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A noise-tolerant algorithm for robot-sensor

calibration using a planar disk of arbitrary 3D

orientation
Wenyu Chen, Jia Du, Wei Xiong, Yue Wang, Shueching Chia, Bingbing Liu, Jierong Cheng, Ying Gu

Abstract—In a 3D scanning task, a robot-sensor system controls
a robotic arm to move a laser sensor. In order to align the
coordinate system of the robotic arm and laser sensor, prior
calibration is required to derive the transformation between
both coordinate systems. This paper proposes a new calibration
method in three steps: manual data collection, sensing data
calculation, and transformation solution. Firstly, at least four data
are required to be collected by the user. The sensing data is then
calculated from the collected data and adopted to provide the
desired transformation. The proposed algorithm has two features:
arbitrary placement of planar disk and noise tolerant. Using a
planar disk, the algorithm will automatically derive the angular
relationship between the disk and the sensor plane, enabling
arbitrary orientation placement. Noise tolerant is guaranteed by
fitting ellipses during the sensing data calculation and using a
single set of sensing data in transformation solution. Experiments
and comparisons are given to demonstrate the efficiency of the
proposed calibration algorithm.

Note to Practitioners:
Abstract—This article was motivated by the problem of cal-

ibrating a laser sensor and a positioning device (robot arm,
CMM, etc.) in a robust and fast manner. Specifically, the
calibration is to derive the transformation by aligning the sensors
coordinate system to the positioning devices coordinate system.
The proposed calibration procedure consists of two parts: manual
data collection and automatic transformation calculation. During
manual data collection, users only need to select four different
data; whereby each data contains of two positions with the same
orientation. Then, the desired transformation will be derived
automatically. The calibration is designed in an efficient and
robust way whereby: 1) data collection is done using a simple
planar disk placed in arbitrary orientations; 2) minimum human
interaction required; 3) tolerant to noise in the sensor data; and 4)
easy implementation by following a proven and standard protocol.

Keywords—Robot-sensor calibration, noise-tolerant, calibration
disk, elliptic fitting.

I. INTRODUCTION

CALIBRATION is to determine the relationship among
different measuring devices [1]–[3]. In any tool/flange or

hand/eye integrated system involving moving sensor [4]–[6],
finding the geometry transformation between two coordinate
systems is crucial for achieving accurate three-dimensional ge-
ometry. Such calibration is widely used in reverse engineering
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[7], robot-assisted medical applications [8], visually guided
robot grinding [9], and robotic visual inspection [10]. Cali-
bration methods vary in different aspects, such as calibration
targets, data acquisition, and ways to derive the transformation.

All calibrations require some form of calibration targets such
as 2D boards or 3D sphere-shaped balls. Usually, different
types of sensors use different calibration targets. For example,
cameras uses 2D calibration boards [5] while the profile laser
sensors use 3D calibration balls [11]–[15]. In comparison, a
2D disk is cheaper and convenient, but has not been used as
calibration target for laser sensors. The challenge is to account
for the orientation of the 2D disk in the base coordinate system
during the calibration, and estimation of the orientation has not
been discussed before. The fixed-point calibration algorithm
was introduced in [16] where the calibration target is a fixed
cross-point printed on a 2D disk rather than the entire disk.

A profile laser sensor projects a laser line on the object and
provides a 2D profile in the sensor plane. Different calibration
methods have been developed for profile laser sensors, which
require users to manually move the laser line to certain
positions to acquire the sensing data. For example, the fixed-
point calibration algorithm [16] required the users to manually
move the laser line until it passes through the specific fixed
point. On the other hand, the ball-based calibration algorithms
[11]–[14] perform better as users can project a laser line on any
part of the ball. Normally, one set of sensing data is required
for the desired transformation [15]. But in two-step calibration
methods [11]–[14], users need to acquire two different sets of
sensing data: one set uses robotic arm with a fixed orientation
while the other set uses robotic arm with different orientations.
The two sets of data are used to solve the rotation and
translation aspects of the transformation, respectively.

Once the sensing data for calibration are obtained, the
desired transformation is solved in different manners. Tra-
ditional calibration methods are by means of homogeneous
transformation. The well-known hand/eye calibration was for-
mulated by Shiu and Ahmad [4] and Tsai and Lenz [5] by
solving a homogeneous transform equation using nonlinear
minimization [17], dual quaternions [18], etc. Another solution
is the two-step calibration algorithm which derives the rotation
and translation portions separately [11]–[14]. Two limitations
arise from the two-step algorithms. Firstly, noise in the sensing
data and errors caused in the first step will be propagated
to the second step [19]. Secondly, when more sensing data
is required, the amount of intensive manual labour work is
also increased. Minimal manual work in data collection for the
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calibration is desired for better accuracy and faster processing.
For the calibration of a profile laser sensor mounted onto a

robotic arm, this paper targets to develop a new noise-tolerant
calibration algorithm with a simple calibration target, easy data
acquisition procedure, and lesser sensing data compared to
existing techniques. A planar disk is chosen as the calibration
target. To acquire the sensing data for the calibration, users
can project the laser line onto the 2D disk without the need to
pass through any specific points, including the disk center. The
proposed algorithm will be based on a single set of sensing
data. Not only the amount of manual effort in data collection is
reduced, but the amount of error propagation is also reduced.
Most importantly, the calibration algorithm is robust to noise
in laser sensing data and mechanical vibrations during arm
movement.

This paper is structured as follows. Section I introduces the
research background, and Section II gives the preliminaries.
After that, the proposed calibration method is presented in
Section III. Section IV proves the formulae used during
calibration. Experimental results and comparisons are given
in Section V. Finally, Section VI concludes this paper.

II. SYSTEM AND NOTATIONS

A. Robot-sensor system

A robot-sensor system uses a robotic arm connected to a
profile sensor to perform a 3D scanning on target objects.
The coordinate systems are shown in Fig.1. The robotic arm
has a fixed base coordinate system Φ. At the i-th position
and orientation, the Tool Center Point (TCP, tool0) coordinate
system and the sensor coordinate system are denoted as Ψi

and Γi, respectively. Notations are as follows

• Rtcp,i is the rotation matrix from Ψi to Φ,
• Ttcp,i is the translation vector from Ψi to Φ,
• Rsensor is the rotation matrix from Γi to Ψi, and
• Tsensor is the translation vector from Γi to Ψi.

Since the profile sensor is mounted on TCP, for TCP at
different positions with different orientations, Rsensor and
Tsensor remain unchanged. The calibration aims to derive
Rsensor and Tsensor based on the data from the robotic arm
and the sensor. At the i-th position and orientation, the profile
sensor generates a planar profile in the sensor plane πi. Its
coordinate system Γi = oixiyizi is defined such that the origin
oi locates in the plane πi and yi is the normal of πi. Following
such notations, the second coordinate of the 2D profile from
the sensor is fixed as zero, i.e. y = 0 for the profile data.

B. Calibration target

A calibration target is an object where laser lights will be
shone during data collection. Usually, 3D balls are preferred,
because the sensor has a uniform view from any position and
orientation [15]. A ball with known radius has been used as
the calibration target for robot-laser sensor calibration [11]–
[14]. Different from previous methods, we plan to calibrate the
system using a 2D disk other than a 3D object. Fig.2 presents
two forms of planar disks with known radius.

Fig. 1. Three different coordinate systems.

Profile data from the laser-scanning sensor can be divided
into two types: chord data and non-chord data. On each profile,
a chord is the line segment inside the disk, and the remnant
data are non-chord data. Data preprocessing can remove the
non-chord data in the profile. In Fig.2(a), non-chord data and
chord data are on two different lines. Thus, non-chord data can
be easily removed based on the profile’s geometry. In Fig.2(b),
non-chord data in black regions can be removed based on the
profile’s image. In this paper, experiments will be conducted
using the 2D disk shown in Fig.2(a) and chords are derived
using the split-and-merge algorithm [20]. Take the following
notation:

• πc is the plane where the disk locates,
• q is the center of the disk,
• rc is the radius of the disk,
• nc is the normal of πc, and
• ci,j = [ai,j , bi,j ] is a chord with two tips ai,j and bi,j .

The new calibration method is dependent of q and nc.
Namely, the position and the orientation of the planar disk
do not affect the calibration. Therefore, the planar disk can be
placed at any position with any orientation for the calibration.

(a) (b)

Fig. 2. Planar disks with 100mm diameter: (a) a planar disk on the top of
a cylinder, and (b) a planar white disk on a black paper.

C. Notations

For TCP at a position Ttcp,i with orientation Rtcp,i, the
sensor plane is πi with the corresponding sensor coordinate
system Γi. For disk-based calibration, n sensing data are
required as

{

Ttcp,i, Rtcp,i, q
i, Di

i, D
b
i

}

, i = 1, 2, · · · , n,
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where

• Rtcp,i and Ttcp,i are TCP orientation and position for πi

passing through the disk center q,
• qi = (qix, 0, q

i
z) gives the coordinates of q in Γi, and

• Di is a TCP offset with coordinates Db
i in Φ, and

coordinates Di
i in Γi.

Users can manually control the robotic arm and visually check
the laser until it passes through the disk center q. However,
due to human error and noise from the scanning system, it is
difficult to achieve high accuracy. Thus, in our system, users
only need to select a TCP orientation Rtcp,i and two TCP
positions. The system will automatically calculate the desired
Ttcp,i.

For any physical point p, poxyz marks its coordinates in the
coordinate system oxyz. Following this notation, pb = pbase

denotes the coordinates of p in the base coordinate system
Φ. A TCP position Ttcp,i is always in the base coordinate
system, i.e. Ttcp,i = T b

tcp,i. For the i-th sensing data, when
the sensor plane passes through the disk center, the sensor
coordinate system is Γi = oixiyizi. Then, poixiyizi becomes
the coordinates of p in Γi. During the calibration, Γi will be
rotated to the rotated coordinate system Γi,r.

The point pair pbase and poixiyizi refers to the same physical
point. Each pair is named as a conjugate pair. Multiple conju-
gate pairs are required to enable the calibration [15]. Referring
to Fig.1, for the i-th sensing data, a conjugate pair qb and qi

satisfies
[

qb

1

]

=

[

Rtcp,i Ttcp,i

0 1

] [

Rsensor Tsensor

0 1

] [

qi

1

]

,

i.e.

qb = Rtcp,iRsensorq
i +Rtcp,iTsensor + Ttcp,i. (1)

In this equation, the coordinate qb is unknown before the
calibration, as the disk is freely placed in the scanning system.
The rotation matrix Rtcp,i can be read from the robotic arm.
The translation Ttcp,i and the coordinate qi will be calculated
according to the chords. The aim of the calibration is to obtain
the rotation matrix Rsensor and the translation Tsensor.

III. NOISE-TOLERANT CALIBRATION ALGORITHM

Fig.3 is the flowchart for the calibration process, where

• n is the number of sensing data to be collected,
• m is the number of parallel chords to be scanned for the

i-th sensing data,

• T̄tcp,i and T̃tcp,i are two TCP positions manually select-
ed for the i-th sensing data,

• si is of value 1 or -1,
• ci,j are m parallel chords scanned when TCP moves

from T̄tcp,i to T̃tcp,i,
• πi is the sensor plane for TCP at the i-th position Ttcp,i

with orientation Rtcp,i, and
• αi is an angle between the sensor plane πi and the disk

plane πc.

According to the flowchart, the calibration algorithm contains
three parts: manual data collection, sensing data calculation,

Fig. 3. Flowchart of the noise-tolerant calibration.

and transformation solution. For the i-th sensing data, users
only need to manually move TCP to two different positions

T̄tcp,i and T̃tcp,i with the same orientation Rtcp,i. During
sensing data calculation, m chords are obtained and the i-th
sensing data

{

Ttcp,i, Rtcp,i, q
i, Di

i, D
b
i

}

is calculated based on
these chords. Finally, all sensing data are combined together
to derive Rsensor and Tsensor. This section will detail the key
formulae and steps in the flowchart. Section IV will show how
to deduct these formulae.

A. Manual data collection

In each scan, the 3D ball-based calibration methods [11]–
[14] obtained a circular arc from the sensor and located the
ball center directly from this arc. In our case, only one single
chord can be obtained in each scan (Fig.2(a)). This chord
alone is not sufficient to derive the coordinates of the disk
center. Multiple chords are required in order to derive the i-th
sensing data (see details in Section IV-B). However, users do
not need to manually scan each chord, which will be painful
and time consuming. According to Fig.3, users only need to
manually select two different TCP positions T̄tcp,i and T̃tcp,i

with a fixed orientation Rtcp,i. With Mi = T̃tcp,i − T̄tcp,i, the
scanning system can automatically translate TCP from T̄tcp,i

by Mi/(m− 1) for (m−1) times to obtain m chords {ci,j}
m

j=1

(the black chords in Fig.4). To achieve a better calibration

result, T̃tcp,i is selected such that the TCP’s moving direction
Mi is neither parallel nor perpendicular to the calibration disk,
i.e.

Mi 6‖ πc,Mi 6⊥ πc. (2)



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 4

With the above constraints, users can choose different T̄tcp,i

and T̃tcp,i. The scanning can be within half of the disk
(Fig.4(a)) or the whole disk (Fig.4(b)).

Besides T̄tcp,i, T̃tcp,i, and Rtcp,i, users also need to collect
a value si, which is defined according to the TCP movement
from T̄tcp,i to T̃tcp,i. If it follows the y+ direction in the
sensor coordinate system (Fig.5(a)), then si = 1. Otherwise
(Fig.5(b)), si = −1.

Referring to Fig.5, suppose Γ̄i is the sensor coordinate
system in the sensor plane π̄i. If T̃tcp,i is formulated in Γ̄i

as T̃ Γ̄i

tcp,i = (Ti,x, Ti,y, Ti,z), si can also be defined as

si =

{

1, Ti,y > 0,
−1, Ti,y < 0.

(3)

The value si is necessary for ball-based calibration algorithms
as well (see details in Section IV-A). The value si gives users
more degrees of freedom during data collection. Users can
easily have si = 1 for all sensing data.

B. Sensing data calculation

For the i-th sensing data, sensor automatically scan each
chord ci,j = [ai,j , bi,j ] (Fig.2(a)) and provide 2D chord data
as

ai,j = (ai,j,x, 0, ai,j,z) , bi,j = (bi,j,x, 0, bi,j,z) . (4)

These chord data can be proved to be on the same ellipse
in the plane π̄i (Fig.6, see details in Section IV-C), and
there may be noise within these chord data (see details in
Section IV-D). Therefore, according to Fig.3, these chord data

(a) (b)

Fig. 4. Multiple chords scanning with m = 10: (a) scan before q, and (b)
scan over q.

(a) (b)

Fig. 5. Two possibilities: (a) si = 1, and (b) si = −1.

are not directly used for sensing data calculation. Instead,
ellipse fitting algorithm [21] is adopted for noise removal. The
fitted ellipse will be used for calculating the desired sensing
data.

There is an angle between xi and πc (Fig.7(a)). Applying a
rotation matrix Rθi in the sensor coordinate system Γ̄i in the
sensor plane π̄i , xiyizi becomes the rotated coordinate system
x̄iyiz̄i (Fig.7(b)). The rotation matrix Rθi can be selected such
that x̄i ‖ πc. In order to get the desired Rθi , the chord direction
for the i-th sensing data is defined as (Fig.7(a))

ci =
1

m

m
∑

j=1

(bi,j − ai,j).

Then, the rotation matrix Rθi is defined by rotating xi to

ci along yi with angle θi. After rotation, points {ei,j}
5

j=1

can be derived from the ellipse under the rotated coordinate
system Γ̄i,r in the plane π̄i as follows (Fig.6, see details in
Section IV-E):

• ei,1 and ei,2 are two ellipse points whose tangent direc-
tions are parallel to x̄i axis,

• ei,3 is the center of the ellipse, and
• ei,4/ei,5 is the intersection of the chord ei,1ei,2 with the

first/last chord.

The coordinates for ei,j in Γ̄i,r and Γ̄i can be calculated as

e
Γ̄i,r

i,j = (ei,j,x, 0, ei,j,z) , (5)

eΓ̄i

i,j = R−1

θi
(ei,j,x, 0, ei,j,z) . (6)

Without loss of generality, as presented in Fig.6, ei,1 and ei,2
can be selected such that −−−−→ei,1ei,2 and −−−−→ei,4ei,5 are of the same
direction.

(a) (b)

Fig. 6. Different ellipses in π̄i: (a) Fig.4(a), and (b) Fig.4(b).

(a) (b)

Fig. 7. Two coordinate systems in the sensor plane π̄i: (a) Γ̄i and (b) Γ̄i,r .
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For j = 1, 2, · · · , 5, denote

ηi,j =
(ei,j − ei,5) · (ei,4 − ei,5)

|ei,4 − ei,5|
2

, (7)

and

Ti,j = ηi,j T̄tcp,i + (1− ηi,j) T̃tcp,i. (8)

Then, Ti,1 and Ti,2 are two TCP positions where the sensor
plane tangent to the disk, and Ti,3 is the TCP position where
the sensor plane passes through the disk center (see details in
Section IV-F).

With Eq.(5) and Eq.(8), an angle αi can be obtained as
(Fig.7(b), see details in Section IV-G)

αi = arccos

(

‖Ti,1 − Ti,2‖
2
− ‖ei,1 − ei,2‖

2
− 4r2c

4rc (ei,1,z − ei,2,z)

)

. (9)

Then, the i-th sensing data
{

Ttcp,i, Rtcp,i, q
i, Di

i, D
b
i

}

is cal-
culated as

Ttcp,i = Ti,3, (10)

qi = R−1

θi
(ei,3,x, 0, ei,3,y) , (11)

Di
i = R−1

θi
(ei,1,x−ei,2,x, 2rcsi sinαi, ei,1,z−ei,2,z+2rc cosai) ,

(12)

Db
i = Ti,2 − Ti,1. (13)

Details on how to derive these formulae will be presented in
Section IV-G.

C. Transformation solution

Robot-sensor calibration is based on all sensing data
{

Ttcp,i, Rtcp,i, q
i, Di

i, D
b
i

}n

i=1
. Define two 3× n matrices as

X =
[

D1
1, D

2
2 , · · · , D

n
n

]

,
Y =

[

R−1
tcp,1D

b
1, R

−1
tcp,2D

b
2, · · · , R

−1
tcp,nD

b
n

]

.
(14)

Apply singular value decomposition (SVD [22] ) on the 3×3
matrix H = XY T as

H = USV T , (15)

where U and V are 3 × 3 orthogonal matrices while S is an
3 × 3 diagonal matrix with nonnegative real numbers on the
diagonal. Then, the rotation matrix can be derived as

Rsensor = V UT . (16)

Coupling with

Ri = Rtcp,i −Rtcp,i+1,
Ni = Rtcp,i+1Rsensorq

i+1
−Rtcp,iRsensorq

i
+Ttcp,i+1−Ttcp,i,

(17)
a 3 (n− 1) × 3 matrix M and a 3 (n− 1) × 1 matrix N can
be defined as

M =









R1

R2

...
Rn−1









, N =









N1

N2

...
Nn−1









. (18)

Then, the translation vector can be formulated as

Tsensor =
(

MTM
)−1 (

MTN
)

, (19)

where MT is the transpose of M . Section IV-H will detail
how to formulate Eq.(16) and Eq.(19).

D. Calibration accuracy

In [13], the accuracy is estimated as the difference between
the radius of the calibration target and the radius of the recon-
structed target. In fact, as discussed during Tsensor calculation
in [12], a ball can be reconstructed only if Rsensor is known.
Thus, Tsensor will not affect the radius difference. In fact,
radius difference only reflect the accuracy of Rsensor . Instead
of the radius difference, the position difference should be used
to estimate the calibration accuracy [23].

After calibration,
{

Ttcp,i, Rtcp,i, q
i
}

can be used to derive
a disk center following Eq.(1) as

qbi = Rtcp,iRsensorq
i +Rtcp,iTsensor + Ttcp,i.

The disk center is estimated as

qb =
n
∑

i=1

qbi

/

n. (20)

The calibration accuracy is

max
k

∥

∥qb − qbk
∥

∥ .

The calibration accuracy is affected by the following factors:

• the resolution and accuracy of the robotic arm,
• the resolution and accuracy of the sensor, and
• the accuracy of the ellipse fitting on the training data.

IV. ALGORITHM FORMULATION

During manual data collection, Rtcp,i, T̄tcp,i, T̃tcp,i, and si
are collected. After that, chord data ci,j are acquired from the
sensor. This section will detail how the calibration algorithm
is developed based on these data.

A. Necessity of si

The sign si in Eq.(3) is recorded during manual data
collection, and used in Eq.(12) during sensing data calculation.
The ball-based calibration methods [11]–[14] also need such a
value when formulating the ball center in the sensor coordinate
system. Suppose the ball centers at cb with radius rb. In each
scan, the sensor acquires a circular arc from the ball. Circle
fitting algorithm is adopted to get the radius rd and the center
cd = (cd,x, 0, cd,z) of the circle in the sensor plane. Then, the
ball center can be formulated in the sensor coordinate system
as

cb =

(

cd,x, si

√

r2b − r2d, cd,z

)

,

where si can be -1 or 1. If the disk center locates on y+

direction in the sensor coordinate system, si = 1. Otherwise,
si = −1.
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B. Multiple chords based calculation

For TCP at any position, only a single chord is provided
from the sensor (Fig.8(a)). If the chord passes through the disk
center q, the coordinates qi in the sensor coordinate system
can be obtained as the chord center. Otherwise, qi cannot be
directly derived from the single chord. Consider a scenario
where the robotic arm and the sensor are fixed while the
circular disk rotates along the chord from πc to πc,1 and πc,2

(Fig.8(b)). The chord data from the sensor remains unchanged;
because the geometric distance from the chord to the sensor is
fixed. Meanwhile, the coordinates qi keep changing during the
rotation. This means that a single chord alone is not sufficient
to define qi. The following sections will present that minimally
two chords are required to locate the disk center. Moreover,
to tolerate the noise during data acquisition, multiple chords
should be collected.

(a) (b)

Fig. 8. Disk rotation along the chord: (a) the sensor scan one chord on the
intersection between the disk plane and π̄i, and (b) rotating the disk plane
along the chord leads to the same chord from the sensor. (The green plane is
perpendicular to both the disk plane and the chord)

C. Chord projection

Chords ci,j in Fig.4 are on the disk. When the sensor scans
these chords, the sensor coordinate system move. Thus, the
readings from the sensor in Eq.(4) are in different coordinate
systems. This section will prove that the chord data in Eq.(4)
are on the same ellipse in the plane π̄i.

For the i-th sensing data, referring to Fig.4, TCP is translated
by Mi/(m− 1) for (m − 1) times to move from T̄tcp,i to

T̃tcp,i. Simultaneously, m parallel sensor planes {πi,j}
m

j=1
are

derived satisfying πi,1 = π̄i and πi,m = π̃i. In these sensor
planes, m sensor coordinate systems {Γi,j = oi,jxiyizi}

m

j=1

also translate uniformly with (Fig.9)

oi,j = oi,1 +
j − 1

m− 1
Mi, (21)

where Γ̄i = Γi,1 = oi,1xiyizi is the sensor coordinate system
in the sensor plane π̄i. Since there is only one translation be-
tween the two coordinate systems Γi,1 and Γi,j , the coordinates
of a vector in Γi,1 equal to its coordinates in Γi,j , i.e.

M
oi,1xiyizi
i = M

oi,jxiyizi
i ,

and the coordinates of any point p in Γi,1 and Γi,j satisfy

poi,1xiyizi = poi,jxiyizi + j−1

m−1
M

oi,1xiyizi
i

= poi,jxiyizi + j−1

m−1
M

oi,jxiyizi
i .

(22)

Reformulate sensor data in Eq.(4) for each chord ci,j in Γi,j

as (black parallel line segments in Fig.9(a))

c
oi,jxiyizi
i,j = (ci,j,x, 0, ci,j,z). (23)

Define a line segment c̃i,j paralleling to ci,j as

c̃i,j = ci,j −
j − 1

m− 1
Mi, (24)

and formulate it in Γi,j as

c̃
oi,jxiyizi
i,j = c

oi,jxiyizi
i,j −

j − 1

m− 1
M

oi,jxiyizi
i . (25)

On the other hand, substituting p = c̃i,j into Eq.(22) gives

c̃
oi,1xiyizi
i,j = c̃

oi,jxiyizi
i,j +

j − 1

m− 1
M

oi,jxiyizi
i . (26)

Substituting Eq.(25) into Eq.(26) leads to

c̃
oi,1xiyizi
i,j = c

oi,jxiyizi
i,j = (ci,j,x, 0, ci,j,z). (27)

Since the y coordinate of c̃
oi,1xiyizi
i,j is zero, c̃i,j locates in the

plane π̄i. In fact, {c̃i,j}
m

j=1
are the projection of {ci,j}

m

j=1
to

the plane π̄i following a direction parallel to Mi (black arrows
in Fig.9(b)). Thus, the input sensor data {(ci,j,x, 0, ci,j,z)}

m

j=1

are not only the coordinates of chords {ci,j}
m

j=1
in different co-

ordinate systems {Γi,j}
m

j=1
, i.e.

{

c
oi,jxiyizi
i,j

}m

j=1
, but also the

coordinates of line segments {c̃i,j}
m

j=1
in the same coordinate

system Γ̄i, i.e.
{

c̃
oi,1xiyizi
i,j

}m

j=1
.

Geometrically, all {ci,j}
m

j=1
are on the same disk. However,

not all sensor data in Eq.(23) are on a disk, because they
are under different coordinate systems {Γi,j}

m

j=1
. With the

constraints in Eq.(2), the projection of a circular disk to a
plane following a direction parallel to Mi is an elliptic disk.
Thus, {(ci,j,x, 0, ci,j,z)}

m

j=1
are chords of this elliptic disk.

The projected ellipse in π̄i can be acquired using ellipse
fitting algorithm [21], and the chord data in Eq.(4) are on the
projected ellipse.

(a) (b)

Fig. 9. A plane perpendicular to πc and passing through oi,j : (a) The plane
in 3D with red lines as its intersection with πi,j and red arrow as the moving
direction, and (b) the plane in 2D with black dots as ci,j , red dots as oi,j ,
black line as πc, red lines as πi,j , red arrow as Mi, and black arrows as
projection directions.
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D. Noise analysis in sensor data

In the sensor plane π̄i, the chords {c̃i,j}
m

j=1
in Eq.(27) center

at {si,j}
m

j=1
. According to the construction of ei,1 and ei,2, all

si,j are geometrically on the chord ei,1ei,2. Formulate si,j in Γ̄i

as s
oi,1xiyizi
i,j = (si,j,x, 0, si,j,z). Then, ideally, (si,j,x, 0, si,j,z)

should be uniformly distributed on a line. However, in the
actual scanned data, (si,j,x, 0, si,j,z) may not be on a same
line (Fig.10). This is due to the noise introduced by the surface
condition of the calibration target, the resolution of the sensor,
the vibration of the robotic arm during sensing data acquisition,
and so on.

Fig. 10. Data (si,j,x, 0, si,j,z) from the sensor do not lie exactly on the
same line.

To tolerate these noises, the proposed algorithm uses the
fitted ellipse instead of the original chords for sensing data
calculation. Theoretically, minimally two chords are required
to enable the ellipse fitting. However, to better tolerate the
noises, m ≥ 100 chords are collected for sensing data cal-
culation (see details in Section V-B). For illustration purpose,
figures in this paper adopts m = 10.

E. Elliptic points

During sensing data calculation, five elliptic points {ei,j}
5

j=1

on the projected ellipse instead of the raw sensor data are used.
This section will introduce how these points are formulated as
Eq.(5).

Referring to Fig.11(a), on the circular disk, points

qi,j , j = 1, 2, · · · , 5 (28)

are defined in the plane πc such that

• qi,1qi,2 is the diameter geometrically perpendicular to
the chords {ci,j}

m

j=1
,

• qi,3 = q is the disk center, and
• qi,4 and qi,5 are intersections of qi,1qi,2 to ci,1 and ci,m,

respectively.

Projecting qi,j to the plane π̄i following a direction parallel to
Mi (Fig.11(b)) leads to the projected points

ei,j , j = 1, 2, · · · , 5. (29)

According to the definition,

• ellipse chords {c̃i,j}
m

j=1
are the projections of circular

chords {ci,j}
m

j=1
,

• ellipse chord ei,1ei,2 is the projection of the diameter
qi,1qi,2,

• center ei,3 is the projection of the center q = qi,3, and
• points ei,4 and ei,5 are intersections of ei,1ei,2 to c̃i,1

and c̃i,m, respectively.

(a) (b)

Fig. 11. Elliptic points via projection: (a) qi,j in πc, and (b) ei,j in π̄i.
(The blue area is above πc and the yellow area is below πc).

In the plane π̄i, the chord ei,1ei,2 passes through the centers
of all ellipse chords parallel to c̃i,j . Therefore, the tangent
directions at ei,1 and ei,2 are parallel to c̃i,j as well. After
the rotation Rθi , Fig.11(b) becomes Fig.6(a), and the tangent
directions at ei,1 and ei,2 are parallel to the axis x̄i. In the
rotated coordinate system Γ̄i,r, each point ei,j is formulated
in Eq.(5).

F. TCP positions

During data collection, users only need to manually collect
two TCP positions T̄tcp,i and T̃tcp,i. With the orientation Rtcp,i

fixed, the proposed algorithm calculates other TCP positions
where the sensor plane is passing through the disk center or
tangent to the disk. Referring to Fig.12(a), suppose that TCP

positions {Ti,j}
5

j=1
are linear combinations of T̄tcp,i and T̃tcp,i.

When TCP moves to Ti,j , the sensor plane is φi,j and the
sensor coordinate system is Φi,j . With qi,j defined in Eq.(28),

the positions {Ti,j}
5

j=1
are taken such that:

• φi,1 and φi,2 are tangent to the disk at the points qi,1
and qi,2, respectively.

• φi,3 passes through the disk center q = qi,3.
• φi,4 = π̄i passes through the point qi,4.
• φi,5 = π̃i passes through the point qi,5.

This section is to prove that Ti,j satisfies Eq.(8).

Referring to Fig.12(b), since {ei,j}
5

j=1
are parallel projec-

tion of {qi,j}
5

j=1
, similar with the chord projection in Eq.(27),

the coordinates of qi,j in the sensor coordinate system Φi,j

equal to the coordinates of ei,j in the sensor coordinate system
Φi,4, i.e.

q
Φi,j

i,j = eΓ̄i

i,j = e
Φi,4

i,j .

Since φi,4 = π̄i and Φi,4 = Γ̄i, coupling with Eq.(5) and
Eq.(6), the coordinates of qi,j in the coordinate system Φi,j

are

q
Φi,j

i,j = e
Φi,4

i,j = eΓ̄i

i,j = R−1

θi
(ei,1,x, 0, ei,1,z) , (30)

and its coordinates in the rotated coordinate system Φi,j,r are

q
Φi,j,r

i,j = e
Φi,4,r

i,j = e
Γ̄i,r

i,j = (ei,1,x, 0, ei,1,z) . (31)

When TCP moves linearly, the sensor plane and the rotated
coordinate system move linearly as well. Consider a point
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(a) (b)

Fig. 12. Ti,j formulation: (a) relationship among Ti,j ,ri,j , and qi,j , and
(b) parallel projection from qi,j to ei,j .

ri in the sensor plane with fixed coordinates in the rotated
coordinate system as (ei,1,x, 0, ei,1,z). Then, point ri moves
linearly as well. Referring to Fig.12(a), when TCP moves to
Ti,j , ri moves to ri,j in φi,j with

r
Φi,j

i,j = R−1

θi
(ei,1,x, 0, ei,1,z) . (32)

As such, all ri,j are on the same line, and

Ti,jri,j ‖ Ti,1ri,1, qi,jri,j ‖ qi,1ri,1. (33)

Coupling with Eq.(7), ei,j can be formulated as

ei,j = ηi,jei,4 + (1− ηi,j) ei,5.

Referring to Fig.12(b), since {ei,j}
5

j=1
are parallel projection

of {qi,j}
5

j=1
, line segments {ei,jei,5}

4

j=1
and {qi,jqi,5}

4

j=1
are

proportional segments, i.e.

‖ei,jei,5‖

‖ei,4ei,5‖
=

‖qi,jqi,5‖

‖qi,4qi,5‖
.

Thus
qi,j = ηi,jqi,4 + (1− ηi,j) qi,5.

Similarly, Eq.(33) leads to

ri,j = ηi,jri,4 + (1− ηi,j) ri,5,

Ti,j = ηi,jTi,4 + (1− ηi,j)Ti,5,

which proves Eq.(8).

G. Sensing data formation

The i-th sensing data is
{

Ttcp,i, Rtcp,i, q
i, Di

i, D
b
i

}

, where
Rtcp,i is from the robotic arm. According to the definition of
Ti,j in Section IV-F, Ti,3 is the TCP position where the sensor
plane passes through q. Thus, Ttcp,i can be defined as Eq.(10).

According to Eq.(30), qi = qii,3 = q
Φi,3

i,3 = eΓ̄i

i,j , which proves
Eq.(11). The TCP offset Di in the base coordinate system is
given by Eq.(13). This section will show how to derive Eq.(12).
Γi is the sensor coordinate system for the sensor plane

passing through the disk center. According to the definition,
Φi,3 = Γi. Suppose Φi,j,r is the rotated coordinate system
after applying Rθi on Φi,j . To derive the sensing data, different
points need to be formulated in the same coordinate system
Φi,1,r.

(a) (b)

Fig. 13. αi formulation: (a) the rotated coordinate system in φi,1, and (b)
different cases for αi.

Referring to Eq.(1), two different points ri,1 and qi,2 satisfy

rbi,1 = Rtcp,iRsensorr
Γi

i,1 +Rtcp,iTsensor + Ttcp,i,

qbi,2 = Rtcp,iRsensorq
Γi

i,2 +Rtcp,iTsensor + Ttcp,i.
(34)

Referring to Fig.12(a), the TCP offset is

Di = Ti,2 − Ti,1 = qi,2 − ri,1. (35)

Coupling with Eq.(34), Di can be formulated as

Db
i = qbi,2 − rbi,1 = Rtcp,iRsensorD

Γi

i = Rtcp,iRsensorD
i
i.

(36)
Since pΓi = R−1

θi
pΓi,r holds for any point p, the above

equation becomes

Db
i = Rtcp,iRsensorR

−1

θi
D

Γi,r

i . (37)

The coordinates of a vector remain unchanged in Φi,1,r and
Φi,3,r, because there is only a translation between the two
coordinate systems. Substituting

D
Γi,r

i = D
Φi,3,r

i = D
Φi,1,r

i (38)

into Eq.(37) gives

Db
i = Rtcp,iRsensorR

−1

θi
D

Φi,1,r

i . (39)

In Fig.13, x̄iyiz̄i is the rotated coordinate system, and αi

is an angle from z̄i to −−−−→qi,1qi,2. Noted that πc ‖ x̄i, yi⊥x̄i,
z̄i⊥x̄i and qi,1qi,2⊥x̄i. The yellow plane spanned by yi, z̄i
and qi,1qi,2 is perpendicular to πc and x̄i (Fig.13(a)). Thus,
αi is an angle between πc and φi,j . Fig.13(b) shows two
possibilities for αi: αi ≥ 90◦ and αi < 90◦. According to
Eq.(2), although TCP movement is not perpendicular to πc,
φi,j may be perpendicular to πc, i.e. αi = 90◦.

To derive αi, points qi,1, qi,2 and ri,1 also need to be
formulated in the same coordinate system Φi,1,r. Eq.(31) and
Eq.(32) gives

q
Φi,1,r

i,1 = (ei,1,x, 0, ei,1,z) . (40)

r
Φi,1,r

i,1 = (ei,2,x, 0, ei,2,z) . (41)

According to the definition of qi,j in Eq.(28) and si in Eq.(3), if
si = 1 (Fig.13(b)), qi,2 is on y+ direction of Φi,1,r. Otherwise,
qi,2 is on y− direction of Φi,1,r. Thus, in the yellow plane
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perpendicular to x̄i (Fig.13), the offset qi,2 − qi,1 depends on
si as

(qi,2 − qi,1)
Φi,1,r = 2rc (0, si · sinαi, cosαi) .

Coupling with Eq.(40), qi,2 can be formulated as

q
Φi,1,r

i,2 = q
Φi,1,r

i,1 + 2rc (0, si · sinαi, cosαi)
= (ei,1,x, 2rc · si · sinαi, ei,1,z + 2rc · cosαi) .

(42)

Combining Eq.(41) and Eq.(42), Di defined in Eq.(35) can be
formulated in Φi,1,r as

D
Φi,1,r

i = q
Φi,1,r

i,2 − r
Φi,1,r

i,1

= (ei,1,x − ei,2,x, 2rc · si · sinαi, ei,1,z − ei,2,z + 2rc · cosαi) .

According to Eq.(38), Eq.(12) can be obtained from

Di
i = DΓi

i = R−1

θi
D

Γi,r

i = R−1

θi
D

Φi,1,r

i .

On the other hand, Eq.(39) gives
∥

∥Db
i

∥

∥ =
∥

∥

∥
D

Φi,1,r

i

∥

∥

∥
, i.e.

‖Ti,2 − Ti,1‖
2 = (ei,1,x − ei,2,x)

2 + (ei,1,z − ei,2,z)
2

+4r2c + 4rc (ei,1,z − ei,2,z) cosαi.

According to Eq.(2), the sensor plane does not move parallel
to πc, i.e., ei,1,z 6= ei,2,z . Therefore,

cosαi =
‖Ti,2−Ti,1‖

2
−(ei,1,x−ei,2,x)

2
−(ei,1,z−ei,2,z)

2
−4r2c

4rc(ei,1,z−ei,2,z)
, (43)

which gives Eq.(9).

H. Algorithm design

Robot-sensor calibration is to derive the desired Rsensor and
Tsensor from all sensing data. Eq.(36) gives

RsensorD
i
i = R−1

tcp,iD
b
i , i = 1, 2, · · · , n,

which can be reformulated into

Rsensor

[

D1
1 , D

2
2, · · · , D

n
n

]

=

[

R
−1

tcp,1
Db

1, R
−1

tcp,2
Db

2, · · · , R
−1

tcp,n
Db

n

]

.

(44)
Coupling with notations in Eq.(14), the above equations be-
come

RsensorX = Y. (45)

The unknown Rsensor in Eq.(45) can be solved using the
singular value decomposition (SVD) [22], which gives the
solution as Eq.(16).

On the other hand, according to Eq.(1), for i = 1, · · · , n−1,

qb = Rtcp,i+1Rsensorq
i+1 +Rtcp,i+1Tsensor + Ttcp,i+1,

qb = Rtcp,iRsensorq
i +Rtcp,iTsensor + Ttcp,i.

The substraction of the two equations provides
(

Rtcp,i+1Rsensorq
i+1 +Rtcp,i+1Tsensor + Ttcp,i+1

)

−(Rtcp,iRsensorq
i +Rtcp,iTsensor + Ttcp,i) = 0,

which gives

(Rtcp,i −Rtcp,i+1)Tsensor = Rtcp,i+1Rsensorq
i+1

−Rtcp,iRsensorq
i + Ttcp,i+1 − Ttcp,i.

(a) (b)

Fig. 14. Experimental setup: (a) the scanning system, and (b) calibration ball
with radius 69.5mm and calibration disk with radius 50mm.

With notations in Eq.(17), the above equations can be refor-
mulated into

RiTsensor = Ni, i = 1, 2, · · · , n− 1,

or equivalently









R1

R2

...
Rn−1









Tsensor =









N1

N2

...
Nn−1









. (46)

Substituting Eq.(18) into Eq.(46) leads to

MTsensor = N. (47)

The unknown Tsensor can be solved using the least square
method with the result presented in Eq.(19).

V. EXPERIMENTAL RESULTS

A. System setup and calibration

In the scanning system shown in Fig.14(a), an LMI GOCA-
TOR 2340 [24] laser profile sensor is mounted onto an ABB
IRB 120 robotic arm [25]. The unit for the coordinate system
is millimeter (mm).

Denote the manually collected TCP positions and orienta-
tions used for the calibration as

(R̄i, T̄i, R̃i, T̃i), i ∈ {1, 2, 3, 4}. (48)

Table I lists the four sensing data derived using the scanning
system in Fig.14(a). The proposed noise-tolerant calibration
algorithm derives the final transformation matrix as

Λ =





0.99996 −0.00547 −0.00716 6.0252
−0.00544 −0.99998 0.00288 54.18211
−0.00718 −0.00284 −0.99997 364.25534

0 0 0 1



. (49)

Following Section III-D, the disk center in Eq.(20) is calculated
as

qb = (−319.622,−304.086, 11.48) , (50)
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and the calibration accuracy is estimated as

4
max
i=1

∥

∥qb − qbi
∥

∥ = 0.212mm, (51)

which is jointly affected by the x-resolution of the sensor,
which is 0.1mm, the robotic arm’s positioning accuracy, and
the ellipse fitting accuracy.

B. Simulation and validation

A simulated robotic-laser scanning system is set up with a
simulated calibration matrix Λ̄ = Λ in Eq.(49). A virtual disk
centered at q̄b = qb in Eq.(50) with orientation n̄b

c = (0, 0, 1)
is used for collecting simulation data. TCP data in Eq.(48) are
adopted for the simulation. The simulated chord data āi,j and
b̄i,j are collected as the intersections of the virtual disk and
the moving laser planes. Then, the calibration based on the
simulated chord data derives the transformation matrix Λ̃ and
the disk center q̃b. Simulation results show that

Λ̃ = Λ̄, q̃b = q̄b,

which validates the proposed calibration algorithm.

The above simulation and validation do not take into account
the noise in the chord data. In fact, the real chord data ai,j and
bi,j in Eq.(4) may contain noise introduced by the accuracy of
the robotic arm, the x-resolution of the sensor, the accuracy
of the chord segmentation, and so on. Assume that such noise
is the Gaussian noise G(σ) with mean value 0 and standard
deviation σ. A set of noise chord data from the simulated chord
data is derived as

ãi,j = āi,j +
τi,j,1

‖b̄i,j−āi,j‖
(b̄i,j − āi,j),

b̃i,j = b̄i,j +
τi,j,2

‖b̄i,j−āi,j‖
(b̄i,j − āi,j),

(52)

where i = 1, 2, 3, 4, j = 1, 2, . . . ,m, and τi,j,k are Gaussian
noise G(σ).

For each standard deviation σ ∈ {0.1, 0.2, . . . , 0.9}, 500 sets

of noise chord data {ãi,j,l, b̃i,j,l}
500
l=1

are simulated according

to Eq.(52). The calibration based on the l-th set {ãi,j,l, b̃i,j,l}
gives a transformation matrix, a disk center q̃bl , and a calibra-
tion accuracy εl = ‖q̃bl − q̄b‖ (the error in reconstructing the
disk center). The standard deviation of {εi}

500
l=1

is denoted as
e, which indicates the calibration accuracy with respect to σ
and m.

Fig.15 shows the trend of the calibration accuracy e with
respect to σ and m. In general, with m fixed, e increases as σ
increases. For example, with m = 100, as σ increases from 0.1
to 0.9, e increases from 0.052 to 0.449. On the other hand, with
σ fixed, bigger m gives better accuracy e. In this simulation,
when m increases from 10 to 200 while σ fixed at 0.4, the
accuracy e increases from 0.591 to 0.135 (the forth curve
from the bottom in Fig.15). According to curves in Fig.15,
bigger m provides better accuracy. For the experimental setup
in Fig.14(a), we adopt m = 100.

Fig. 15. Disk-based calibration accuracy with respect to σ and m (the
horizontal coordinate is the number of chords m, the vertical coordinate is
the calibration accuracy e(mm), and curves in different colors correspond to
different noise level σ(mm)).

Fig. 16. Reconstructed disk centers in repeatability test (the white dots are
disk centers from different tests; the red dot is the average of the 32 white
dots; the size of the bounding box is 0.070mm × 0.131mm × 0.287mm)

C. Repeatability

To analyze the repeatability of the proposed calibration
algorithm, with position and orientation of the disk fixed,
calibration data is collected based on the same set of TCP
data in Eq.(48). The data collection is repeated for 32 times

providing 32 calibration results. The disk centers
{

qbi
}3

2i=1

are used to estimate the repeatability (the white dots in Fig.16).

For
{

qbi
}3

2i=1, the mean is denoted as (the red dot in Fig.16)

q̇ =
32
∑

i=1

qbi

/

32,

and the standard deviation is

32
∑

i=1

‖qbi − q̇‖

/

32 = 0.071.

Thus, the repeatability of the proposed algorithm based on the
same set of TCP data is 0.071mm.

D. Comparisons

1) Different methods: The proposed method is different
from the methods presented in [11]–[15] with different cal-
ibration targets and different calibration procedures (Table II).
Balls had been used for the calibration between a CMM
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TABLE I. THE SENSING DATA FOR DISK-BASED CALIBRATION.

i = 1 i = 2 i = 3 i = 4

Ttcp,i (-222.966,-295.994,360.786) (-232.113,-298.165,344.196) (-374.932,-347.138,338.836) (-377.572,-373.611,352.241)

Rtcp,i
† (3.057,-0.103,-2.008) (3.115,-0.2,-2.269) (-2.981,0.256,-2.491) (3.092,0.208,3.11)

qi (5.947,0,5.97) (-12.315,0,24.716) (9.328,0,34.277) (9.675,0,15.973)

Di
i
‡ (0.042,0.336,-0.941) (-0.146,0.424,-0.894) (0.222,0.589,-0.777) (-0.024,0.674,-0.738)

Db
i
‡ (0.181,-0.246,-0.952) (0.287,-0.294,-0.912) (0.391,-0.593,-0.704) (0.164,-0.631,-0.758)

† ZYX Euler angle.
‡ Di

i and Db
i are normalized since ‖Di

i‖ = ‖Db
i‖.

TABLE II. COMPARISON OF DIFFERENT CALIBRATION METHODS.

Calibration Data from Number of Required data for

target a conjugate pair conjugate pairs Method each conjugate pair

[15] Tetra-ball
{

qb, qi
}

More than 3 Constrained least-squares optimization qb and qi

[11]–[14] Ball
{

Ttcp,i, Rtcp,i, q
i
}

At least 7
At least 4 data for Rsensor , and for Rsensor : one arc

at least 3 data for Tsensor for Tsensor : m arcs

Ours Planar disk
{

Ttcp,i, Rtcp,i, q
i, Di

i, D
b
i

}

At least 4

{

Ttcp,i, Rtcp,i, D
i
i, D

b
i

}

for Rsensor , and
m chords

{

Ttcp,i, Rtcp,i, q
i
}

for Tsensor

machine and a laser-stripe sensor [15]. The target is also to
find out the transformation matrix

H =

[

Rsensor Tsensor

0 1

]

=







t11 t12 t13 p1
t21 t22 t23 p2
t31 t32 t33 p3
0 0 0 1






.

Multiple conjugate pairs
{

qb, qi
}

are collected and used to
formulate a constrained least-squares optimization problem
with augmented objective function

F =
n
∑

i=1

∣

∣qb −H · qi
∣

∣

2

+
3
∑

j=1

λj

[

t2j1 + t2j2 + t2j3 − 1
]

+λ4 [t12t13 + t22t23 + t32t33].

Solving such problem directly gives H. Theoretically, three
conjugate pairs are sufficient. However, the constrained least-
squares optimization problem may give more than one solu-
tion. Thus, more conjugate pairs are desired [15].

Another type of ball-based calibration methods [11]–[14] is
different from that presented in [15]. First, the ball center qb is
fixed but is unknown, and data

{

Ttcp,i, Rtcp,i, q
i
}

are collected
satisfying

qb = Rtcp,iRsensorq
i +Rtcp,iTsensor + Ttcp,i.

This is different from [15], where
{

qb, qi
}

should be collected.
Rsensor and Tsensor are solved separately. First, with TCP
in translation mode, at least four data are collected and used
to solve a set of linear equations for Rsensor . Then, as TCP
moves to different positions with different orientations, at least
three data are collected. Coupling with previously computed
Rsensor , solving another set of linear equations leads to
Tsensor.

Balls are preferred for the calibration, because the laser has
a uniform view from any position and orientation [15]. In the
proposed calibration algorithm, the position and orientation of
the 2D planar disk do not affect the calibration. This enables
the calibration target to be freely placed in the system like the

balls. During calibration, Rsensor and Tsensor are also solved
separately with at least four conjugate pairs in total. Different
from previous methods [11]–[15], our method collects more
data

{

Ttcp,i, Rtcp,i, q
i, Di

i, D
b
i

}

from one conjugate pair. First,

data
{

Ttcp,i, Rtcp,i, D
i
i, D

b
i

}

are used to formulate Eq.(45) to
derive Rsensor . Then, Eq.(47) is formulated using Rsensor and
data

{

Ttcp,i, Rtcp,i, q
i
}

to obtain Tsensor. Sensing data are
usually collected manually. Users are required to try different
Ttcp and Rtcp to locate different conjugate pairs. Smaller
number of conjugate pairs make the sensing data collection
easier. The ball-based calibration methods [11]–[14] need to
collect two sets of sensing data, which needs at least 7
conjugate pairs in total. The first four conjugate pairs used
for solving rotation portion required at least four Ttcp with the
same Rtcp. In the second set of data for solving the translation
portion, two Ttcp with the same Rtcp are required for each
conjugate pair. Compared with the ball-based calibration, the
proposed algorithm only requires one set of the sensing data
with at least 4 conjugate pairs in total.

2) Similar calibration accuracy: The ball in Fig.14(b) is
used to illustrate that the proposed calibration method can
achieve similar accuracy as the ball-based method does. In this
comparison, the disk-based calibration and ball-based calibra-
tion are based on four and eight conjugate pairs, respectively.

Table III lists the eight sensing data
{

Ttcp,i, Rtcp,i, q
i
}8

i=1
derived for the ball-based calibration, where the first four
sensing data with the same orientation are used for solving
Rsensor and the others with different orientations are used for
deriving Tsensor. The ball-based calibration gives

Υ =





0.99983 −0.0115 −0.01411 6.30066
−0.01129 −0.99983 0.01485 54.38647
−0.01428 −0.01468 −0.99979 364.14357

0 0 0 1



. (53)

The deviation between Eq.(49) and Eq.(53) is

Λ−1Υ =





1.0000 −0.0059 −0.0070 0.2751
0.0059 0.9999 −0.0119 −0.2055
0.0071 0.0119 0.9999 0.1104

0 0 0 1



, (54)
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TABLE III. THE SENSING DATA FOR BALL-BASED CALIBRATION.

Ttcp,i Rtcp,i
† qi

i = 1 (-215.407,-287.69,559.998) (3.08,-0.25,-2.611) (-16.168,43.629,-58.079)

i = 2 (-179.4,-289.3,550.402) (3.08,-0.25,-2.611) (15.42,23.498,-57.636)

i = 3 (-187.799,-283.8,502.902) (3.08,-0.25,-2.611) (23.695,30.256,-10.06)

i = 4 (-133.8,-268,564.099) (3.08,-0.25,-2.611) (60.036,19.653,-84.071)

i = 5 (-317.98,-296.293,567.379) (-3.074,-0.051,-2.689) (-26.706,34.022,-52.304)

i = 6 (-290.941,-319.017,496.149) (3.116,-0.013,-3.027) (12.521,45.942,16.945)

i = 7 (-275.77,-326.73,480.747) (3.09,-0.136,3.037) (-8.488,54.055,29.974)

i = 8 (-217.283,-327.968,569.943) (2.994,-0.249,-2.467) (-50.322,37.241,-64.803)
† ZYX Euler angle.

with Euler angles

(0.0119,−0.0071, 0.0059). (55)

Following Section III-D, the ball center from each orientation
is
[

µi

1

]

=

[

Rtcp,i Ttcp,i

0 1

]

Υ

[

qi

1

]

, i ∈ {5, 6, 7, 8}.

The ball center is estimated as

µ =

8
∑

i=5

µi

/

4,

and the calibration accuracy is estimated as

8
max
i=5

‖µ− µi‖ = 0.208mm. (56)

Eq.(51) and Eq.(56) are similar. However, they are estimated
according to different fixed points. In [23], calibration accuracy
is evaluated as the standard deviation of the ball centers
reconstructed from different scans. We follow the same way
to compare the two calibration results Eq.(49) and Eq.(53).
The scanning system scans the ball in Fig.14(b) with the
robotic arm in different orientations. In each scan, 50 profiles
are sampled with the robotic arm in a fixed orientation. For
i = 1, 2, · · · , 8, applying a transformation matrix (Eq.(49) or
Eq.(53)) to the i-th scan gives one point cloud Ci. On average,
there are 45000 points in each point cloud. The ninth point

cloud is defined as C9 =
8
⋃

i=1

Ci. A ball is fitted to the point

cloud Ci to derive the ball center νi, i = 1, 2, · · · , 9 (Table IV).
The standard deviation of the ball centers is calculated as

8
∑

i=1

‖νi − ν9‖

/

8.

The standard deviations for using Eq.(49) and Eq.(53) are
0.342mm and 0.355mm, respectively. Thus, we conclude that
the disk-based calibration can provide a similar calibration
result as the ball-based method does.

3) Different noise-tolerance: The disk-based and ball-based
calibrations are affected by different sources of noise. Disk-
based calibration relies on the two tips on each chord, thus the
x-resolution of the sensor affect the accuracy. One the other
hand, the ball-based calibration depends on the arc data, which
are affected by the z-accuracy of the sensor and the surface
condition of the balls. The fitting algorithms adopted during

TABLE IV. RECONSTRUCTED BALL CENTERS.

νi from Eq.(49) νi from Eq.(53)

i = 1 (-321.193,-303.203,150.141) (-321.068,-302.984,150.372)

i = 2 (-320.712,-302.869,150.7) (-320.443,-302.813,150.796)

i = 3 (-321.049,-302.838,150.485) (-320.891,-302.673,150.707)

i = 4 (-320.997,-302.84,150.181) (-320.878,-302.691,150.583)

i = 5 (-320.746,-302.522,150.15) (-320.415,-302.855,150.755)

i = 6 (-321.011,-302.605,150.254) (-320.875,-302.618,150.433)

i = 7 (-320.696,-302.671,150.477) (-320.24,-302.909,150.836)

i = 8 (-320.945,-303.067,150.352) (-320.754,-302.99,150.688)

i = 9 (-320.877,-302.896,150.311) (-320.61,-302.785,150.665)

Fig. 17. Ball-based calibration accuracy with respect to σ and m (the
horizontal coordinate is the number of arcs m, the vertical coordinate is the
calibration accuracy e(mm), and curves in different colors correspond to
different noise level σ(mm)).

the calibration may also introduce errors as well. Thus, instead
of comparing their accuracies under the same noise level, we
study their capability to tolerate a given noise. As presented
in Fig. 15, increasing m is one way to tolerate the noise in
disk-based calibration.

As presented in the last column of Table II, the ball-
based calibration algorithms [11]–[14] collect one arc for each
conjugate pair of Rsensor , and m arcs for each conjugate pair
of Tsensor. Robotic data for deriving Table III are used to
generate arcs. On each arc, points are generated in the sensor
coordinate system with x-resolution of 0.1mm and Gaussian
noise G(σ) on the z value of each point. For each m−σ pair,
ball-based calibration is repeated for 500 times, and e is the
standard deviation of the 500 ball centers reconstructed from
the calibration. According to the simulation result in Fig. 17, in
the same noise level σ, increasing m does not affect e, which
is different from the disk-based calibration.
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VI. CONCLUSION

For calibrating profile sensors to robotic arms, all existing
methods require 3D calibration balls. Previously, 2D disks are
not used for robot-sensor calibration because it is difficult to
estimate its orientation during the calibration. In this paper,
a new calibration algorithm is proposed to perform robot-
sensor calibration based on a 2D disk. The novel feature is
that, in the calibration procedures, the 2D disk can be placed
in arbitrary orientation and this makes the placement of the
disk as easy as that of a 3D ball. To acquire the sensing
data for our calibration algorithm, users can project the line
laser onto the 2D disk without passing any specific point. The
proposed algorithm can derive the angular relationship between
the 2D disk and the laser’s plane, and automatically obtain the
disk center for the calibration. A new two-step calibration is
proposed based on a single set of sensing data. This can reduce
not only the manual work in data collection but also the error
propagation. Minimal manual work in data collection for the
calibration is desired for better accuracy and faster processing.
Simulations are performed to validate the proposed algorithm
and analyze the effect of noise. Experiments show that the
proposed algorithm can achieve similar accuracy as the ball-
based method does.
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