the 11 substances with log10BER95 < 0 to the distribution of these data for the 601 

entire case study set of 448 substances. In Figure 5A, the 11 substances identified with low BER values are 602 

labeled and appear to demonstrate exposures that are generally greater than the median ExpoCast (95th 603 

percentile) estimate for the 448 substances, and all the PODNAM,95 are less than the median PODNAM,95 value 604 

for the case study substances. This is interrogated further in panels 5B and 5C. A distribution of the 95th 605 

percentile ExpoCast prediction for all 448 chemicals is used to understand if the 11 substances with 606 

log10BER95 <0 had high exposure predictions. A similar demonstration of the AC50 used to calculate the 607 

PODNAM is provided, where a distribution of all AC50 values for the 448 chemicals in the top panel is 608 

compared to AC50 values for the chemicals with log10BER <0. Several characteristics become apparent for 609 

the 11 substances with log10BER < 0: one, that many of these substances demonstrated relatively potent 610 

in vitro activity; two, that the most potent PODNAM,95 values, based on the combination of in vitro 611 

bioactivity and IVIVE, tended to drive lower BER values; and, three, that ExpoCast SEEM2 95th percentile 612 

estimates higher than the median in the case study seemed to contribute to lower BER values.  613 

The performance of the ExpoCast SEEM2 model has been previously evaluated and described 614 

(Wambaugh, et al., 2014). In this case study, ExpoCast predictions for a relatively small subset of 18 615 

chemicals were compared to manually curated values from Health Canada human health risk evaluations. 616 

The curated exposure values for these 18 chemicals had consumer product or environmental media 617 

exposure values from Health Canada assessments that could be compared to the median and 95th 618 

percentile on the credible interval for prediction of the median total US exposure from ExpoCast. The 619 

results illustrate for a limited chemical space that, as expected, the 95th percentile-ExpoCast values were 620 

within a range of the higher of either the consumer product or environmental Health Canada exposure 621 

values (Figure 6). The majority of the residuals (from the first to third quartile) for this comparison fall 622 

within ± 0.75 log10, indicating that the 95th percentile ExpoCast SEEM2 values may be a reasonable 623 

estimate of exposure in the absence of more refined models. One substance in particular, catechol (CASRN 624 

120-80-9), stands out for larger differences between ExpoCast SEEM2 and Health Canada estimates. The 625 

ExpoCast SEEM2 model relies heavily on the ACToR use database, and catechol is suggested as a food 626 
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additive and as having industrial (with no consumer) use. For the Health Canada catechol exposure 627 

estimate, dietary intake represents the majority of environmental media exposure with the predominant 628 

source being the natural occurrence of catechol in foods, and conservative estimates were derived using 629 

literature on maximum concentrations found in various food groups (EC/HC, 2008). Accounting for natural 630 

occurrence in food is not included as a use type in the ExpoCast SEEM2 model which may explain the 631 

discrepancy. Two other substances, di(2-ethylhexyl) adipate [DEHA] (CASRN 103-23-1) and chlorohexidine 632 

diacetate (CASRN 56-95-1), respectively, are consumer product chemicals that demonstrated slightly 633 

higher residuals. For DEHA, the Health Canada consumer product exposure estimate used to compare to 634 

ExpoCast SEEM2 represents the highest concentration reported in body lotion although a considerable 635 

range across products was reported (0.1 to 6%) which may partly explain the higher residual when 636 

compared to ExpoCast SEEM2 which represents the median of the U.S. population. Moreover, the Health 637 

Canada exposure estimate used in the comparison is the applied dose and it is known that DEHA exhibits 638 

low dermal absorption (the screening assessment adjusted the applied dose to estimate an internal dose 639 

using a dermal absorption value of 10% for risk characterization) (EC/HC, 2011). Likewise, the Health 640 

Canada estimate for chlorohexidine acetate is the applied dose, and it also exhibits low dermal absorption 641 

(EC/HC, 2017). The ExpoCast SEEM2 exposure estimates may be lower for poorly absorbed chemicals in 642 

near-field exposures such as topical application in part because the ExpoCast SEEM2 model was calibrated 643 

using human biomonitoring data. 644 

3.3 POD ratio for the 448 chemicals 645 

 The POD ratio depends on the PODNAM and the PODtraditional. In accounting for uncertainty from 646 

inter-individual variability, the PODNAM,50 and PODNAM,95 were both computed for comparison. The 647 

PODNAM,50 for substances in this case study are 1.7 to 19 times higher than the PODNAM,95, dependent on 648 

the substance, with the differences based on estimation of population differences in metabolic and renal 649 

clearance and/or plasma protein binding (see Supplemental Appendix, Figure 5). The log10POD ratio 650 

indicates whether a PODNAM is lower than the estimate of a dose associated with in vivo effects 651 

(PODtraditional). A log10POD ratio < 0 means that the log10PODNAM is greater than the log10PODtraditional. The 652 

log10POD ratio95 was < 0 for 48 of the 448 substances, or approximately 11% of the total (Figure 3C). 653 

Conversely, for 400 of 448 chemicals (89%), the PODNAM,95 is less than the PODtraditional (Figure 3). As the 654 

log10PODNAM,50 is greater than the log10PODNAM,95, the log10POD ratio50 is < 0 for a higher percentage of 655 

substances in this case study (20%, or 92 of 448 substances). Further examination of the distribution of 656 

the log10POD ratio95 demonstrates a range of -2.7 to 7.5, and a median of 2 (Figure 7A), indicating the 657 

median distance between the PODtraditional and PODNAM,95 on an arithmetic scale would be approximately 658 
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100-fold. Only three substances, all of which are organophosphate insecticides, dicrotophos (CASRN 141-659 

66-2, DTXSID9023914), azamethiphos (CASRN 35575-96-3, DTXSID9034818), and mevinphos (CASRN 660 

7786-34-7, DTXSID2032683), had a log10 POD ratio95 of less than -2., with a log10POD ratio95 values of -2.1, 661 

-2.7, and -2.2, respectively (Table 4). For the log10POD ratio50, the median was 1.2 and the range was -2.9 662 

to 7.0. 663 

As the concentration range evaluated in the ToxCast assays may limit the upper bound of the 664 

PODNAM, a comparison between the PODtraditional and the maximum AED possible from high-throughput 665 

screening was also calculated. The maximum AED, using the 95th percentile prediction for the Css and using 666 

100 µM as the input concentration, was calculated. This maximum AED (Figure 3, Figure 7B) was based on 667 

the general assumption that no ToxCast library substances would be screened at nominal concentrations 668 

that exceeded 100 µM. For the 48 substances with a log10POD ratio95 < 0, the maximum AED exceeded 669 

the minimum PODtraditional in all cases. In contrast, for the remaining 400 substances with log10POD ratio95 670 

> 0, 60% had a maximum AED that was less than the minimum PODtraditional (Figure 7B). 671 

 Similar to evaluation of the chemicals with log10BER95 < 0, hypotheses regarding why substances 672 

demonstrated a log10POD ratio95 < 0 were considered. First, the chemical domain was considered via 673 

calculation of statistical enrichment of ToxPrint chemical structure features, or chemotypes (CTs) 674 

(Strickland, et al., 2018; Yang, et al., 2015) (Table 3). Through this analysis, six CTs were identified as 675 

enriched, with OR ≥ 3 and p-value ≤ 0.05. The local balanced accuracy (BA) values (within a CT subspace) 676 

ranged from 0.57 to 0.62, with the bond:P=0_phosphate_thio CT completely contained within the 677 

log10POD ratio95 < 0 space. Of the 48 substances with log10POD ratio95 < 0, half (24 substances) contained 678 

one or more enriched CTs, corresponding to structural features indicative of organophosphate or 679 

carbamate related chemistries. Twenty-one of these 24 substances have clear indication of being a 680 

carbamate or organophosphate pesticide.  681 

As ToxCast assay endpoints do not completely cover biological space, and generally include only 682 

short-term assays, the hypothesis that ToxCast data failed to identify chemicals that demonstrated critical 683 

effects in developmental/reproductive or chronic studies was tested via enrichment analysis of the study 684 

type that underpinned the minimum PODtraditional for each substance. Using a Fisher’s exact test, we failed 685 

to observe any significant enrichment of developmental/reproductive studies (grouped for this analysis, 686 

p < 0.87) or chronic studies (p-value < 0.69) in the log10POD ratio95 < 0 space. The frequency of 687 

developmental/reproductive and chronic studies defining the minimum PODtraditional is illustrated in the 688 

matrices in Figure 8. Though there were no significant enrichments of study type for the minimum 689 
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PODtraditional for chemicals with log10POD ratio95 < 0, it is interesting to note that chronic toxicity data 690 

appeared to generate the minimum PODtraditional more often, in general (for 272 out of 448 chemicals). 691 

However, this may be due to the fact that not all chemicals in the case study had all study types, 692 

introducing a major caveat to this analysis, such that broader inferences about the importance of study 693 

type are limited. 694 

3.4 Comparison of PODNAM,95 to a TTC approach 695 

 696 

 Considering that, in the absence of HTS data, one approach to screening level risk assessment 697 

might be to employ a TTC to help in prioritization (HealthCanada, 2016), the PODNAM was further 698 

compared to a TTC developed using ToxTree (Patlewicz, et al., 2008; ToxTree, 2015). For the 448 699 

substances in this case study, the following TTC values were defined: 141 substances were designated as 700 

0.0025 µg/kg-bw/day (potential genotoxic chemical threshold), 36 substances were designated as 0.3 701 

µg/kg-bw /day (OP or carbamate), 212 substances were designated as 1.5 µg/kg-bw /day (Cramer Class 702 

III), 29 substances were designated as 30 µg/kg-bw /day (Cramer Class I), and 5 substances were 703 

designated as 9 µg/kg/day (Cramer Class II). Twelve substances demonstrated exclusion criteria (6 704 

steroids, 2 metals, 2 benzidines, 1 organosilicon, 1 N-nitroso), and finally, 3 substances lacked a defined 705 

structure as previously described.  706 

The primary observation from this comparison is that the PODNAM generally appeared to be 707 

greater than the TTC value, with the PODNAM,95 greater than the TTC for 87% of the substances (389/448) 708 

and the PODNAM,50 greater than the TTC for 92% of the substances (413/448). The median 709 

log10PODNAM,95:TTC ratio was 2.25, suggesting that on average there is approximately a 100-fold difference 710 

between these two predictions (Figure 9A). This finding may be partly explained by the methods used to 711 

develop the TTC values for each chemical class which are analogous to the approaches used in quantitative 712 

cancer risk assessment or in the development of a reference dose. For potential genotoxic chemicals the 713 

TTC value was developed through the use of linear lose dose extrapolation to 1 in 106 lifetime risk-based 714 

on reference chemicals in a carcinogenicity database (Kroes, et al., 2004). For the non-cancer portion of 715 

the decision tree (Cramer classifications, OPs and carbamates) the TTC values were developed including 716 

the application of an uncertainty factor (UF) (e.g. UF of 100 applied to the 5th percentile from a distribution 717 

of NOELs from Cramer classified substances making up a repeat dose reference database (Kroes, et al., 718 

2004). No UFs are applied to the PODNAM (or the PODtraditional) in this analysis. In addition, we failed to 719 

observe a linear relationship between the log10TTC value and the log10PODNAM,95 value, with considerable 720 
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variability in the log10PODNAM,95 values reported within each TTC value category (Figure 9B). As the BER has 721 

been suggested as a prioritization metric, and BER is the quotient of the PODNAM and the exposure 722 

prediction, we also examined how replacing log10PODNAM,95 with TTC would have affected the log10BER95
 723 

for the 11 substances with log10BER95 < 0. Interestingly, for the 11 substances with log10BER95 < 0, the 724 

log10TTC was greater than the log10PODNAM,95 for 8 substances, and only one substance (napthalene, 725 

DTXSID8020913) still had a log10BER < 0 when using the log10TTC instead of the log10PODNAM,95. 726 

3.5 Comparison of PODNAM to PODtraditional from allometrically scaled data 727 

 728 

 For the main case study, PODtraditional data were collected from any in vivo toxicology study, 729 

regardless of species or strain, and then grouped to derive a 5th percentile from the distribution by 730 

chemical. In contrast, the PODNAM was derived from an AED that was calculated using human HTTK 731 

parameters and in vitro bioactivity (mostly from human cell lines and proteins). To address the issue of 732 

combining multiple species in this analysis, we compared the log10PODNAM,95, derived from an AED 733 

calculated using human HTTK parameters, to a human equivalent dose, i.e. human PODtraditional, based on 734 

allometric scaling of the PODtraditional data. Limiting to studies in mouse, rat, guinea pig, rabbit, dog, and 735 

hamster, 447 of the 448 chemicals could be included in this comparison. The human PODtraditional is derived 736 

from PODtraditional via multiplication by a factor less than one (derived based on body surface area by 737 

species) (Nair, et al., 2016). This led to 82 substances (18%) having log10PODNAM,95 higher than the human 738 

PODtraditional
 (compared to 48 when using the animal-based PODtraditional), and 158 substances for which the 739 

log10PODNAM,50 was higher than the human PODtraditional (compared to 92 when using the animal-based 740 

PODtraditional). The median human log10POD ratio95 was 1.33, with a range of -3.3 to 6.7 (Supplemental 741 

Appendix, Figure 7). Given that the mechanism(s) of toxicity and metabolic processes may differ 742 

considerably across species, a consideration of differences in dosing based on allometric scaling (i.e., 743 

surface area) provides limited information regarding uncertainty based on interspecies differences. 744 

 745 

 746 

 747 

 748 

 749 
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4 Discussion 750 

 751 

 Herein we present a retrospective analysis to address two key questions: (1) would using in vitro 752 

bioactivity data from HTS programs such as ToxCast provide a “lower bound” estimate of a POD when 753 

compared to traditional toxicology approaches? And, (2) is the BER, using in vitro bioactivity across a broad 754 

range of assays, a useful tool for prioritization of substances? This analysis is the largest of its kind 755 

presented to date, with information for 448 substances included. A major premise of this work is that the 756 

minimal concentration corresponding to in vitro bioactivity is likely to be a threshold for any specific 757 

effects or toxicities that might be observed in vivo. The primary conclusion of our work is that for 89% of 758 

the chemicals in this case study, the HTS approach to derivation of a PODNAM,95 for screening and 759 

prioritization purposes produced a value less than or equal to the PODtraditional from in vivo toxicology 760 

studies. Further, we found that BER may be a useful data-driven metric for prioritization that can be 761 

customized to the resources available for follow-up, i.e. different choices in calculation of the BER can be 762 

made depending on how much uncertainty is acceptable and how many substances can be further 763 

evaluated given resource constraints. The customizable decisions in the HTS approach employed herein 764 

are demonstrated in adjustments in the amount of uncertainty in (1) the IVIVE that is included in 765 

development of the PODNAM and (2) the exposure predictions, highlighting that for different screening 766 

applications differing amounts of uncertainty can be included in this workflow. As demonstrated, metrics 767 

that account for more of these uncertainties (e.g., use of a 95th percentile rather than a median on 768 

exposure predictions, or use of a PODNAM,95 instead of a PODNAM,50) can be used in a screening and 769 

prioritization application (see Table 2). The context for use of the PODNAM was further examined via 770 

comparison to a TTC approach, ultimately demonstrating that there may be some advantages to 771 

combining these approaches for preliminary screening of substances for safety. The collaborative, 772 

international consideration of these issues in screening level assessments demonstrates the current state-773 

of-the-science and presents a transparent and adaptable basis for utilization of HTS information. 774 

 A potential concern regarding the approach used in the case study might be whether it is overly 775 

conservative, i.e. whether the PODNAM values are too low or the exposure predictions are too high. To 776 

begin to address such a question, it is necessary to consider the impacts of the selections and assumptions 777 

made in the current approach. First, we consider the uncertainty that we consider in the use of NAM-778 

based exposure predictions; the ExpoCast SEEM2 model is akin to a low-tier exposure assessment tool, 779 

and grappling with uncertainty in exposure prediction is more familiar to traditional safety evaluation 780 
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(EPA, ExpoBox). The exposure predictions (Wambaugh, et al., 2014) from the ExpoCast SEEM2 analysis 781 

have wide credible intervals, as demonstrated by the shifting of the log10BER95 by approximately 2 log10 782 

units based on selection of either the median or 95th percentile exposure predictions. In selecting the 95th 783 

percentile exposure prediction for most of the comparative analyses in this work, we are using a value 784 

that includes more of the uncertainty, and the median could be used instead depending on the number 785 

of substances that should be prioritized and the degree of certainty that is desired for a given application 786 

of these data. The fact that only 2.5% of the 448-chemical case study would have a log10BER95 less than 787 

zero, and only 15% with a log10BER95 less than 2, indicates that though the approach the log10BER95 788 

attempts to account for more uncertainty, it does not necessarily indicate a high priority for all substances 789 

in the case study. There are caveats to this conclusion in that the exposure model was informed by 790 

functional use categories, and pesticide actives, which comprised 70% of the substances with sufficient 791 

data for inclusion in this case study, were generally predicted to have lower exposure than substances 792 

associated with other use categories (Wambaugh, et al., 2014). It is possible that using a substance list 793 

that included more substances associated with uses as pesticide inerts, personal care products, or other 794 

functional uses (Dionisio, et al., 2015) that more substances would be prioritized using the BER. In 795 

comparing exposure estimates from the ExpoCast SEEM2 model and curated exposure assessments from 796 

Health Canada, we found that the ExpoCast 95th percentile was a reasonable surrogate for 18 substances. 797 

Of these substances, the few that demonstrated larger differences (i.e., greater than 1 log10mg/kg-bw/day 798 

different) were likely related to reliance on different use and exposure scenarios between the ExpoCast 799 

SEEM2 model and the exposure assessments, supporting refinements in understanding of use and 800 

exposure scenario as essential for improved confidence in utilization of high-throughput exposure 801 

estimates (Biryol et al., 2017; Brandon et al., 2018; Dionisio et al., 2018; Ring et al., 2018). Moving forward 802 

with safety evaluation of substances across geographies, international collaboration and data-sharing 803 

regarding substance use categories and exposure scenarios or pathways will support progress in exposure 804 

prediction for thousands of substances. 805 

As used in the aggregate in this case study, the in vitro bioactivity data was used to define a 806 

concentration range for any activity and does not necessarily support hypotheses regarding specific 807 

toxicological effects. Disruption of molecular targets as described by the PODNAM is necessary, but not 808 

sufficient, for producing adverse effects. In contrast, the PODtraditional is intended to represent a threshold 809 

for adversity; as such, we might anticipate that the PODNAM would in many cases be lower than an estimate 810 

of PODtraditional. Caveats in the use of ToxCast data include the possibility that, despite an attempt to filter 811 

these data for more reliable curve-fits (see Methods and Supplemental Appendix), we have not 812 
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completely eliminated results from noisy curve-fits or assay interference, thereby resulting in the possible 813 

inclusion of some AC50 values that are not reproducible and/or biologically meaningful. This may bias the 814 

distribution of AC50 values available for substances, and thus detailed examination of the in vitro 815 

bioactivity data may be warranted when deriving screening level assessment values or following up on 816 

specific substances identified as a priority based on the BER. The use of a point estimate for the potency 817 

value (i.e., AC50) without use of confidence bounds (Watt, et al., 2018) may produce a higher AED value 818 

than using a threshold concentration based on a confidence interval. The need for applied research on 819 

quality control processes for improved filtering of any HTS data to include more reproducible and/or more 820 

reliable curves clearly emerges from this case study. Use of the 5th percentile for the ToxCast AC50 values 821 

per substance ameliorates some concerns with the appearance of low concentration outliers in the AC50 822 

distribution (likely from less reproducible curve fits) (see Supplemental Appendix, Supplemental Figure 3), 823 

but also provides a “lower bound” estimate of a threshold concentration for bioactivity in vitro. The 824 

number of detailed, and thereby customizable, decisions made in determining an in vitro concentration 825 

for use in IVIVE is apparent.  826 

Consideration of how much uncertainty the PODNAM should include in the IVIVE approach used is 827 

needed. We assumed steady state conditions and complete bioavailability when converting the in vitro 828 

potency values to AED values (Wetmore, et al., 2014; Wetmore, et al., 2015; Wetmore, et al., 2013; 829 

Wetmore, et al., 2012). The assumption of steady state conditions may be fairly accurate for 830 

pharmaceuticals and may also work for some but not all of diverse, environmentally-relevant chemicals 831 

(Sipes et al., 2017a; Wambaugh, et al., 2018; Wambaugh et al., 2015; Wang, 2010; Wetmore, et al., 2015; 832 

Yoon et al., 2014). However, beyond the assumption of steady state conditions, other assumptions in the 833 

HTTK and IVIVE approach may err on the side of lower AED predictions due to the  lack of extrahepatic 834 

metabolic clearance; use of suspended hepatocyte model for capturing hepatic metabolism; and, lack of 835 

information about bioavailability (Wetmore, et al., 2015). Available high-throughput IVIVE methods are 836 

being continuously improved and more data is being added to reduce assumptions in the modeling (e.g., 837 

estimates of bioavailability, extrahepatic clearance). For this analysis, we demonstrated how inter-838 

individual variability can be accounted for by using the 95th percentile estimate of the Css from a Monte 839 

Carlo simulation, which may result in a relatively low estimate of the PODNAM,95. We compared this to the 840 

PODNAM,50 because, dependent on the screening level application, it may be desirable to exclude inter-841 

individual variability from initial computation of the PODNAM. The difference between the PODNAM,50 and 842 

PODNAM,95 is variable by substance, i.e. the range of potential Css values observed across a theoretical 843 

population is dependent on metabolic and renal clearance, plasma protein binding, and other features 844 
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that are substance-dependent (for additional consideration, see Supplemental Appendix, Supplemental 845 

Figure 5). Ultimately, despite a number of approximations and uncertainties, the current workflow 846 

demonstrates the potential utility of the approach for calculation of the PODNAM using data and tools that 847 

are currently available. 848 

For the substances in this case study, the PODNAM,50 and PODNAM,95 were lower or approximately 849 

equal for the PODtraditional 80% and 89% of the substances, respectively. The PODNAM,95 and resultant 850 

log10POD ratio95 and log10BER95 were selected for further detailed analyses in this work because this 851 

represented an approach that included consideration of more uncertainty and narrowed the substances 852 

with log10POD ratio and log10BER values < 0 to clearly identify possible limitations in the NAM-based 853 

approach. One limitation evident from the CT enrichment work is that the current NAM battery in ToxCast 854 

and HIPPTox, combined with IVIVE, failed to quantitatively capture the potency of effects expected for 855 

substances that contain structural features of carbamate and organophosphate insecticides. ToxCast does 856 

contain assays responsive to acetylcholinesterase inhibitors (Padilla et al., 2012; Sipes et al., 2013); 857 

however, it has been previously suggested that these assays lack the ability to accurately reflect 858 

acetylcholinesterase inhibition potency (Aylward et al., 2011). Additionally, often OP metabolites are 859 

more potent acetylcholinesterase inhibitors, and this would not be well-captured in assays with limited 860 

to no metabolism. For substances with the structural features of carbamate and/or organophosphate 861 

insecticides, a TTC approach like the one employed herein (which includes a separate workflow for these 862 

chemistries) may provide a more useful PODNAM value that would be less than or equal to the PODtraditional.  863 

Another potential limitation of the NAM-based approach included in this work is that the ToxCast 864 

and HIPPTox assays are short-term in duration. One hypothesis as to why a substance would demonstrate 865 

a log10POD ratio95 < 0 was that the PODtraditional may have been effects observed in vivo following exposures 866 

of longer duration or involving specific susceptible lifestages. Interestingly, the minimum PODtraditional was 867 

not associated with a particular study type, as a surrogate for phenotype (i.e. developmental/reproductive 868 

or chronic studies), more frequently for substance with log10POD ratio95 < 0. Conclusions from this analysis 869 

of study type are necessarily limited because not all substances in the case study included all study types. 870 

To allow for the largest data set possible, each substance included in the case study may have had 871 

traditional toxicity information available from multiple sources and study types, and in some instances, it 872 

is possible that multiple records may correspond to the same study.  873 

Although the in vitro bioactivity approach to definition of a PODNAM has some associated 874 

uncertainties, in the absence of other information, the PODNAM could be used as a “lower bound” or 875 
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protective estimate. To reduce potential uncertainties, the data used to derive the PODNAM could always 876 

be further reviewed and refined in a number of ways, at the expense of performing a more automated 877 

analysis for many substances. First, manual or semi-automated curation of ToxCast/Tox21 data to select 878 

the in vitro bioactivity concentration based only on assays and curve-fits with high reproducibility could 879 

be performed for substances identified as priority from automated analyses. Second, the use of 880 

metabolically-competent in vitro models to predict the bioactivity of parent and metabolite(s) may 881 

account for potential bioactivated toxicants (DeGroot et al., 2018; Ramaiahgari et al., 2017). Additional 882 

bioactivity screening using metabolically-competent in vitro models would be needed to understand the 883 

potential impacts of metabolism on a workflow like the one employed herein. Third, the specific data or 884 

assay data-based predictions to indicate specific potential adversities, modeling neurotoxicity, 885 

hepatotoxicity, reproductive, or developmental toxicity, in an expansion of the HIPPTox and ToxCast 886 

approaches included here, could be added. This also relates to a limitation in that not all substances in 887 

this case study were tested in all available assays in ToxCast or HIPPTox. Fourth, the addition of high data 888 

content in vitro assays, e.g. high-throughput transcriptomics and/or cellular phenotypic profiling data like 889 

HIPPTox, may help comprehensively cover the biological pathways possibly disrupted by the test 890 

substances. Finally, further refinement of the IVIVE approach may also improve the utility of the PODNAM. 891 

Though currently the nominal media concentrations from assay endpoints are used in calculation of AED 892 

values that form the basis of the PODNAM, refinement of the IVIVE modeling procedure to account for 893 

differential in vitro partitioning could reduce uncertainty (Fischer et al., 2017).  894 

 Comparison of the in vitro bioactivity approach to a TTC-based approach for definition of a PODNAM 895 

provides some practical insight for screening-level evaluation. When available, the PODNAM, which uses 896 

data generated for a particular target substance, generally provides a more refined estimate of a POD 897 

than the TTC. Further, the PODNAM values are likely to improve and change over time as more sophisticated 898 

and comprehensive HTS tools are developed. Though the TTC value is generally lower than the PODNAM, 899 

there may be advantages to using PODNAM and TTC in concert. In some cases, a TTC cannot be easily 900 

generated due to exclusion criteria or the presence of multiple structures in an undefined mixture, 901 

whereas a PODNAM may be generated. In the fraction of cases where the log10TTC value was greater than 902 

the log10PODNAM,95, the log10TTC could be used as a check on low PODNAM values. Indeed, Health Canada 903 

recently applied the TTC approach to a group of substances amongst the remaining priorities under the 904 

CMP. A preliminary qualitative characterization of uses and exposure potential indicated that 237 of the 905 

CMP substances were good candidates for the TTC approach as exposure to the general population was 906 

expected to be limited. However, after developing quantitative exposure estimates only 89 of the 237 907 
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substances (38%) had exposures below their respective TTC values (HealthCanada, 2016). Thus, having an 908 

approach such as the use of PODNAM to develop a BER may have proven useful as an additional screening 909 

level tool, and a suite of in silico and in vitro NAMs, used collectively, provide an informed, multi-910 

dimensional screening level approach. 911 

There are several considerations when using the PODtraditional. For the PODtraditional data themselves, 912 

toxicologists generally accept that animal studies conducted at different times, by different laboratories, 913 

with a different cohort of perhaps the same strain of animal, may yield results that are qualitatively and/or 914 

quantitatively distinct (Gottmann et al., 2001; Kleinstreuer, et al., 2017; Ward et al., 2017; Wolf et al., 915 

2017). Though we do not quantify this variability here, the resolution of the difference between the 916 

PODNAM and PODtraditional may be limited by the variability in the animal study results (Casati, et al., 2018) 917 

in addition to the variability in the in vitro bioactivity methods. A continuing challenge and necessity for 918 

comparing the results of NAM will be establishing the variability in reference set data. An additional 919 

limitation in interpreting this work is comparison of PODNAM, largely from human in vitro data, to 920 

PODtraditional, which is based on several different mammalian species. Though allometric scaling based on 921 

differences in animal surface area was performed for comparison in this work, the value of this exercise 922 

is limited as species-specific absorption, distribution, metabolism, and excretion processes might be 923 

anticipated on a substance by substance basis. Since humans are the species of interest for this case study, 924 

PODNAM based on mostly human bioactivity data were used. In the risk assessment process, an uncertainty 925 

factor of 10 might be used when considering interspecies differences. 926 

Related issues (made apparent in this case study) in using traditional toxicology information as a 927 

reference for the NAM-based approach are the challenges of data curation and interoperability. For 928 

instance, clarification of records that summarize the same original study, or identification of specific 929 

effects observed, is limited in current publicly available databases of toxicity information (e.g., ToxValDB, 930 

ToxRefDB, eChemPortal, etc.) because of a lack of controlled semantic ontology for study features and 931 

biological effects. For international collaborations such as this one, it is not straightforward to identify the 932 

unique toxicological studies nor specific effects labeled using different terminology. Moreover, the basis 933 

for establishing the PODs from the original studies, regardless of their origin, may not be fully structured 934 

or reported, and differences in POD selection from different reviewers may arise. Consistent identification 935 

of the substance tested, and controlled vocabularies describing study designs and the reported effects, 936 

are needed to share curated data across databases, and across the world, in order to leverage the largest 937 

dataset possible for improved understanding of traditional toxicity information for regulatory toxicology. 938 
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Efforts to create such a large, consistent, and reliable dataset are an ongoing interest within the APCRA 939 

initiative, among others. Improved curation and digitization of traditional toxicity information for 940 

comparison with NAMs across a broad range of endpoints and study types will require a significant 941 

investment of resources. 942 

 We have presented herein a retrospective analysis to demonstrate the utility of the BER in 943 

identifying potential priority chemicals for further evaluation, as well as the conservativism of a PODNAM 944 

when compared to PODtraditional. The result bolsters confidence that decisions based on a PODNAM can be 945 

health protective in screening level assessments, lending support for using approaches like this one to 946 

rapidly evaluate substances and potential needs for further screening information. Using relatively 947 

conservative assumptions of predicted exposure and bioactivity, only 15% of the substances in this case 948 

study demonstrated a log10BER95 < 2, suggesting that this approach may provide a data-informed and 949 

reasonable approach to identifying chemicals of interest for further testing and assessment. A primary 950 

goal of the APCRA collaboration supporting this work is to identify and resolve impediments to adoption 951 

of NAMs in safety assessment. In demonstrating the state-of-the-science for generation of BER and POD 952 

ratio values, we have shown in practice for 448 chemicals a way to accelerate screening and assessment 953 

using NAMs for hazard and exposure. Further, we have identified a number of areas for refinement in this 954 

workflow to be considered in subsequent application of this NAM-based approach to regulatory 955 

toxicology questions. Ongoing work will be needed to demonstrate that a workflow like the one 956 

demonstrated herein is generalizable to substances with little to no available traditional POD information. 957 

As continuing improvements in HTS approaches and availability and interoperability of database resources 958 

are made, confidence in the utilization of NAMs for screening level assessments will be bolstered by 959 

scientific quality, relevance, and transparency. 960 

5 Supplemental Files 961 

Supplemental Appendix: A text file containing Supplemental Figures 1-7 and supporting text. 962 

Supplemental File 1: A spreadsheet containing all of the in vivo POD values used to derive the 963 

PODtraditional. 964 

Supplemental File 2: A spreadsheet containing all of the summary information (including BER and POD 965 

ratio values)  966 
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Figure 1. Overall workflow of the case study. 
This case study includes 448 substances with exposure predictions, in vitro assay data, HTTK information, 

and in vivo hazard information. The 50th and 95th percentile from the Monte Carlo simulation of inter-

individual toxicokinetic variability were used to estimate AEDs, and the minimum of either the ToxCast or 

HIPPTox-based AEDs were selected as the PODNAM, 50 or PODNAM, 95. The PODNAM estimates were compared 

to the 5th percentile from the distribution of the PODtraditional values obtained from multiple sources to 

obtain the log10POD ratio. The log10BER was obtained by comparing the PODNAM estimates to exposure 

predictions. All values used for computation were in log10-mg/kg-bw/day units. 
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Figure 2. Substance diversity. 
Generic functional use categories from ACToR for the 448 case study substances are illustrated. One 

substance, represented as a row in the heatmap, may be associated with multiple use categories.  
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Figure 3. Comparison of the Exposure, PODNAM, and PODtraditional.  
Comparison of ExpoCast (gray circles), PODNAM (green circles), maximum AED (black triangles), and PODtraditional 

values (blue boxes) for 448 substances. The green line segment indicates the PODNAM,95 to PODNAM,50. Inset images 

A, B, and C correspond to the red boxes overlaid on the main plot. Image 3A provides a magnification on the 

substances with the largest log10POD ratio values. Image 3B displays a sample of substances that approach the 

median log10POD ratio. Image 3C includes all 48 substances for which the PODNAM, 95 > PODtraditional.  
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Figure 4: Illustration of the log10-bioactivity-exposure-ratio (BER). 
A) The cumulative frequency distributions for BER estimates are plotted. The BER95 values used the 95th 

percentile from the credible interval to predict the median total US population exposure from ExpoCast, 

whereas the BER50 values used the median exposure estimate. BER95 and BER50 values were calculated as 

the “95th%-ile” and “50th%-ile,” using the PODNAM,95 and PODNAM,50, respectively.  Orange line = BER95 using 

PODNAM,50; black line = BER95 using PODNAM,95; blue line = BER50 using PODNAM,50; gold line = BER50 using 

PODNAM,95.  B) Eleven chemicals had a BER95, 95th%-ile < 0, indicating overlap between the PODNAM,95 and 

the 95th percentile exposure prediction. Dashed red lines indicate where BER95, 95th%-ile = 0. 
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Figure 5: Exposure and in vitro bioactivity that defined chemicals with log10BER < 0.  
In (A), a scatterplot of log10 ExpoCast SEEM2 95th percentile value versus the PODNAM,95, with dotted red 

lines for the respective median values. The names of the 11 substances with log10BER95 < 0 are labeled. In 

(B) and (C), distributions of the exposure and the ToxCast AC50 data for all 448 substances are shown in 

the middle panels (gray histograms). Below these histograms in (B) and (C), side by side boxplots (showing 

the 1st quartile, median, and 3rd quartile) of the log10 ExpoCast SEEM2 95th percentile values and the 

ToxCast AC50 values are illustrated for the 11 substances with log10BER95 < 0. In (C), gold triangles indicate 

the 5th percentile of the AC50 distribution.  
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Figure 6: Comparison of Exposure Predictions from ExpoCast and Health Canada Evaluations.  
The total maximum values (in log10-mg/kg/day units) curated from Health Canada exposure assessments 

for 18 substances in this case study were compared to the ExpoCast (A) median and (B) 95th percentile 

predictions (in log10-mg/kg/day units), respectively. CASRN for these substances are labeled. The gray line 

shows a linear relationship. All CASRN and substance identifiers, including substance name, can be found 

in Supplemental File 2. 
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Figure 7. Further understanding of the POD ratio distribution. 
(A) The log10POD ratio is illustrated for the PODNAM,95 and the PODNAM, 50. The solid black line indicates 

where the log10-POD ratio95 is 0. Using the more conservative (i.e., lower) PODNAM,95, 48 of the 

448 substances (10.7%) demonstrated a log10POD ratio < 0 (to the left of the dashed vertical line), 

whereas 92 of the 448 substances (20.5%) demonstrated a log10-POD ratio < 0 using the 

PODNAM,50. The medians of the log10-POD ratio distributions are indicated by dashed lines for 

PODNAM, 95 and PODNAM, 50 as 2 and 1.2, respectively. (B) Maximum AED (max AED) was less than 

the PODtraditional (5th-%ile POD) in 60% of the cases where the log10POD ratio95 > 0 (using PODNAM, 

95). For the 48 chemicals with log10POD ratio95 < 0, the max AED was within the range of 

PODtraditional. 
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Figure 8. Study types enriched in the log10POD ratio95 < 0 set. 
The matrices used to evaluate study type enrichment are shown. Neither developmental/reproductive (grouped together) (p = 0.88) nor chronic 

(p = 0.45) study types appeared to be enriched in the log10POD ratio95 < 0 subset.  
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Figure 9. PODNAM,95 compared to the TTC. 
The log10TTC: PODNAM,95 ratio is illustrated for the 448 case study chemicals in (A). In (B), the log10 TTC value bin is compared to the log10PODNAM,95, 

in units of log10-mg/kg/day; dots represent all points and violin plots capture the shape of the distribution. 
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Table 1. Description of data sources used. 

Table 2. Inputs and metrics. Inputs and the resultant metrics used in this case study are consolidated and described, along with notes on the 

impact of selection of the input or metric in this analysis. 

Table 3. Chemical features enriched in the log10POD ratio95 < 0 set. The enriched chemical structural features, as represented by ToxPrints, for 

the log10POD ratio95 < 0 set. BA = balanced accuracy; OR = odds ratio; POD ratio = log10POD ratio95. 

Table 4. Details on the 48 substances with log10POD ratio95 < 0. Substances in this table are ordered based on the log10POD ratio, from smallest 

to largest for substances with log10POD ratio95 < 0 (column in gray). Note that for 33 of the 48 substances, the log10POD ratio95 is within one 

log10. The full table for all substances is available as Supplemental File 2. 
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Table 1. Description of data sources used. 

Data stream Source Version Notes 

Functional Use 
Categories 

EPA’s 
Aggregated 
Computational 
Toxicology 
Online Resource 
(ACToR) 

2014  Broad use categories (Dionisio et al., 2015; 
Wambaugh et al., 2014) used in ExpoCast 
SEEM2 were also used to describe the 
functional diversity of the 448 substances 
in this case study. 
 

High-
throughput 
bioactivity data 

ToxCast Invitrodb_v3 This is the public release of invitrodb dated 
September 2018 (EPA, 2018). These data 
were fit using the ToxCast Data Pipeline 
approach (tcpl R package v2). The data 
used in this case study are available as 
Supplemental File X. 

In vitro 
phenotypic 
profiles of lung, 
kidney, and liver 
cell models 
(HIPPTox) 

Performed by 
A*STAR for this 
case study 

The cell models and phenotypic readouts 
were described previously (Lee et al., 2018; 
Su et al., 2016). All phenotypic readouts 
(not limited to those predictive of tissue-
specific adversary effects) were used in 
computation of the HIPPTox-POD. 

Toxicokinetics High-throughput 
toxicokinetic 
(httk) data 

Httk R package 
v1.8 

Httk R package v1.8 is available from CRAN 
(https://cran.r-
project.org/web/packages/httk/index.html) 

In vivo PODsa ToxValDB in vivo 
toxicity 
information 

Development v5 
(May 2018) 

This database includes summary point-of-
departure information from multiple 
databases (as described in text) and study 
types, and is public in the CompTox 
Chemicals Dashboard. 

ECHA Repeated dose 
study results via 
the oral route in 
REACH 
registration 
dossiers 

These data are publicly available at 
https://echa.europa.eu/ 

https://cran.r-project.org/web/packages/httk/index.html
https://cran.r-project.org/web/packages/httk/index.html
https://echa.europa.eu/
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EFSA Published human 
health risk 
assessments in 
support of EU 
food law 
158/2002 
 
 
 

These data include PODs from multiple 
study types, mostly from acute, subchronic, 
chronic, and reproduction toxicity studies. 

Health Canada Published risk 
assessments 
conducted for 
existing 
substances under 
the Canadian 
Environmental 
Protection Act, 
1999 

Information was retrieved based on the 
availability of a published risk assessment 
conducted under various phases of 
Canada’s Chemicals Management Plan and 
earlier initiatives as well as corresponding 
availability of ToxCast and HTTK data.  Point 
of departure information was extracted 
from oral repeat-dose studies (of various 
durations) as well as from developmental 
and reproductive toxicity studies cited 
within the assessments. Where possible, 
both the NO(A)EL and LO(A)EL for each 
study were collected and the basis for the 
effect level is described (ECCC/HC, 2016).  
 

Exposure ExpoCast 
predictions 

Systematic 
Empirical 
Evaluation of 
Models version 2 
(SEEM2) 

The median and 95th percentile on the 
credible interval for the total US population 
exposure estimates were used 
(Wambaugh, et al., 2014). 

 Health Canada Published risk 
assessments 
conducted for 
existing 
substances under 

Exposure estimates were extracted from 
the same assessments as their respective in 
vivo POD values. This included the 
estimated daily intakes from environmental 
media as well as intakes from use of certain 
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the Canadian 
Environmental 
Protection Act, 
1999 

sentinel consumer products (ECCC/HC, 
2016). 
 

a All in vivo POD data from source databases were concatenated and are available in Supplemental File 1. 
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Table 2. Inputs and Metrics. 
Inputs and the resultant metrics used in this case study are consolidated and described, along with notes on the impact of selection of the input 

or metric in this analysis. 
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Input or Metric Description Rationale 

In vitro concentration 

used 
Minimum of 5th percentile of ToxCast AC50 values OR the HIPPTox-POD 

The goal was to use a value that represents a “lower bound” for in vitro 

bioactivity while accounting for experimental error/variability in these in vitro 

models. 

PODNAM,50 
This metric uses the 50th percentile (median) from the distribution of AED 

values based on the in vitro concentration used. 

In the HTTK modeling, Monte Carlo simulation was used to vary pharmacokinetic 

parameters to represent inter-individual variability in a population for calculation 

of steady state concentration (Css). Use of PODNAM,50 results in a NAM-based POD 

value that is 1.7 to 19-fold higher than PODNAM,95. 

PODNAM,95 
See PODNAM,50; this metric uses the 95th percentile (median) from the 

distribution. 

PODNAM,95 accounts for inter-individual variability and indicates that a lower oral 

dose than the PODNAM,50 would be needed to achieve the Css indicated by the 

bioactive concentrations in vitro. 

ExpoCast SEEM2 50th 

percentile 
Using “US Total Exposure” median on the credible interval prediction. 

This is a lower exposure value in mg/kg-bw/day that accounts for less uncertainty 

in the prediction. 

ExpoCast SEEM2 95th 

percentile 

Using “US Total Exposure” 95th percentile on the credible interval for a 

median exposure prediction. 

This is a higher exposure value in mg/kg-bw/day, accounting for more 

uncertainty in the prediction. This value can be ~ 2 orders of magnitude greater 

than the ExpoCast SEEM2 50th percentile. 

PODtraditional 
5th percentile of available in vivo PODs, including oral NOAEL, NOEL, LOAEL, 

LOEL values from mammalian toxicity studies in mg/kg-bw/day. 

Use of the 5th percentile is intended to represent a lower bound for in vivo 

adverse effects in the available database. 

Log10POD ratio95 Log10POD ratio using the PODtraditional and the PODNAM,95 
This logic results in the PODNAM appearing protective for the PODtraditional 89% of 

the time in this case study. The median log10POD ratio95 was 2. 

Log10POD ratio50 Log10POD ratio using the PODtraditional and the PODNAM,50. 
This logic results in the PODNAM appearing protective for the PODtraditional 80% of 

the time in this case study. The median log10POD ratio50 was 1.2. 

BER95, 95th %ile 

Bioactivity:exposure ratio; bioactivity = PODNAM,95; exposure = 95th percentile 

from the credible interval to predict median total US population exposure 

from ExpoCast SEEM2 

This BER is the most protective. It includes the highest amount of uncertainty 

from inter-individual variability in pharmacokinetic parameters in the IVIVE and 

the highest amount of uncertainty in the ExpoCast SEEM2 exposure prediction. 

Using this BER will make more substances appear to be of greater priority for 

review. 

BER95, 50th %ile 

Bioactivity:exposure ratio; bioactivity = PODNAM,50; exposure = 95th percentile 

from the credible interval to predict median total US population exposure 

from ExpoCast SEEM2 

This BER tends to be, approximately, 10 times greater than the BER95, 95th %ile. 

BER50, 95th %ile 

Bioactivity:exposure ratio; bioactivity = PODNAM,95; exposure = 50th percentile 

from the credible interval to predict median total US population exposure 

from ExpoCast SEEM2 

This BER tends to be, approximately, 10 times greater than the BER95, 50th %ile 

and 100 times greater than the BER95, 95th %ile. 

BER50, 50th %ile 

Bioactivity:exposure ratio; bioactivity = PODNAM,50; exposure = 50th percentile 

from the credible interval to predict median total US population exposure 

from ExpoCast SEEM2 

This BER tends to be, approximately, 10 times greater than the BER50, 95th %ile 

and 1000 times greater than the BER95, 95th %ile. 
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Table 3. Chemical features enriched in the log10POD ratio95 < 0 set. 
The enriched chemical structural features, as represented by ToxPrints, for the log10POD ratio95 < 0 set. BA = balanced accuracy; OR = odds ratio; 

POD ratio = log10POD ratio95. 
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Table 4. Details on the 48 substances with log10POD ratio95 < 0. 
Substances in this table are ordered based on the log10POD ratio, from smallest to largest for substances with log10POD ratio95 < 0 (column in 

gray). Note that for 33 of the 48 substances, the log10POD ratio95 is within one log10. The full table for all substances is available as Supplemental 

File 2. 
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1 DTXSID9034818 35575-96-3 Azamethiphos 2.98 3.22 -2.68 -2.92 8.79 10.75 9.04 10.99 

2 DTXSID2032683 7786-34-7 Mevinphos 0.19 0.65 -2.15 -2.61 4.49 6.19 4.94 6.65 

3 DTXSID9023914 141-66-2 Dicrotophos 0.42 0.80 -2.12 -2.50 4.72 6.41 5.10 6.79 

4 DTXSID4032405 23422-53-9 Formetanate hydrochloride 1.34 1.78 -1.77 -2.21 6.67 8.47 7.10 8.90 

5 DTXSID4032611 13194-48-4 Ethoprop -0.25 0.42 -1.75 -2.42 4.98 6.90 5.65 7.57 

6 DTXSID3032464 41198-08-7 Profenofos -0.63 0.34 -1.68 -2.64 4.51 6.23 5.48 7.20 

7 DTXSID9024063 576-26-1 2,6-Dimethylphenol 0.39 0.96 -1.61 -2.18 4.82 6.73 5.39 7.30 

8 DTXSID4020375 50-29-3 Dichlorodiphenyltrichloroethane 0.23 1.12 -1.53 -2.42 5.33 7.17 6.22 8.07 

9 DTXSID9032327 22781-23-3 Bendiocarb 0.42 0.94 -1.32 -1.84 5.75 7.50 6.27 8.02 

10 DTXSID3024102 22224-92-6 Fenamiphos 0.26 0.98 -1.27 -1.99 6.13 8.01 6.85 8.72 

11 DTXSID1024174 78-48-8 Tribufos 0.18 0.90 -1.18 -1.90 5.15 6.90 5.87 7.62 

12 DTXSID3022162 1689-84-5 Bromoxynil 0.65 1.27 -1.18 -1.79 5.90 7.72 6.51 8.33 

13 DTXSID2020341 76-57-3 Codeine 2.44 2.88 -1.15 -1.59 7.22 9.19 7.66 9.63 

14 DTXSID0021389 52-68-6 Trichlorfon 1.83 2.18 -1.13 -1.48 7.69 9.66 8.04 10.00 

15 DTXSID6021086 23135-22-0 Oxamyl 0.12 0.47 -1.12 -1.47 5.88 8.00 6.23 8.34 

16 DTXSID8023846 30560-19-1 Acephate -0.02 0.34 -0.94 -1.30 5.46 7.23 5.83 7.59 

17 DTXSID6024177 10265-92-6 Methamidophos -0.43 -0.05 -0.87 -1.25 5.22 6.89 5.60 7.27 

18 DTXSID6032354 105512-06-9 Clodinafop-propargyl 0.34 0.73 -0.83 -1.22 5.54 7.24 5.92 7.62 

19 DTXSID3020122 86-50-0 Azinphos-methyl -0.03 0.51 -0.79 -1.34 5.71 7.64 6.25 8.18 

20 DTXSID0023951 5234-68-4 Carboxin 0.62 1.18 -0.72 -1.28 6.57 8.41 7.12 8.97 

21 DTXSID7020508 75-60-5 Dimethylarsinic acid 0.28 0.65 -0.68 -1.05 5.91 7.58 6.28 7.95 

22 DTXSID9020790 1634-78-2 Malaoxon 0.65 1.03 -0.65 -1.03 5.87 7.60 6.26 7.98 
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23 DTXSID7020479 60-51-5 Dimethoate -0.67 -0.14 -0.64 -1.16 3.48 5.38 4.01 5.90 

24 DTXSID3020679 76-44-8 Heptachlor -0.22 0.85 -0.61 -1.68 4.95 6.66 6.01 7.73 

25 DTXSID4024066 528-29-0 1,2-Dinitrobenzene 0.20 0.82 -0.60 -1.22 5.23 7.13 5.86 7.75 

26 DTXSID5020528 606-20-2 2,6-Dinitrotoluene 1.18 1.78 -0.58 -1.18 6.23 8.05 6.82 8.64 

27 DTXSID2032552 142459-58-3 Flufenacet 0.55 1.20 -0.47 -1.12 5.67 7.48 6.32 8.13 

28 DTXSID2032637 123312-89-0 Pymetrozine 0.93 1.46 -0.44 -0.96 6.85 8.80 7.38 9.33 

29 DTXSID2034962 153719-23-4 Thiamethoxam 0.98 1.33 -0.37 -0.72 6.69 8.73 7.04 9.08 

30 DTXSID7024902 533-74-4 Dazomet 0.37 0.85 -0.35 -0.83 5.21 7.22 5.69 7.70 

31 DTXSID1020855 298-00-0 Methyl parathion -1.20 -0.43 -0.32 -1.10 2.90 4.73 3.67 5.51 

32 DTXSID3024316 34014-18-1 Tebuthiuron 1.12 1.70 -0.28 -0.86 6.56 8.22 7.14 8.80 

33 DTXSID9020247 63-25-2 Carbaryl 0.83 1.35 -0.23 -0.74 6.25 7.98 6.77 8.49 

34 DTXSID4024729 10605-21-7 Carbendazim 0.97 1.40 -0.17 -0.60 6.85 8.99 7.28 9.42 

35 DTXSID7021869 106-44-5 p-Cresol 0.86 1.34 -0.16 -0.64 4.58 6.33 5.06 6.81 

36 DTXSID9020370 1596-84-5 Daminozide 0.21 0.56 -0.12 -0.48 6.40 8.21 6.76 8.56 

37 DTXSID8020620 55-38-9 Fenthion -1.05 0.01 -0.10 -1.17 4.10 5.95 5.16 7.02 

38 DTXSID5023950 55285-14-8 Carbosulfan 0.10 1.12 -0.10 -1.12 5.31 7.04 6.33 8.06 

39 DTXSID0034930 98886-44-3 Fosthiazate -1.03 -0.62 -0.06 -0.48 4.33 6.08 4.74 6.49 

40 DTXSID8024234 27314-13-2 Norflurazon 0.24 0.83 -0.04 -0.63 5.46 7.31 6.06 7.90 

41 DTXSID1022265 15972-60-8 Alachlor 0.03 0.64 -0.03 -0.64 5.42 7.17 6.02 7.78 

42 DTXSID6023600 57-24-9 Strychnine 0.43 0.93 -0.03 -0.53 6.25 8.14 6.74 8.63 

43 DTXSID3020964 98-95-3 Nitrobenzene 0.73 1.31 -0.03 -0.61 3.74 5.67 4.32 6.25 

44 DTXSID7020182 80-05-7 Bisphenol A -1.50 -0.75 -0.02 -0.77 1.16 3.10 1.91 3.85 

45 DTXSID4024145 51235-04-2 Hexazinone 1.02 1.50 -0.02 -0.50 6.38 8.07 6.86 8.54 

46 DTXSID5032577 79538-32-2 Tefluthrin 0.05 0.82 -0.01 -0.78 5.09 6.91 5.85 7.68 

47 DTXSID4020458 2921-88-2 Chlorpyrifos -1.59 -0.43 -0.01 -1.17 4.02 6.19 5.19 7.35 

48 DTXSID0020446 330-54-1 Diuron -0.11 0.55 -0.01 -0.66 5.88 7.80 6.53 8.45 
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Table 1. Description of data sources used. 

Data stream Source Version Notes 

Functional Use 
Categories 

EPA’s 
Aggregated 
Computational 
Toxicology 
Online Resource 
(ACToR) 

2014  Broad use categories (Dionisio et al., 2015; 
Wambaugh et al., 2014) used in ExpoCast 
SEEM2 were also used to describe the 
functional diversity of the 448 substances 
in this case study. 
 

High-
throughput 
bioactivity data 

ToxCast Invitrodb_v3 This is the public release of invitrodb dated 
September 2018 (EPA, 2018). These data 
were fit using the ToxCast Data Pipeline 
approach (tcpl R package v2). The data 
used in this case study are available as 
Supplemental File X. 

In vitro 
phenotypic 
profiles of lung, 
kidney, and liver 
cell models 
(HIPPTox) 

Performed by 
A*STAR for this 
case study 

The cell models and phenotypic readouts 
were described previously (Lee et al., 2018; 
Su et al., 2016). All phenotypic readouts 
(not limited to those predictive of tissue-
specific adversary effects) were used in 
computation of the HIPPTox-POD. 

Toxicokinetics High-throughput 
toxicokinetic 
(httk) data 

Httk R package 
v1.8 

Httk R package v1.8 is available from CRAN 
(https://cran.r-
project.org/web/packages/httk/index.html) 

In vivo PODsa ToxValDB in vivo 
toxicity 
information 

Development v5 
(May 2018) 

This database includes summary point-of-
departure information from multiple 
databases (as described in text) and study 
types, and is public in the CompTox 
Chemicals Dashboard. 

ECHA Repeated dose 
study results via 
the oral route in 
REACH 
registration 
dossiers 

These data are publicly available at 
https://echa.europa.eu/ 

https://cran.r-project.org/web/packages/httk/index.html
https://cran.r-project.org/web/packages/httk/index.html
https://echa.europa.eu/
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EFSA Published human 
health risk 
assessments in 
support of EU 
food law 
158/2002 
 
 
 

These data include PODs from multiple 
study types, mostly from acute, subchronic, 
chronic, and reproduction toxicity studies. 

Health Canada Published risk 
assessments 
conducted for 
existing 
substances under 
the Canadian 
Environmental 
Protection Act, 
1999 

Information was retrieved based on the 
availability of a published risk assessment 
conducted under various phases of 
Canada’s Chemicals Management Plan and 
earlier initiatives as well as corresponding 
availability of ToxCast and HTTK data.  Point 
of departure information was extracted 
from oral repeat-dose studies (of various 
durations) as well as from developmental 
and reproductive toxicity studies cited 
within the assessments. Where possible, 
both the NO(A)EL and LO(A)EL for each 
study were collected and the basis for the 
effect level is described (ECCC/HC, 2016).  
 

Exposure ExpoCast 
predictions 

Systematic 
Empirical 
Evaluation of 
Models version 2 
(SEEM2) 

The median and 95th percentile on the 
credible interval for the total US population 
exposure estimates were used 
(Wambaugh, et al., 2014). 

 Health Canada Published risk 
assessments 
conducted for 
existing 
substances under 

Exposure estimates were extracted from 
the same assessments as their respective in 
vivo POD values. This included the 
estimated daily intakes from environmental 
media as well as intakes from use of certain 
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the Canadian 
Environmental 
Protection Act, 
1999 

sentinel consumer products (ECCC/HC, 
2016). 
 

a All in vivo POD data from source databases were concatenated and are available in Supplemental File 1. 
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Table 2. Inputs and Metrics. 
Inputs and the resultant metrics used in this case study are consolidated and described, along with notes on the impact of selection of the input 

or metric in this analysis. 
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Input or Metric Description Rationale 

In vitro concentration 

used 
Minimum of 5th percentile of ToxCast AC50 values OR the HIPPTox-POD 

The goal was to use a value that represents a “lower bound” for in vitro 

bioactivity while accounting for experimental error/variability in these in vitro 

models. 

PODNAM,50 
This metric uses the 50th percentile (median) from the distribution of AED 

values based on the in vitro concentration used. 

In the HTTK modeling, Monte Carlo simulation was used to vary pharmacokinetic 

parameters to represent inter-individual variability in a population for calculation 

of steady state concentration (Css). Use of PODNAM,50 results in a NAM-based POD 

value that is 1.7 to 19-fold higher than PODNAM,95. 

PODNAM,95 
See PODNAM,50; this metric uses the 95th percentile (median) from the 

distribution. 

PODNAM,95 accounts for inter-individual variability and indicates that a lower oral 

dose than the PODNAM,50 would be needed to achieve the Css indicated by the 

bioactive concentrations in vitro. 

ExpoCast SEEM2 50th 

percentile 
Using “US Total Exposure” median on the credible interval prediction. 

This is a lower exposure value in mg/kg-bw/day that accounts for less uncertainty 

in the prediction. 

ExpoCast SEEM2 95th 

percentile 

Using “US Total Exposure” 95th percentile on the credible interval for a 

median exposure prediction. 

This is a higher exposure value in mg/kg-bw/day, accounting for more 

uncertainty in the prediction. This value can be ~ 2 orders of magnitude greater 

than the ExpoCast SEEM2 50th percentile. 

PODtraditional 
5th percentile of available in vivo PODs, including oral NOAEL, NOEL, LOAEL, 

LOEL values from mammalian toxicity studies in mg/kg-bw/day. 

Use of the 5th percentile is intended to represent a lower bound for in vivo 

adverse effects in the available database. 

Log10POD ratio95 Log10POD ratio using the PODtraditional and the PODNAM,95 
This logic results in the PODNAM appearing protective for the PODtraditional 89% of 

the time in this case study. The median log10POD ratio95 was 2. 

Log10POD ratio50 Log10POD ratio using the PODtraditional and the PODNAM,50. 
This logic results in the PODNAM appearing protective for the PODtraditional 80% of 

the time in this case study. The median log10POD ratio50 was 1.2. 

BER95, 95th %ile 

Bioactivity:exposure ratio; bioactivity = PODNAM,95; exposure = 95th percentile 

from the credible interval to predict median total US population exposure 

from ExpoCast SEEM2 

This BER is the most protective. It includes the highest amount of uncertainty 

from inter-individual variability in pharmacokinetic parameters in the IVIVE and 

the highest amount of uncertainty in the ExpoCast SEEM2 exposure prediction. 

Using this BER will make more substances appear to be of greater priority for 

review. 

BER95, 50th %ile 

Bioactivity:exposure ratio; bioactivity = PODNAM,50; exposure = 95th percentile 

from the credible interval to predict median total US population exposure 

from ExpoCast SEEM2 

This BER tends to be, approximately, 10 times greater than the BER95, 95th %ile. 

BER50, 95th %ile 

Bioactivity:exposure ratio; bioactivity = PODNAM,95; exposure = 50th percentile 

from the credible interval to predict median total US population exposure 

from ExpoCast SEEM2 

This BER tends to be, approximately, 10 times greater than the BER95, 50th %ile 

and 100 times greater than the BER95, 95th %ile. 

BER50, 50th %ile 

Bioactivity:exposure ratio; bioactivity = PODNAM,50; exposure = 50th percentile 

from the credible interval to predict median total US population exposure 

from ExpoCast SEEM2 

This BER tends to be, approximately, 10 times greater than the BER50, 95th %ile 

and 1000 times greater than the BER95, 95th %ile. 
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Table 3. Chemical features enriched in the log10POD ratio95 < 0 set. 
The enriched chemical structural features, as represented by ToxPrints, for the log10POD ratio95 < 0 set. BA = balanced accuracy; OR = odds ratio; 

POD ratio = log10POD ratio95. 
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Table 4. Details on the 48 substances with log10POD ratio95 < 0. 
Substances in this table are ordered based on the log10POD ratio, from smallest to largest for substances with log10POD ratio95 < 0 (column in 

gray). Note that for 33 of the 48 substances, the log10POD ratio95 is within one log10. The full table for all substances is available as Supplemental 

File 2. 
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1 DTXSID9034818 35575-96-3 Azamethiphos 2.98 3.22 -2.68 -2.92 8.79 10.75 9.04 10.99 

2 DTXSID2032683 7786-34-7 Mevinphos 0.19 0.65 -2.15 -2.61 4.49 6.19 4.94 6.65 

3 DTXSID9023914 141-66-2 Dicrotophos 0.42 0.80 -2.12 -2.50 4.72 6.41 5.10 6.79 

4 DTXSID4032405 23422-53-9 Formetanate hydrochloride 1.34 1.78 -1.77 -2.21 6.67 8.47 7.10 8.90 

5 DTXSID4032611 13194-48-4 Ethoprop -0.25 0.42 -1.75 -2.42 4.98 6.90 5.65 7.57 

6 DTXSID3032464 41198-08-7 Profenofos -0.63 0.34 -1.68 -2.64 4.51 6.23 5.48 7.20 

7 DTXSID9024063 576-26-1 2,6-Dimethylphenol 0.39 0.96 -1.61 -2.18 4.82 6.73 5.39 7.30 

8 DTXSID4020375 50-29-3 Dichlorodiphenyltrichloroethane 0.23 1.12 -1.53 -2.42 5.33 7.17 6.22 8.07 

9 DTXSID9032327 22781-23-3 Bendiocarb 0.42 0.94 -1.32 -1.84 5.75 7.50 6.27 8.02 

10 DTXSID3024102 22224-92-6 Fenamiphos 0.26 0.98 -1.27 -1.99 6.13 8.01 6.85 8.72 

11 DTXSID1024174 78-48-8 Tribufos 0.18 0.90 -1.18 -1.90 5.15 6.90 5.87 7.62 

12 DTXSID3022162 1689-84-5 Bromoxynil 0.65 1.27 -1.18 -1.79 5.90 7.72 6.51 8.33 

13 DTXSID2020341 76-57-3 Codeine 2.44 2.88 -1.15 -1.59 7.22 9.19 7.66 9.63 

14 DTXSID0021389 52-68-6 Trichlorfon 1.83 2.18 -1.13 -1.48 7.69 9.66 8.04 10.00 

15 DTXSID6021086 23135-22-0 Oxamyl 0.12 0.47 -1.12 -1.47 5.88 8.00 6.23 8.34 

16 DTXSID8023846 30560-19-1 Acephate -0.02 0.34 -0.94 -1.30 5.46 7.23 5.83 7.59 

17 DTXSID6024177 10265-92-6 Methamidophos -0.43 -0.05 -0.87 -1.25 5.22 6.89 5.60 7.27 

18 DTXSID6032354 105512-06-9 Clodinafop-propargyl 0.34 0.73 -0.83 -1.22 5.54 7.24 5.92 7.62 

19 DTXSID3020122 86-50-0 Azinphos-methyl -0.03 0.51 -0.79 -1.34 5.71 7.64 6.25 8.18 

20 DTXSID0023951 5234-68-4 Carboxin 0.62 1.18 -0.72 -1.28 6.57 8.41 7.12 8.97 

21 DTXSID7020508 75-60-5 Dimethylarsinic acid 0.28 0.65 -0.68 -1.05 5.91 7.58 6.28 7.95 

22 DTXSID9020790 1634-78-2 Malaoxon 0.65 1.03 -0.65 -1.03 5.87 7.60 6.26 7.98 
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23 DTXSID7020479 60-51-5 Dimethoate -0.67 -0.14 -0.64 -1.16 3.48 5.38 4.01 5.90 

24 DTXSID3020679 76-44-8 Heptachlor -0.22 0.85 -0.61 -1.68 4.95 6.66 6.01 7.73 

25 DTXSID4024066 528-29-0 1,2-Dinitrobenzene 0.20 0.82 -0.60 -1.22 5.23 7.13 5.86 7.75 

26 DTXSID5020528 606-20-2 2,6-Dinitrotoluene 1.18 1.78 -0.58 -1.18 6.23 8.05 6.82 8.64 

27 DTXSID2032552 142459-58-3 Flufenacet 0.55 1.20 -0.47 -1.12 5.67 7.48 6.32 8.13 

28 DTXSID2032637 123312-89-0 Pymetrozine 0.93 1.46 -0.44 -0.96 6.85 8.80 7.38 9.33 

29 DTXSID2034962 153719-23-4 Thiamethoxam 0.98 1.33 -0.37 -0.72 6.69 8.73 7.04 9.08 

30 DTXSID7024902 533-74-4 Dazomet 0.37 0.85 -0.35 -0.83 5.21 7.22 5.69 7.70 

31 DTXSID1020855 298-00-0 Methyl parathion -1.20 -0.43 -0.32 -1.10 2.90 4.73 3.67 5.51 

32 DTXSID3024316 34014-18-1 Tebuthiuron 1.12 1.70 -0.28 -0.86 6.56 8.22 7.14 8.80 

33 DTXSID9020247 63-25-2 Carbaryl 0.83 1.35 -0.23 -0.74 6.25 7.98 6.77 8.49 

34 DTXSID4024729 10605-21-7 Carbendazim 0.97 1.40 -0.17 -0.60 6.85 8.99 7.28 9.42 

35 DTXSID7021869 106-44-5 p-Cresol 0.86 1.34 -0.16 -0.64 4.58 6.33 5.06 6.81 

36 DTXSID9020370 1596-84-5 Daminozide 0.21 0.56 -0.12 -0.48 6.40 8.21 6.76 8.56 

37 DTXSID8020620 55-38-9 Fenthion -1.05 0.01 -0.10 -1.17 4.10 5.95 5.16 7.02 

38 DTXSID5023950 55285-14-8 Carbosulfan 0.10 1.12 -0.10 -1.12 5.31 7.04 6.33 8.06 

39 DTXSID0034930 98886-44-3 Fosthiazate -1.03 -0.62 -0.06 -0.48 4.33 6.08 4.74 6.49 

40 DTXSID8024234 27314-13-2 Norflurazon 0.24 0.83 -0.04 -0.63 5.46 7.31 6.06 7.90 

41 DTXSID1022265 15972-60-8 Alachlor 0.03 0.64 -0.03 -0.64 5.42 7.17 6.02 7.78 

42 DTXSID6023600 57-24-9 Strychnine 0.43 0.93 -0.03 -0.53 6.25 8.14 6.74 8.63 

43 DTXSID3020964 98-95-3 Nitrobenzene 0.73 1.31 -0.03 -0.61 3.74 5.67 4.32 6.25 

44 DTXSID7020182 80-05-7 Bisphenol A -1.50 -0.75 -0.02 -0.77 1.16 3.10 1.91 3.85 

45 DTXSID4024145 51235-04-2 Hexazinone 1.02 1.50 -0.02 -0.50 6.38 8.07 6.86 8.54 

46 DTXSID5032577 79538-32-2 Tefluthrin 0.05 0.82 -0.01 -0.78 5.09 6.91 5.85 7.68 

47 DTXSID4020458 2921-88-2 Chlorpyrifos -1.59 -0.43 -0.01 -1.17 4.02 6.19 5.19 7.35 

48 DTXSID0020446 330-54-1 Diuron -0.11 0.55 -0.01 -0.66 5.88 7.80 6.53 8.45 
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