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Abstract—We study the application of machine learning to
channel classification for identifying whether a channel belongs to
the Line of Sight (LOS) or Non-Line of Sight (NLOS) classes. The
machine learning approach is able to work on multiple features,
resulting in a much more accurate pattern identification and
classification performance. We show that even in the absence of
channel estimation, it is possible to classify the channel using the
received preamble sequence with machine learning. This allows
quicker classification and it is robust to channel estimation error,
which is favorable in the low Signal to Noise Ratio (SNR) regime.
The scheme is evaluated for IEEE 802.11ad systems, but the
concept is also applicable to other wireless systems in general.

I. INTRODUCTION

The need for higher bandwidth to support very high
throughput wireless transmissions has motivated the use of
the 60 GHz channels. With 7 GHz (59-66 GHz) of unlicensed
band, it becomes a very attractive channel to deliver multi
Gigabit data rate for applications such as high-definition (HD)
video streaming, in-car and in-flight entertainment (IFE) sys-
tems, and femtocell backhaul links. The IEEE 802 standardiza-
tion body has worked out the specifications for the 802.11ad
protocol [1], which further accelerates the deployment of 60
GHz communications.

One of the biggest challenges in wireless communications at
60 GHz is the propagation channel. At such a high frequency,
the propagation loss is more severe than 2 GHz or 5 GHz
channels, and the microwave signal starts to show its quasi-
optical nature [2] (having a weak diffraction component,
and structured/clustered reflective components). The channel
quality is therefore highly dependent on the presence of
the direct path or Line of Sight (LOS) component. Fig. 1
shows a link-level simulation of 802.11ad systems according
to [1] assuming isotropic antennas at the transmitter and
receiver, which are separated 3 meters apart (medium distance
scenario). It can be seen from the figure that the packet error
rate (PER) performance gap can reach up to 3 dB between the
LOS and Non-LOS (NLOS) channel.

To maintain the Quality of Service (QoS), it is necessary to
adapt the transmission strategy including the Modulation and
Coding Schemes (MCS) according to the channel condition.
From the example shown in Fig. 1, to achieve a target PER
of 10−2 at 13 dB Signal to Noise Ratio (SNR) level, MCS 9
with Low Density Parity Check (LDPC) code rate of 13/16
and π/2-Quadrature Phase Shift Keying (QPSK) modulation
can be used when the channel has the LOS component.
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Fig. 1. Average Packet Error Rate

Otherwise, MCS 7 with LDPC code rate of 5/8 and π/2-
QPSK modulation should be used instead. This necessitates
a method to identify the channel into LOS/NLOS classes,
which needs to be performed in real time, especially in the IFE
application whereby the dynamics of the in-cabin environment
causes the LOS components to be frequently blocked by
passing passengers or stewardess. Without an accurate channel
identification, throughput loss will be incurred if a LOS
channel is identified as a NLOS channel hence a low-rate MCS
is used; or many re-transmissions will be caused when a NLOS
channel is identified as a LOS channel hence a high-rate MCS
is used to lead to a packet error. As a result, throughput loss
is incurred.

Existing approach for LOS/NLOS classification is based
on a computation of some metric (e.g. the Rician K-factor
in [3], the Root Mean Square (RMS) delay spread, and
mean excess delay in [4]), followed by a binary hypothesis
testing. Machine learning has recently found its use in wireless
communications, and it has been considered for applications
such as jamming detection [5] and antenna selection [6].
This paper is motivated to use machine learning approach for
channel classification. The ability of machine learning to work
on multi-dimensional features and to identify patterns is shown
to achieve better classification result than the single-metric
classifier. Furthermore, the scheme enables us to perform the
classification earlier by relying only on the received preamble
sequence than waiting for the channel estimates using the
received preambles.

The remaining part of the paper is organized as follows.
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 1 Wall 7% U[10, 20] U[0, 75] U[-165, -90] U[-4, -3.2] U[3.2, 4] -3 1.5 
2 Front Partition 9% U[8, 23] U[-60, 15] * U[-15, 0] U[60, 180] * U[0, 15] U[-3.6, -2.8] U[2.8, 3.6] -8.5 3.5 
3 Rear Partition 9% U[8, 23] U[60, 180] * U[0, 15] U[-60, 15] * U[-15, 0] U[-3.6, -2.8] U[2.8, 3.6] -8.5 3.5 
4 Ceiling 4% U[2, 8] 0 0 U[15, 25] U[30, 50] -3 1.5 
5 Floor 4.5% U[2, 8] 0 0 U[-55, -35] U[-55, -35] -8.5 3.5 
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6 Wall – Wall 12.5% U[24, 40] U[-90, 90] U[90, 270] U[-5, -4.2] U[4.2, 5] -6 3 
7 Wall – Front Partition 12.5% U[20, 36] U[-50, 50] U[130, 230] U[-3.6, -2.8] U[2.8, 3.6] -11.5 5 
8 Wall – Rear Partition 12.5% U[20, 36] U[50, 140] U[40, 130] U[-3.6, -2.8] U[2.8, 3.6] -11.5 5 
9 Floor – Ceiling 5% U[3, 9] 0 0 U[-55, -35] U[-55, -35] -11.5 5 
10 Floor - Wall 4.5% U[3, 9] 0 0 U[-30, -15] U[-22.5, -11.25] -11.5 5 

Section II describes the 60 GHz channel model used through-
out the experiment. Section III explains the learning algorithm
used, including the data preparation and training method.
Performance evaluation is presented in Section IV. Finally,
Section V concludes the paper.

II. CHANNEL MODEL

Considering the quasi-optical nature of 60 GHz propa-
gation channel, we adopt the statistical model described in
[2] whereby most of the transmitted signal power reaches
the destination via a direct path (LOS component) and a
few low-order reflected paths (NLOS component). The ith

reflected signal component departs from the transmitter at
azimuth angle Φ

(i)
tx and elevation angle Θ

(i)
tx ; and arrives at

the receiver with a propagation delay of T (i) at azimuth
angle Φ

(i)
rx and elevation angle Θ

(i)
rx . These parameters can

be well approximated using image based ray-tracing method.
Denoting by A(i) the amplitude gain of the ith reflected signal
component, the channel impulse response is expressed as [2]:

h (t, ϕtx, θtx, ϕrx, θrx) =

NI∑
i=0

A(i)C(i)
(
t− T (i),

ϕtx − Φ
(i)
tx , θtx −Θ

(i)
tx , ϕrx − Φ(i)

rx , θrx −Θ(i)
rx

)
. (1)

In the above, the function C(i)(·) is used to describe the im-
pulse response contributed from the ith reflected component,
which also consists of a cluster of rays closely spaced in time
and angular domain. Denoting as τ (i,k) the relative delay of
the kth ray in the ith cluster, and ϕ

(i,k)
tx , θ(i,k)tx , ϕ(i,k)

rx , θ(i,k)rx

as the relative angles at the transmitter and receiver for the
azimuth and elevation direction of the kth ray in the ith cluster,
respectively, the intra-cluster impulse response C(i)(·) can be
expressed as [2]:

C(i)(t, ϕtx, θtx, ϕrx, θrx) =

N
(i)
K∑

k=1

α(i,k)δ
(
t− τ (i,k)

)
δ (ϕtx−

ϕ
(i,k)
tx

)
δ
(
θtx − θ

(i,k)
tx

)
δ
(
ϕrx − ϕ(i,k)

rx

)
δ
(
θrx − θ(i,k)rx

)
, (2)

where δ(·) is the Dirac delta function. The amplitude of the
kth ray in the ith cluster α(i,k) follows an exponential power

 

Fig. 2. Ray Tracing Simulation in a Mock-up Cabin of Airbus A350

decay with Rayleigh distributed amplitude, Normal distributed
arrival/departure azimuth/elevation angles, and Poisson dis-
tributed Time of Arrival (ToA). We use the same parameters
as the conference room environment reported in [2] for the
intra cluster rays characteristics.

For the inter-cluster characteristics, we perform an image-
based ray tracing simulation on Airbus A350 passenger aircraft
layout and cross-section as shown in Fig. 2. This diagram is
adapted from [7, Fig. 4] which gives the cabin mock-up cross
section of Airbus A340. In total, we consider a maximum
of 5 first order and 5 second order reflective components,
and included the cabin wall, ceiling, floor, and front/rear
area partition as the reflectors. The obtained parameters are
summarized in Table I. We have used ∪[a, b] to denote a
uniform distribution from a to b, and ∗ to denote a convolution
operation. The cells that are shaded red indicates the presence
of correlation across parameters from different reflected com-
ponents (column-wise correlation), while those that are shaded
blue indicates the presence of correlation across parameters at
the transmitter and the receiver (row-wise correlation).

As far as the channel gain is concerned, the following
attenuated Friis transmission equation is used:

G(i) ≈ 20 log10 A
(i) =

g(i)λ

4πd(i)
, (3)

where λ is the wavelength (equal to 5× 10−3 for the 60 GHz
frequency), d(i) is the total distance traveled by ith signal
component, and g(i) is the attenuation factor, which is equal
to g(0) = 1 for the LOS component, and it is random according
to a truncated log-normal distribution with mean and standard
deviation as specified in Table I.



III. LEARNING ALGORITHM

We adopt a supervised learning approach, whereby a col-
lection of labeled data set is used to train a model, which will
then be used to classify a new set of input data. Since there
are only two classes of interest (LOS and NLOS), this falls
into a binary classification problem.

A. Data Generation and Collection

In order to obtain the data set, we randomly generate 1000
channel realizations in Matlab for each of the classes using the
parameters obtained in Section II. Each of these channel re-
alizations comprises of multiple taps with their corresponding
delay and magnitude. The set of generated channel realizations
forms a data set (actual channel data set) which will be used
to perform classification under idealistic scenario, whereby the
channel impulse response (CIR) is known perfectly.

In practical scenario, however, the receiver does not have
access to the actual channel, and have to estimate them from
the noisy and corrupted received signal. To generate a data
set for the channel estimate, we use a link level simulation
of 802.11ad system which we have developed in Matlab
according to the specification in [1]. For simplicity, we choose
a single carrier mode, and generated random data payload to
create a physical (PHY) layer frame as illustrated in Fig. 3.

Preamble
STF CEF

Header Data
Beamforming 

Field

Fig. 3. 802.11ad Single Carrier PHY Frame Structure

This PHY frame packet is then transmitted over the channel
which we have generated earlier. In addition to the multipath
dispersion, the link level simulation also adds impairments
such as In-phase/Quadrature (I/Q) imbalance, phase noise,
Analog to Digital Conversion/Digital Analog to Conversion
(ADC/DAC) clipping noise, Direct Current (DC) offset, carrier
frequency offset, as well as additive Gaussian noise to the
received signal. The system parameters used in the simulation
are summarized in Table II.

TABLE II
802.11AD LINK LEVEL SIMULATION SYSTEM PARAMETERS

Parameters Value 
Centre Frequency 60.48GHz 
Sampling frequency 3.52GHz 
AD / DA bits 6 bits 
Frequency offsets 40ppm 
Tx / Rx IQ imbalance Amplitude 1dB / Phase 10° 
DC offset I-Phase / Q-Phase 10% 
Tx/Rx Phase noise PSD(0) = -95dBc/Hz 

fp = 1MHz 
fz = 100MHz 

Chip rate 1.76GHz 
Packet duration 22.87 μs 
MCS 7 (5/8 LDPC, π/2 QPSK) 
 

At the receiver, the impairments are estimated and compen-
sated using the Short Training Field (STF), and subsequently
the CIR is estimated using the Channel Estimation Fields

(CEF). This channel estimate is then collected and labeled
as LOS or NLOS accordingly, depending on the class of the
multipath channel that has been used in the simulation. The
obtained data set (estimated channel data set) will be used to
perform classification under practical scenario, whereby the
classification is performed on the estimated channel.

In addition to the data set for the actual and estimated
channel, we also collected another data set from the received
preamble sequence. In 802.11ad systems, the preamble com-
prises of a concatenation of different variations of comple-
mentary Golay sequences, therefore it has a certain pattern.
The motivation of using the received preamble as the data
set to perform classification is to study whether or not the
different channel classes (LOS and NLOS) alter the preamble
sequence pattern differently, and whether or not a machine
learning algorithm is able to capture those differences to
perform accurate classification.

The benefits of using the received preamble sequence in-
cludes quicker identification, as the classification does not need
to wait for the channel estimation results which are obtained
using the received channel estimation fields. The classifier is
also independent of the channel estimation performance. The
disadvantage of this method is the large feature size which
incurs higher complexity in both the model training and the
classification process. To collect the data set (preamble data
set), we store both the real and imaginary part of the received
preamble sequence, and label it as LOS or NLOS depending
on the class of the channel used in the simulation.

B. Model Training

Using the labeled data set collected in the earlier step, we
randomly select 60% for training and 40% for testing. To
minimize the impact of this selection, we repeat this process
20 times, and take the average value of the classification
performance.

For the learning algorithm, we use Random Forest [8] due
to its superior accuracy compared to the other classifiers. In
Random Forest, multiple random subsets of input features are
chosen, and multiple decision trees (hence the name forest) are
constructed, one for each set of the selected features. The final
decision made by the Random Forest is a weighted average of
the output of the decision trees in the forest, with its weights
optimized according to the performance of each individual
tree. We set the maximum number of trees generated to be
50, which is known to achieve a good trade-off between the
complexity and the classification performance [5].

Using the actual channel data set and the estimated channel
data set, the following features are considered.

1) K Factor: Based on the CIR equation given by (1) and
(2), the K-Factor can be calculated using the following formula

K =
|A(0)α(0,1)|2

∑NI

i=1

∑N
(i)
k

k=1 |A(i)α(i,k)|2
. (4)



2) RMS delay spread: The RMS delay spread of the
channel can be calculated using

ρ =

∑NI

i=0

∑N
(i)
k

k=1 ((T
(i) + τ (i,k))− μ)2|A(i)α(i,k)|2

∑NI

i=0

∑N
(i)
k

k=1 |A(i)α(i,k)|2
, (5)

where μ is the mean excess delay defined in (6), and it is
another feature considered for classification as described in
the next point.

3) Mean excess delay: The formula to calculate the mean
excess delay is given in the following

μ =

∑NI

i=0

∑N
(i)
k

k=1 (T
(i) + τ (i,k))|A(i)α(i,k)|2

∑NI

i=0

∑N
(i)
k

k=1 |A(i)α(i,k)|2
. (6)

The above three features are scalar features, and they have
been considered in [3] and [4] for binary hypothesis testing.
Since there is only one feature, the Random Forest algorithm
reduces to a classification tree in these cases. The other
features considered from the actual channel data set and the
estimated channel data set are as follows.

4) Channel magnitude gain (All taps): Here, we use the
magnitude of the CIR itself as the feature for classification.
Considering that the shape of the magnitude of the CIR is
different for LOS and NLOS scenario, it is expected that the
machine learning algorithm is able to differentiate between the
two patterns.

5) Top five channel taps: Considering only the five dom-
inant taps in the CIR, we use both the magnitude and the
relative delay of the five dominant taps as the classification
feature. Similarly, the different pattern of the five dominant
taps in the LOS and NLOS scenario suggests that it may be
sufficient to look at only the five dominant taps to classify the
channel.

6) Dominant channel tap: Following the same consider-
ation as using the top five dominant taps as features, this
considers an extreme case whereby only the dominant tap
(both the magnitude and its relative delay) is considered as
the classification feature.

Finally, the last feature which is only applicable to the
preamble data set, is the received preamble.

7) Received preamble sequence: Here, we use both the real
and imaginary components of the received preamble sequence.
In terms of the feature size, this is the largest compared to the
other features considered earlier. However, it is not clear if it
will be suitable for classification as the channel impairments
are still present and may disrupt the pattern necessary for
correct identification.

As far as the model training is concerned, we export the
data sets generated in Matlab into an Excel file, and use R
software [9], a programming language and environment for
statistical computing, to train the Random Forest and to use the
trained model to classify the channels in the test data set. The
classification results using different features under different
scenarios are given in the following section.
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IV. PERFORMANCE EVALUATION

Both the LOS as well as the NLOS classification per-
formance are considered. We begin with the ideal scenario
whereby the perfect CIR is assumed to be known, and the
features are calculated using this actual CIR.

A. Ideal Scenario

Fig. 4 shows the classification performance for the first six
features using the actual channel data set. It can be seen that
the classification performance of all the features (except the
RMS delay spread) achieves close to perfect 100% score.

To analyze the cause of the poor performance of the RMS
delay spread feature, we plot the values of all the single-value
features (namely the K-Factor, RMS delay spread, and mean
excess delay) in Fig. 5. It is apparent that the RMS delay
spread calculated for the LOS and NLOS channels overlap
with one another, therefore it not a good feature to use for
classifying the channel. In the meantime, both K-Factor and
mean excess delay show clear separation between those values
calculated from LOS channel and those from NLOS channels.

Despite the good classification performance, it should be
noted that this result is obtained under the ideal scenario
where perfect knowledge of the CIR is available. In practical
scenario, this information is not available, and the receiver
must perform channel estimation and construct the features
based on that estimate.

B. Practical Scenario

Here, the classification is performed using the features
calculated from the estimated channel data set. The additive
Gaussian noise power is set to -10 dB in this case. Fig. 6
shows the classification performance for both the LOS and
NLOS channels.

Compared to the classification performance under ideal
scenario as shown in Fig. 4, it is apparent that the presence of
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noise (and therefore the channel estimation error) causes sig-
nificant degradation, especially to those using the single-value
features. Meanwhile, the classification performance using the
channel taps information (with either all taps, top 5 taps, or
dominant tap), shows only a slight degradation, and still able to
achieve more than 90% correct classification. This shows that
even though the channel estimation error causes a deviation
to the values of the CIR, its effect on the shape/pattern of
the CIR is not very severe. As such, the machine learning
approach which relies more on the shape/pattern of the CIR
estimate, is still able to perform well.

On the contrary, all of the single-value features use a fixed
formula to calculate based on the actual values of the CIR.
Therefore, any deviation on the CIR estimate from the actual
CIR will have a direct impact to those features. To illustrate
this, we plot in Fig. 7 the values of the single-value features
based on the channels in the estimated channel data set.

It is apparent that the separation between the feature values
from the two classes is no longer possible, and there is a
significant overlap between the LOS and NLOS group.

The RMS delay spread does not perform well in the
ideal case, and it is the same in this scenario. For the K-
Factor, all the values become concentrated into small numbers.
Meanwhile, for the mean excess delay, the values from LOS
group become larger and overlap with the NLOS group. To
see the cause of this behavior, we plot one example CIR from
the LOS class and the corresponding estimate in Fig. 8.

From the figure, it is apparent that the main reason why the
K-Factor becomes very small is due to imperfect synchroniza-
tion. This causes the LOS component in the CIR estimate to
be slightly shifted away from the first tap. Consequently, the
K-Factor calculated according to (4) will shrink, as it relies
on the amplitude of the first tap in its numerator. As such,
the K-Factor for both LOS and NLOS channels is no longer
distinguishable. This problem occurs even in the high SNR
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case as shown in Fig. 8b.
As for the mean excess delay, the presence of estimation

noise generally increases the magnitude of the channel taps
which are small, and decreases those which are large. There-
fore, its quantity for the LOS channel which is supposed to be
small becomes larger and comparable to the NLOS channel.

An additional feature that we have considered is the received
preamble sequence, which uses the preamble data set for
classification. The performance of this feature is shown in the
right most bar chart in Fig. 6, and it is comparable to the
classification performance using the channel tap information
(around 90% accuracy). This shows that even though the
channel impairments and additive noise corrupt the received
preamble sequence, its structure is preserved, allowing the
machine learning algorithm to perform correct classification.

C. Impact of Additive Noise and Estimation Error

Having seen the classification performance for the different
features under ideal and noisy scenario, we are now interested
in evaluating how they perform at different noise levels. Fig. 9
shows the average classification performance of the different
features at different SNR values.

The K-Factor and RMS delay spread are not able to achieve
good performance in the SNR range considered. The only
single-value feature that has consistent performance (improved
classification accuracy with increasing SNR) is the mean
excess delay. However, its performance is inferior compared to
the features that use channel tap information and the received
preamble sequence.

The estimated CIR is shown to be a good feature for
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classification, and all the three features (all taps, top 5 taps,
and dominant tap) are able to achieve higher than 90% clas-
sification accuracy at SNR -10 dB and above. In general, the
more taps considered for classification, the better the resulting
performance.

Lastly, the received preamble sequence also exhibits good
classification performance in the SNR range considered, with
only slight degradation compared to those using channel tap
information at SNR levels larger than -15 dB. The performance
eventually converges to close to 100% accuracy at -4 dB and
above.

At the low SNR regime below -15 dB, the received preamble
sequence turns out to be a better feature for classification
than the channel tap information. Although these two features
rely on the shape/pattern for performing classification, at this
low SNR regime, the distortion introduced by the channel
estimation error severely impact the pattern in the channel tap
information used for classification. On the other hand, with the
receive preamble, the pattern is only affected by the channel
impairments, and not by the estimation algorithm. Therefore
the machine learning algorithm is still able to exploit it to
perform better classification.

V. CONCLUSIONS

This paper studies the application of machine learning
technique for channel classification. Using the IEEE 802.11ad
system in the aircraft cabin environment, we simulated the
propagation channel and considered different features for the
classification. Compared to the single-valued features such
as K-Factor, RMS delay spread, and mean excess delay, the
channel tap information of the estimated channel impulse
response is shown to be good for classification. Furthermore,
the received preamble sequence also offers a good classifi-
cation feature that is robust to the channel estimation error.
The ability of the machine learning to adapt the model as
the propagation condition changes using an on-line learning
concept is a subject of future work.
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