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A3-FKG: Attentive Attribute-Aware Fashion
Knowledge Graph for Outfit Preference Prediction

Huijing Zhan, Jie Lin, Kenan Emir Ak, Boxin Shi, Ling-Yu Duan, and Alex C. Kot

Abstract—With the booming development of the online fash-
ion industry, effective personalized recommender systems have
become indispensable for the convenience they brought to the
customers and the profits to the e-commercial platforms. Es-
timating the user’s preference towards the outfit is at the
core of a personalized recommendation system. Existing works
on fashion recommendation are largely centering on modelling
the clothing compatibility without considering the user factor
or characterizing the user’s preference over the single item.
However, how to effectively model the outfits with either few
or even none interactions, is yet under-explored. In this paper,
we address the task of personalized outfit preference prediction
via a novel Attentive Attribute-Aware Fashion Knowledge Graph
(A3-FKG), which is incorporated to build the association between
different outfits with both outfit- and item- level attributes.
Additionally, a two-level attention mechanism is developed to
capture the user’s preference: 1) User-specific relation-aware
attention layer, which captures the user’s fine-grained preferences
with different focus on relations for learning outfit representation;
2) Target-aware attention layer, which characterizes the user’s
latent diverse interests from his/her behavior sequences for
learning user representation. Extensive experiments conducted
on a large-scale fashion outfit dataset demonstrate significant
improvements over other methods, which verify the excellence of
our proposed framework.

Index Terms—Personalized Preference Prediction, Knowledge
Graph, Attribute-Aware, Attention, Multi-Modal.

I. INTRODUCTION

Recent years have witnessed the explosive development and
the tremendous profits online fashion shopping has brought.
It has been reported that the global fashion e-commerce
revenue is expected to embrace double growth compared to
that in 2018, reaching $872 billion by 2023 [1]. Despite the
promising economic benefits, the enormous amount of fashion
products on the Internet make it intractable for online shoppers
to seek their preferred outfits. This inspires us to develop
an accurate and high-quality personalized outfit preference
prediction system that assists to capture customer’s fashion
tastes and further facilitates the recommendation services.

Research studies on fashion recommendation [2]–[10]
mainly focus on learning the general compatibility between
different items within a fashion outfit. Vasileva et al. [3]
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Fig. 1: Examples of outfits created by two users. User A likes
casual-style clothes while User B prefers black suits and high-
heeled shoes. Prior works mainly focus on the interactions
(denoted by blue solid arrows) between users and items, and
ignore the connections between different outfits (denoted by
orange dashed edges). Best viewed in color.

proposed to embed items of different categories into separated
subspaces for compatibility modeling. Li et al. [7] employed
Recurrent Neural Network (RNN) to represent the outfits with
variable length items for quality scoring. Cui et al. [8] estab-
lished a fashion graph to model the co-occurrence dependency
between items of different categories. However, the problem of
personalized fashion recommendation (i.e., preference predic-
tion), especially outfit recommendation, which considers the
user’s factor is still under-investigated.

Even though there have been numerous research attempts
[11]–[23] devoted to the personalized fashion, most of them
are item-based approaches which model the user’s interest pat-
terns towards the individual items. And research studies [15],
[17], [21], [23] on personalized outfit recommendation is still
at the preliminary stage. Chen and McAuley et al. [17], [23]
attempted to aggregate the item features into a unified outfit
representation via a pre-defined strategy and performed the
recommendation in the same manner as the item-based recom-
mendation. Song et al. [15] defined the user-outfit preference
score as the weighted sum of user’s preference scores towards
individual items and the pairwise item relationships. Hidayati
et al. [21] developed a personalized style recommendation
framework given the user’s body measurements. The most
similar work to ours is [23], which also adopted Graph Neural
Networks (GNNs) for outfit representation learning. Whereas,
we propose to effectively inject the fashion semantics into the
knowledge graph and the attentive mechanism is integrated in
different-level hierarchy, which enables us to learn enhanced
user/outfit feature representation.
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Despite the effectiveness of [23], the inter-relations between
outfits (e.g., fashion items with same colors or outfits sharing
similar styles) are ignored in learning the user-outfit preference
predictor. As shown in Fig. 1, given the user-created outfits
in the leftmost column with white tops, it is highly possible
that user A would show interest in the outfits on the right,
due to the similar clothing style and tops in the same color.
The same rule also applies to user B who has a preference
on black suits and high heels. It is worth mentioning that
the exploration of connectivity among outfits is of great
importance in dealing with few interactions between users
and outfits. Without building relationships with existing outfits,
it poses tremendous challenges to infer the user’s preference
toward “fresh” outfits with no history ratings.

This motivates us to take a closer look into the following
challenges when modeling the user preference: Q1) How to
capture the connectivity between different outfits with few
mutual interactions and further quantify their mutual effects?
Q2) How to explore different user’s interests toward distinctive
perspectives of the outfit from their historical interaction
records? Q3) How to provide convincing reasons with seman-
tics for the preference prediction results?

In this paper, we construct a novel Attentive Attribute-
Aware Fashion Knowledge Graph (A3-FKG) to capture the
structural connectivity between entity nodes, which can be out-
fits, items and attributes (answer to Q1). Moreover, the outfit
representation is enriched by the entity embedding, propaga-
tion from the entities’ connected neighbors and multi-modal
fashion items’ content features, e.g., visual image and textual
description. More specifically, a relation-aware attention layer
is developed to characterize the individual user’s fine-grained
interests, i.e., attributes of the outfits, which facilitates learning
the outfit representation (answer to Q2). Also, the user’s
implicit and diverse tastes are modeled via the weighted
aggregation of his/her previously interacted outfits via a novel
target-aware attention layer (answer to Q2), which is also
part of the user representation. Finally, the enriched user and
outfit representations are utilized to estimate the personalized
preference score. The connections within the knowledge graph
bridged by attributes and the attentive network structure jointly
contribute to make the prediction explainable (answer to Q3).
The effectiveness of the proposed system and the advantages
of the components are demonstrated on the real-world large-
scale fashion outfit dataset with high sparsity interactions.

Our main contributions of this work can be summarized as
follows:
• To the best of our knowledge, we are the first to construct

a comprehensive attribute-aware fashion knowledge graph
for personalized outfit preference prediction problem with
thorough experimental analysis.

• We develop a two-level attention network to discriminate
individual user’s fine-grained interests and latent multiple
tastes for outfit composition.

• We take advantage of the multi-modality content features
and structural entity/relation representation for a more
enhanced outfit representation.

• Extensive experimental results demonstrate the significant
improvements over other baselines and the effectiveness

of different components of our framework.

II. RELATED WORKS

A. Knowledge Graph Guided Representation Learning

Existing KG-based representation learning approaches can
be generally categorized into three types according to how the
information of knowledge graph is utilized: 1) Embedding-
based approaches [24], [25] which employ knowledge graph
embedding (KGE) algorithm to encode the KG into low-
dimensional entity and relation embedding, which are fur-
ther incorporated into recommendation. Representative KGE
algorithms include TransE [26], TransH [27], TransR [28],
TransD [29], etc. However, these methods infer the user’s
preference in an implicit manner by representation learning
thus the recommendation objective isn’t optimized directly;
2) Path-based approaches [30], [31] which take advantage of
the semantic connectivity patterns of the graph nodes for the
recommendation. However, it is not practical to include all
the candidate paths in the large-scale scenario and 3) Hybrid
approaches which leverage both the semantic connectivity
information and entity representation [32]–[34]. Our proposed
method can be seen as a hybrid approach to learn the structured
entity representations with semantics enriched by fine-grained
clothing attributes. Moreover, to the best of our knowledge,
our work is among the pioneering attempt to extract the
domain knowledge from meta-data and take advantage of
the external dataset to build a comprehensive attribute-aware
fashion knowledge graph for modeling users’ personalized
preference toward outfits.

B. Attention Mechanism

Recent years have witnessed the success of attention-based
neural networks in a variety of tasks, ranging from question
answering [35], image caption [36] to image generation [37],
sentiment analysis [38], etc. As to its impact on the recom-
mender system, it not only greatly boosts the performance but
also offers the reasons for the recommendation in terms of
learnt attentive weights. He [39] adopted an item- and outfit-
level attention network to handle the implicit feedbacks in
the context of micro-video and image-based recommendation.
Feng [40] developed a personalized food recipe recommen-
dation system via a hierarchical attention network at the
ingredient and component level, which jointly considered
the interaction between food ingredients, recipe images and
historical interactions. Inspired by the increasing popularity
to incorporate attention-based into Graph Convolutional Net-
works (GCNs) [41], such as Graph Attention Networks (GATs)
[42], Relational Graph Convolutional Network (R-GCN) [43],
we also develop a user-specific relation-aware attention to
aggregate neighborhood information. Distinct from [33], our
method considers the neighborhood entity and its connected
relation as a holistic set to calculate relation-level weights.
Moreover, a target-aware attention scheme is developed to
discriminate the impact of historically interacted outfits over
characterizing the user’s diverse interests.
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C. Interaction Sparsity

One of the most common problems in the personalized
preference prediction is the high level of sparsity within the
user-item interaction matrix. Latent factor-based models [44],
[45] might fail to capture the collaborative signals between
users or items. To tackle the issue, many solutions have been
raised, which can be further categorized into three forms: 1)
Item’s side information including textual modality data [46]
(reviews, description, etc), visual modality data (image, etc);
2) User’s profile [47] (age, friend circle, social relationships,
etc) or purchase behavior [48]; and 3) Transforming the user-
interaction matrix to user-item bipartite graph in order to
connect potential similar users/items in multi-hop neighbor
interlinks [49]. The first and second types of side information
injected into the preference embedding suffer the problem of
additional regularization term which makes the optimization
more complicated. As to the graph-based learning strategies
of the third type usually cannot capture enough connections
especially in the extremely sparsity case. Our approach takes
advantage of their merits by incorporating the fine-grained
outfit- and item-level attributes into knowledge graph as well
as item’s multi-modal content features for outfit representation
learning. Also, calculating the similarity between the target
outfit and the users’ historically engaged ones helps to infer
their preference patterns.

III. PROBLEM FORMULATION

Suppose we have a set of users U = {u1, u2, · · · , u|U|}
and a set of outfits O = {o1, o2, · · · , o|O|}. Each outfit
oj , 1≤ j ≤ |O| is composed of a sequence of items
Sj = {sj1, sj2, · · · , sj|oj |}, where |oj | denotes the number
of items in the j-th outfit. Each item sjk, 1 ≤ k ≤ |oj |
is associated with an image xjk and the textual description
tjk, e.g., item’s meta-data or title. The user-outfit interaction
matrix Y ∈ R|U|×|O| represents the implicit feedback. Here
yuoj = 1 denotes an engagement between user u and outfit
oj . In addition, we also have the outfit’s side information (e.g.,
attributes of fashion items, number of likes for outfits) which
are utilized for the construction of attribute-aware fashion
knowledge graph G, denoted as G = {(h, r, t)|h, t ∈ E , r ∈
R}. Here (h, r, t) indicates the KG triple, which means that
there is an edge characterized by r from head entity h to tail
entity t.

With the user-outfit interaction matrix Y , fashion knowledge
graph G and item set S = {(xjk, tjk)|oj ∈ O}, our goal is
to learn a personalized preference prediction function ŷuoj =
F(u, o|Θ,Y,G,S) between user u and outfit o with which
he has never interacted before. Here Θ represents the model
parameters. For ease of reading, Table II lists the notations
throughout the paper.

IV. THE PROPOSED FRAMEWORK

A. An Overview of A3-FKG

The overall pipeline of the proposed framework A3-FKG
is demonstrated in Fig. 2. Given a user u1 and a candidate
outfit o3, an attribute-aware fashion knowledge graph G is
constructed (see Section IV-B) based on the outfit/item’s

description from the dataset and predicted attribute labels with
the classifier pre-trained on the external clothing data. Our
proposed framework encompasses three components: 1) Outfit
encoder (see Section IV-C); 2) User encoder (see Section IV-
D) and 3) Outfit preference predictor (see Section IV-E). In
learning the outfit representation, a user-specific relation-aware
attention layer (see Section IV-C-1) is utilized to accumulate
the features from the neighborhood entities of o3 considering
user’s interest on different types of relation. An aggregation
layer is leveraged to combine the self-feature eo3 and prop-
agated feature ẽo3 into a unified vector go3 before feeding
into the weighting matrix Wa. Meanwhile, its multi-modal
content features zo3 are extracted (see Section IV-C-2) on
the sequence of fashion items. Finally, a knowledge-aware
image-word feature aggregation sub-module (see Section IV-
C-3) is introduced to aggregate go3 and zo3 into a joint
outfit representation Fo3 . In learning the user representation,
it is composed of two terms: general user ID embedding and
fine-grained preference term, calculated by the summation of
historically interacted outfits via personalized weights. Finally,
the overall preference score ŷ(u1, o3) is computed as the
inner product between the learnt user and outfit embedding. In
the following sections, more details are provided about each
component of the framework.

B. Attribute-aware Fashion Knowledge Graph Construction

Fig. 3 illustrates the construction of the proposed
attribute-aware heterogeneous fashion knowledge graph G =
{(h, r, t)|h, t ∈ E , r ∈ R} with different types of entities
and relations. Here the entity set E is comprised of two
types of nodes, corresponding to outfit ID eo and attribute
value ea of distinct types. For example, “white” and “floral
” indicate the attribute values for color and pattern, respec-
tively. The attributes set A = {Ao,Ai} is further divided
into outfit-level and item-level attribute, corresponding to
Ao = {a1o, a2o, · · · , a

|Ao|
o } and Ai = {a1i , a2i , · · · , a

|Ai|
i },

respectively. And the relation set R is defined in two differ-
ent forms: 1) outfit outfit-level attribute. For example, r1 :
outfit style and r2 : outfit popularity; 2) outfit item-level
attribute. For example, r9 : outfit color of top and r11 :
outfit collar of top. Accordingly, there are altogether nine
types of entity nodes (see Table I) and fourteen types of
relations (see Fig. 3) in the fashion knowledge graph G. It
is worth mentioning that the entity nodes are composed of
outfit ID and eight types of attributes.

For the attribute type, we borrow the fashion domain knowl-
edge from the internal and external dataset. More specifically,
the outfit-level attributes are defined based on the meta-data
provided by the experimental dataset. While the item-level
attributes are extracted with a well-performing clothes attribute
classifier with 14 different attribute types and 194 different
values, which are pre-trained on a large-scale commercial
clothing dataset. And by filtering out noisy attribute types
with low classification accuracy and minority labels, five
dominant attribute types, including local attributes (e.g., collar
sleeve) and global attributes (e.g., color, pattern, category)
are estimated. It is worth mentioning that due to the lack
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Fig. 2: Overview of the proposed A3-FKG framework. The blue and yellow branches denote the details of outfit and
user encoder, respectively. And the gray branch is the overall preference predictor module. Here hourglass represents the
concatenation operation.

TABLE I: Summarization of outfit- and item-level attribute classes as well as the number of values for each class.

Outfit-Level Attribute popularity (13), price (51), style (9)

Item-Level Attribute color (20), pattern (27), collar (26), sleeve (8), category (6)

TABLE II: Summarization of notations.

General Symbols Description Symbols in Equations Description

U , O, S user, outfit, item set Wr,Wa,ba relation and aggregation weight matrix, bias
Θ model parameters WT ,WV textual and visual projection matrices
Y user-outfit interaction matrix WM1, WM2, bM1 multi-modal projection matrices
G attribute-aware fashion knowledge graph W2u,W1u,W1t,W1k user-level attention projection matrix

h, t, r, E , R head, tail entity, relation, entity set, relation set soj , goj multi-modal and structural representation of oj
ŷuoj preference score between user u and outfit oj eu, ef , ẽu global, fine-grained and overall user representation
eo, ea outfit ID, attribute entity (u, o+j , o

−
j ) training triples

A, Ao, Ai attribute, outfit- and item-level attribute set ẽoj aggregated local neighborhood representation
NL

oj
, Noj sampled and full set of neighborhood of oj Foj overall representation of oj

eo, er, et entity embedding for head, relation and tail nodes λ, λ1, λ2, γ trade-off parameters
α̃(u, r, t) user-specific relation-aware coefficients `kg , `bpr, `total kg, bpr, and total loss

of the groundtruth attribute annotation, we randomly sample
100 images and manually scrutinize the predicted results.
For a given attribute type, if almost half of the sampled set
demonstrate the wrong prediction, then we won’t incorporate
this attribute into the attribute set Ai. To summarize, the
detailed attribute types and the number of respective values
are shown in Table I.

For the style attribute, it is non-trivial to leverage the off-
the-shelf classifier [50] to identify the outfit style. What is
more, most of the existing style classifiers are trained on the
fashion dataset with full-body human images, which doesn’t fit

our scenario with clean shop images. To address this issue, we
categorize the style of the outfit based on the color statistics
of the items within an outfit, such as pairwise element-wise
difference vectors, etc. Finally, we cluster all the statistical
color vectors of the dataset into 13 styles.

C. Outfit Encoder

In this subsection, we aim to learn the outfit encoder,
which is further made up of three components: 1) Entity
representation learning with graph neural networks (GNNs);
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Fig. 3: A toy example of constructed attribute-aware fashion
knowledge graph. Different attribute categories are denoted in
different shapes and their values are differentiated by colors
(e.g., the star symbol connected to outfit A and B via relation
r1 represent different outfit styles.

2) Multi-modality representation learning; and 3) Knowledge-
aware image-word feature aggregation.

1) Entity Representation Learning with Graph Neural Net-
works: For the task of outfit recommendation, the architecture
of outfit entity representation component includes two layers:
user-specific relation-aware attention layer to accumulate the
information propagated from the neighboring entities and
aggregation layer to selectively aggregate the representation
of the entity itself and that of its neighborhood.
User-specific Relation-Aware Attention Layer. Different
users exhibit distinctive personal tastes and are likely to
purchase the same outfit with focus on different aspects. For
example, user A focuses on the price of the outfit while
user B cares more about the popularity, that is, the number
of likes in our paper. To model the personalized interests
toward multiple perspectives, we develop an attentive user-
specific relation-aware attention scheme. Given a target user u,
a candidate outfit entity node eoj and its neighboring set NL

oj ,
the local aggregated neighborhood representation ẽoj ∈ Rd is
formulated as follows:

ẽoj =
∑

(eoj ,r,et)∈NL
oj

α̃(u, r, t)et, (1)

Note that to keep computation efficient, we randomly select L
neighbors among the original neighborhood set Noj of entity
eoj , denoted as NL

oj . The user-specific attention coefficients
α̃(u, r, t) of the neighborhood entity is defined as follows:

α̃(u, r, t) =
exp

(
βπ(u, r, t)

)∑
(eoj ,r

′,e′t)∈NL
oj

exp(βπ(u, r′, t′))
, (2)

where α̃(u, r, t) is the normalized coefficients of π(u, r, t) by
softmax function across all triples in Noj and β is the scaling
ratio. And π(u, r, t) is defined as follows:

π(u, r, t) = eTu tanh
(
Wr(er||et)

)
, (3)

where eu ∈ Rd, er ∈ Rd and et ∈ Rd represent the
d-dimension user vector, relation and entity vectors, respec-
tively. And || denotes the concatenation operation between

vectors. We select tanh as the activation function [42]. And
Wr ∈ R2d×d is the trainable transformation matrix to distill
informative signal for the subsequent aggregation procedure.
Aggregation Layer. An aggregation layer is designed to
aggregate the entity’s own feature eoj and the propagated
feature eNL

oj
from its neighborhood. We empirically choose the

neighbor aggregator function, which takes the neighborhood
aggregated representation ẽoj before applying a nonlinear
transformation:

goj = φ(Waẽoj + ba), (4)

where φ is the activation function, empirically set as
LeakyRELU [51]. Here we take the neighbor aggregator which
is experimentally proven to be powerful in mitigating the over-
fitting issues and stablizing the training process. Wa ∈ Rd×d

and ba ∈ Rd denote the projection matrix and bias for the
non-linear transformation, respectively. After the aggregator
function, each entity node can be represented as goj .

2) Multi-modality Representation Learning: Given
an outfit oj with a sequence of |oj | items with
the image and textual description, denoted as Sj =
{(xj1, tj1), · · · , (xjk, tjk), · · · , (xj|oj |, tj|oj |)}, 1 ≤ k ≤ |oj |,
we first tokenized each item description tjk into separated
Japanese words. For example, each word within tjk is denoted
as one-hot vector and then fed into the word embedding
matrix to obtain its dense vector representation. Then average
pooling operation is performed on the sequence of words to
generate the textual representation wjk ∈ dw. In the similar
way, each item image is forwarded into the image embedding
matrix to obtain the visual representation vjk ∈ dv . Here
dw and dv indicate the embedding sizes of individual item’s
textual and visual features, respectively.

To enable the consistency between item’s textual and visual
representation, we further transform wjk and vjk into the
joint visual-semantic space through projection matrix WT ∈
Rdt×dw and WV ∈ Rdt×dv , expressed as below:

ṽjk = WV vjk,

w̃jk = WTwjk.
(5)

Thus, oj is denoted as Woj =[
[ṽj1, w̃j1], · · · , [ṽj|oj |, w̃j|oj |]

]
∈ R2dt×|oj |, where dt

is the dimension of projected latent feature. Then the output
multi-modal feature for the outfit oj is to take the average
pooling over the concatenated visual and textual representation
of all the items, denoted as zoj = 1

|oj |
∑|oj |

k=1(ṽjk||w̃jk),
3) Knowledge-aware Image-Word Feature Aggregation:

For the given candidate outfit oj , after deriving the knowledge-
aware image-word content features zoj through multi-modal
representation learning, together with its entity embedding
goj introduced in Section IV-C1, a transformation matrix
WM1 ∈ R2dt×d is employed to map zoj into the same latent
entity space as goj ,

soj = φ(WM1zoj + bM1), (6)

then we concatenate the transformed feature vector soj ∈ Rd

with the outfit entity representation goj . Again, the trainable
transformation matrix WM2 ∈ R2d×d, is utilized to project
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soj and goj into the user latent space. The final outfit rep-
resentation Foj ∈ Rd for computing the preference score is
denoted as below:

Foj = φ(WM2(soj ||goj ) + bM2). (7)

D. User Encoder
The user’s previous interactions reveal his/her behavior

patterns as well as latent interests, based on which effective
user embedding can be learnt to facilitate preference modeling.
However, the user’s diverse interests toward outfits are not
one-dimensional. That is, different outfit compositions have
varying impacts in characterizing users.

Taking a closer look into the historically clicked outfit
set {ot1, ot2, · · · , ot|ut|} of a particular user ut, they may be
composed of multiple styles. Here |ut| is the number of outfits
that the specific user has interacted. If each outfit depicts a
specific style, the user preferences can be computed as a linear
aggregation of

∑|ut|
k=1 wokFok . It is not practical to assume

the attention weights wok for clicked outfits are equal. For
example, if we are considering about whether to purchase a
set of top and bottom in black and white. It is highly likely
we will take the outfit into the shopping cart if several items
with similar styles are discovered in the previous activities.
Therefore, it is essential to design an attentive layer which
aims to model user’s diverse aesthetic interests.
Target-Aware Attention Layer. Given a target outfit oj , the
interacted set of user ut has varying impacts on determining
the personalized preference towards oj . The similarity between
the target and clicked outfits, modeled as the inner product
between two vectors, as shown below:

π(k, j) = WT
2utanh(W1tFoj+W1kFok+W1ueu+bu), (8)

where Fok ∈ Rd and Foj ∈ Rd are the query and target
outfit vectors for outfit ok and oj . And W2u ∈ Rd/2, W1t,
W1k and W1u ∈ Rd×d/2 are trainable projection matrices.
For better understanding, the term π(k, j) can be regarded as
the activation value and ok as the user’s interest units. Note
that we don’t take the traditional softmax operation by scaling
the value of π(k, j) to the range of [0, 1], which severely sup-
presses the intensity characterizing the users’ interests. Thus
the user’s fine-grained embedding can be further expressed as
below:

uf =

|ut|∑
k=1

π(k, j)Fok , (9)

here the weighted sum of the user’s clicked outfits uf can
be also considered as the fine-grained user embedding which
relates with the target outfit. And the user representation is
composed of two terms: 1) global user representation, that
is, user ID embedding eu and 2) local fine-grained user
representation denoted by the weighted aggregation uf . Then
we transform them into a joint latent space and obtain a unified
user embedding ẽu ∈ Rdm as shown below:

ẽu = (1− λ)eu + λφ(Wfuf + bf ), (10)

where Wf ∈ Rdm×d is the trainable projection matrix, and
bf is the bias. λ is the trade-off parameter balancing the

importance of the global and fine-grained user representation,
which is set empirically by maximizing the Pt-AUC score over
the validation set.

E. Outfit Preference Prediction and Loss Function

Given a target user u and outfit oj , the predicted personal-
ized preference score of (u, oj) is calculated by:

ŷuoj = σ(ẽ>uFoj ), (11)

where ẽu is the user representation and σ denotes the sigmoid
function for normalizing the preference score. Note that the
negative outfits utilized for training are the ones created by
other users rather than random mixture of items [14]. Thus,
there is no need to introduce the general compatibility term
into the final preference score modeling as in [14], [15].

To optimize the knowledge-aware recommendation model,
several losses are incorporated into the overall objective func-
tion. Since the task of preference prediction can be regarded as
the binary classification problem, in which the cross-entropy
loss `kg is adopted, shown as below:

`kg = − 1

N

∑
u,oj

(yuoj log ŷuoj +(1−yuoj ) log(1−ŷuoj )), (12)

where ŷuoj and yuoj denote the predicted personalized pref-
erence score and the ground-truth label. BPR loss [52] is also
introduced with triplets of one user u and two outfits (o+j , o−j ),
in which the user has engaged with o+j and has no interaction
with o−j . Furthermore, it is assumed that the user demonstrates
a larger preference over the observed ones than non-observed
ones. Therefore, the BPR loss `bpr is formulated as below:

`bpr =
∑

(u,o+j ,o−j )∈T

− lnσ(u>o+j − u>o−j ), (13)

where σ(·) is the sigmoid function. The triplet set is sampled
from T , defined as below:

T = {(u, o+j , o
−
j )|yuo+j = 1, yuo−j

= 0}, (14)

The overall objective loss Ltotal to optimize is described as
below:

Ltotal = λ1`kg + λ2`bpr + γ||Θ||22, (15)

where λ1 and λ2 denote trade-off parameters to balance point-
wise based loss `kg and pairwise ranking loss `bpr. The last
term is the L2 regularizer loss, which imposes the constraint
on the model parameters to prevent overfitting.

V. EXPERIMENTS

In this section, we perform extensive experiments and report
the results to shed light on the following questions:
• RQ1: How does the proposed A3-FKG perform com-

pared with other baseline methods w/o or w side infor-
mation?

• RQ2: What is the contribution of each component?
How do the integration of the knowledge graph, the
contribution of different modality and two-level attention
mechanism perform complementary to each other?
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• RQ3: How do different parameters affect the preference
prediction accuracy of A3-FKG?

• RQ4: Does the attribute-aware fashion knowledge graph
qualitatively assist in enhancing the recommendation per-
formance?

A. Dataset and Experiment Settings

Dataset. Despite a variety of fashion-oriented datasets [14],
[15], [50], [53]–[55] are available for different research tasks,
most of them are not well-suited for our task. We conducted
experiments on IQON3000 [15], a real-world benchmark
dataset with outfit collections created by different users. Most
of the outfits in the dataset are forming one-to-one mapping
with the users. That is, each outfit is associated with a par-
ticular user only. This makes IQON3000 a suitable testbed to
evaluate the real-life scenario where there are few interactions
between outfits. The raw dataset is composed of 308, 747 outfit
compositions created by 3,568 users. Several post-processing
procedures are performed on the raw dataset to remove the
outfits with merely one item or invalid outfit descriptions.
Table III presents the basic statistics of the post-processed
dataset, namely IQON3000c.
Implementation Details. For the visual embedding, each item
image is fed forward into pre-trained ResNet50 network [56],
we take the output of the last average pooling layer and obtain
the 2048-dimensional visual feature vector. Then it is further
mapped to 512-dimension with one fully-connected (fc) layer.
For the textual embedding, we adopt the same strategy as
[15], which utilizes the Japanese word2vec Nwjc2vec to obtain
the textual embedding matrix. The number of tokens in the
word embedding and the dimension of each token are set to
54, 275 and 300, respectively. For entity embedding, graph
convolutional neural networks is utilized and the dimension d
of the entity is set to 64. The size of the user embedding dm
is also set to 64. For the attributes, the outfit-level attribute
is extracted from the product descriptions and the item-level
attribute is estimated utilizing the fine-tuned VGG19 network
trained on a large-scale commercial clothing dataset. The
learning rate is set to 0.01. The number of neighboring size L
of its neighboring set NL

oj is set as 16. The trade-off parameter
between different losses are set to γ = 1e− 5, λ1 = 1.0, and
λ2 = 1.0. LeakyReLU is set as the activation function, denoted
as φ in Section IV and Adam [57] is utilized for parameter
updating within the mini-batch samples, the size of which is
set as 512. The trade-off parameters are determined through
the grid search strategy on the validation set.

Following the typical data splitting protocol [58], the inter-
action history is partitioned into three parts: training, validation
and testing sets. And the ratio is set to 7:1:2. The positive set
of each user is composed of the clicked outfits and the negative
set is randomly sampled over other user’s clicked outfits.
The reported performance is the averaged version with the
experiment repeated 3 times on the test set. It is worth noting
that the algorithm will be terminated automatically when
number of training epoch reaches the specified maximum
value or evaluation accuracy demonstrates repeated decrease.
We consider outfit recommendation as a preference prediction

problem and four evaluation metrics are utilized: 1) Area
under the ROC curve (Pt-AUC); 2) Average accuracy value
(Pt-ACC); 3) F1 value (Pt-F1); and 4) Area under the ROC
curve with outfit pairs (positive and negative user-interacted
data), denoted as Pr-AUC. It is worth mentioning here that
the prefix “Pt” and “Pr” represent “point-wise” and “pairwise”,
respectively.

B. Compared Baselines

We compared the proposed A3-FKG with different ap-
proaches as baselines. Among them, TransE [26], KGCN [34]
and KGNN-LS [33] are KG-aware methods, while MMGCN
[59] converts the user-item interaction matrix into the bipartite
graph and HFCN [23] proposes a hierarchical graph structure
to enable message passing in the user-outfit-item flow. Then
the rest are KG-free methods, which can be further divided
into two classes according to whether the side information is
incorporated or not.

KG-free methods w/o side info
• Random (RAND): The preference score toward the outfit

is randomly assigned.
• PopRank (POP): The “like” score is an indicator of

popularity, which is utilized to assess the degree of user
preference.

• BPR [52]: A pairwise ranking approach, which aims
to maximize the difference of the posterior probability
between the positive and negative outfit pairs.

KG-free methods w/ side info
• VBPR [13]: Visual Bayesian Personalized Ranking

which incorporates the product’s visual features into the
BPR framework.

• TBPR: This baseline integrates the textual features into
the BPR framework instead of visual features.

• GP-BPR [15]: State-of-the-art method on the dataset.
The prominent difference is that we conduct experiments
on the outfit-level, in which each outfit is comprised
of several fashion items from a variety of categories,
not strictly limited to tops and bottoms. Note that we
don’t include the general compatibility score into the final
preference prediction.

KG-aware methods
• TransE [26]: State-of-the-art multi-relational knowledge

graph embedding approach which considers the relations
as translation on the entity embeddings.

• KGCN [34] and KGNN-LS [33]: State-of-the-art KG-
guided hybrid methods which exploit the high-order
connectivity to capture the entity embedding. Sum and
concatenation aggregation strategy are utilized respec-
tively to enrich the node’s representation with its local
neighborhood features.

• MMGCN [59]: Recent work on multi-modal graph-based
recommendation approach, which proposes to learn the
modal-specific user and item representation instead of
combining different modality features as whole.

• HFCN [23]: Recent work which develops a novel hierar-
chical fashion graph structure. It enables the information
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TABLE III: Basic statistics of IQON3000c and the constructed variants of knowledge graph structure. (“#” indicates the “the
number of”)

Basic statistics of IQON3000c
Variants of KG Structure

KG-O KG-I

# users 3,568 avg. # items per outfit 5.8 # entities 307,834 # entities 1,023,786

# outfits 307,680 avg. # words per item 7.9 # relations 14 # relations 9

# items 715,946 avg. # outfits per user 86 # triples 3,075,337 # triples 6,655,387

propagation from item to the user in three different levels:
1) item-item 2) item-outfit and 3) outfit-user.

C. On Performance Comparison (RQ1)

The comparisons with the baselines and state-of-the-art
methods are presented in Table IV. Several conclusions can
be drawn as follows:
• The proposed framework A3-FKG consistently and sig-

nificantly outperforms other baselines in all cases. It also
reveals the significant advantage of incorporating multi-
modal side information and two-level attention mecha-
nism component into our system.

• Our superiority over MMGCN and HFCN indicates the
importance of attribute-aware knowledge graph as the
side information. MMGCN merely leverages the user-
outfit interaction to build the bipartite graph, the effec-
tiveness of which is deteriorated when there are few inter-
links between user-user and outfit-outfit.

• The state-of-the-art hybrid KG-aware approaches, i.e.,
KGCN and KGNN-LS, outperformed the PRs, i.e., pair-
wise ranking methods, by a large margin in personalized
preference prediction task. It again serves as a strong
evidence that the incorporation of the knowledge-graph is
of vital importance in characterizing the user preference
over outfits.

• Both the KG-aware methods and latent factor models
within the Bayesian Personalized Ranking (BPR) frame-
work have demonstrated competitive capability in the
raking-oriented evaluation (i.e., Pr-AUC). It again verifies
that both item’s side information and structural interlinks
in the KG play an important role in pairwise ranking.

• Textual feature (i.e., TBPR) are found to be more superior
than utilizing visual features (i.e., VBPR). And both of
them significantly improved over merely utilizing the
latent factor features (i.e., BPR).

D. Model Ablation (RQ2)

To explore the importance of different components in the
proposed system, we compare among the variants of A3-
FKG by replacing the associated modules with alternatives.
In the following subsections, we will investigate the effect of
two-level attention mechanism, multi-modal side information,
the impact of different choices of the aggregation layer and
different types of losses.

1) Effect of Two-Level Attention Network: Firstly, we want
to validate the impact of personalized attention with respect
to the outfit- and user-level, corresponding to user-specific

relation-aware (RAA) and target-aware attention (TAA) mod-
ule, respectively. To independently investigate the importance
of attention schemes, free of the impact of multi-modal data,
we remove the visual/textual content in the outfit encoding,
represented by A3-FKG (-MM). Table V displays the perfor-
mance with different combinations of attention modules on
both the simplified and complete version of A3-FKG, from
which we can obtain the following findings:
• The two-level attention mechanism consistently improves

the performance, which strongly proves the necessity of
modeling the users’ fine-grained preference on different
relations and their diverse interests from their behavior
sequences.

• A3-FKG with the user-specific relation-aware attention
consistently outperforms other variants w/o attention net-
works. One possible reason is that users demonstrate
distinctive interests on the different aspects of the outfit.
And the user-specific attention mechanism is capable of
attending to important outfit traits which satisfy user
preferences. Also, it is important to choose the archi-
tecture of the attention network. In this case, the inner
product between the user embeddings and relations can
well capture the user preference as opposed to complex
structures like the multi-layer perceptron (MLP).

2) Effect of Multi-Modal Content Features: To mitigate the
negative impact of outfits which have few interactions with the
users, we introduce the content features of items - 1) Image
(I) and 2) Text description (W). Fig. 4 illustrates the results
without any side information of items (-I-W), visual-modality
only (-W), textual-modality only (-I) and with both modality
data. We can find that the textual signal is comparatively
more important in personalized preference modeling, which is
consistent with the comparison between the VBPR and TBPR
as shown in Table. IV. One possible reason is that the textual
description is an explicit way to learn the preference matching
rules than the visual signal.

3) Effect of the Aggregation Layer: Here after the neigh-
borhood feature aggregation with a different focus on vari-
ous types of relations, we adopt variants of aggregators to
explore their impacts on the framework. More specifically,
four different kinds of aggregation schemes are considered
and compared, corresponding to 1) Sum 2) Concatenation 3)
Neighbor 4) Ego aggregator, denoted as A3-FKGsum, A3-
FKGconcat, A3-FKGneighbor, and A3-FKGego, respectively.
From the results shown in Fig. 5, we have the observations
below:
• A3-FKGneighbor achieves the best results among the four

metrics, which demonstrates that the neighbor feature
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TABLE IV: Overall performance comparison between the proposed A3-FKG and other approaches.

Methods Model Pt-AUC Pt-ACC Pt-F1 Pr-AUC

KG-free w/o side info
RAND 0.5000 0.4996 0.4996 0.4959
POP 0.5013 0.5000 0.6203 0.4930

BPR [52] 0.5660 0.5527 0.5553 0.5625

KG-free w/ side info
VBPR [13] 0.6510 0.5859 0.5638 0.7383

TBPR 0.7286 0.6494 0.7274 0.7402
GP-BPR [15] 0.7486 0.6602 0.7085 0.8086

KG-aware

TransE [26] 0.7412 0.6725 0.6879 0.7658
KGNN-LS [33] 0.7916 0.7205 0.7334 0.7918

KGCN [34] 0.8132 0.7340 0.7429 0.8144

Graph-based MMGCN [59] 0.6536 0.6404 0.6688 0.6572
HFCN [23] 0.8839 0.8113 0.8232 0.8857

Proposed A3-FKG 0.9289 0.8575 0.8606 0.9276

TABLE V: Performance with different combinations of attention modules. Here !and %denote w/ and w/o attention module,
respectively. And A3-FKG (-MM) and A3-FKG represent the simplified version without incorporating the multi-modal content
and the complete version. RAA and TAA represents the relation-aware attention and target-aware attention, respectively.

Attention Level Evaluation Metrics

Model RAA TAA Pt-AUC Pt-ACC Pt-F1 Pr-AUC

A3-FKG (-MM)

% % 0.8725 0.7991 0.8117 0.8718
! % 0.8822 0.8055 0.8158 0.8792
% ! 0.8809 0.8047 0.8134 0.8775
! ! 0.8840 0.8086 0.8180 0.8809

A3-FKG

% % 0.9169 0.8443 0.8503 0.9205
! % 0.9263 0.8542 0.8572 0.9270
% ! 0.9275 0.8559 0.8575 0.9277
! ! 0.9289 0.8575 0.8606 0.9276

Fig. 4: Effects of multi-modal Content Features. Here (-I) and
(-W) mean without the visual and textual information.

aggregation plays a significant role in modeling the user
preference. The neighboring attribute-level entity nodes
are capable of conveying more semantics than the ego
node itself in our case. It is reasonable since our dataset
is highly sparse and the representation capability of the
entity id (without much collaborative information) is
limited.

• The sum and concatenation aggregators are experimen-
tally proven to be more effective than the ego aggregator,

Fig. 5: Effect of variants of aggregators.

which reveals that both the outfit entity and the attribute
nodes jointly can enhance the representation power of
outfit representation. It also validates the effectiveness of
graph neural networks for representation learning.

4) Effect of different losses: Three different types of losses
are included in Eq 15), the weighted sum of the cross-entropy
loss (`kg), BPR pairwise loss (`bpr) and L2 regularization
loss. In most of the recommender system, either `bpr or `lc
is chosen for parameter learning, we propose to combine
these two losses, which experimentally found to bring further
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TABLE VI: Effect of outfit- and item-level attributes.

Hierarchy Variants Pt-AUC Pt-ACC Pt-F1 Pr-AUC

Outfit-level

Popularity 0.9231 0.8496 0.8514 0.9230
Price 0.8664 0.7860 0.7857 0.8651
Style 0.8684 0.7882 0.7879 0.8660

Popularity+Price 0.9235 0.8519 0.8543 0.9220
Popularity+Style 0.9258 0.8497 0.8491 0.9237

Price+Style 0.8678 0.7871 0.7856 0.8654
All 0.9267 0.8548 0.8576 0.9251

Item-level

All outfit-level + color 0.9277 0.8548 0.8557 0.9268
All outfit-level + pattern 0.9286 0.8570 0.8601 0.9299
All outfit-level + collar 0.9275 0.8547 0.8575 0.9261
All outfit-level + sleeve 0.9272 0.8561 0.8595 0.9267

All outfit-level + sleeve + collar + pattern + color 0.9289 0.8575 0.8606 0.9276

TABLE VII: Effect of different losses.

Losses `kg + L2 `bpr + L2 Ltotal

Pt-AUC 0.9268 0.8623 0.9289
Pt-ACC 0.8555 0.7366 0.8575
Pt-F1 0.8587 0.6921 0.8606

Pr-AUC 0.9273 0.9165 0.9276

improvements and accelerates the convergence of the model,
as shown in Table. VII.

E. Attribute-Level Analysis

In this section, we quantitatively explore the impact of
both outfit- and attribute-level attributes on the performance
of the proposed framework. Since our outfit entity learning
is based on the aggregation of its connected neighbors, it is
necessary for each outfit node to have at least one attribute.
We experiment with the following order: 1) we conduct the
experiments on the outfit-level attributes; 2) the item-level
attributes are incorporated one by one on top of outfit-level
attributes. From the results shown in Table VI, we have the
following observations:
• With respect to the outfit-level attribute, popularity con-

sistently outperforms the rest attributes. And most of
the pairwise attribute groups have achieved better results
than utilizing merely one attribute. By integrating all the
attributes, a subtle improvement can be obtained.

• Global attributes such as color and pattern demonstrate
more representative capability for describing the user’s
preference, compared with local fine-grained attributes,
such as collar of the top.

• Based on the reported results, the style attribute achieves
inferior performance compared with other outfit-level
attributes extracted directly from the dataset. However,
we still remain the style attribute since it provides an
overall impression of the outfit which is experimentally
helpful in the qualitative analysis.

Because our target is to construct a comprehensive attribute
list to provide the plausible reasons about the preference
estimation results. Even though some combinations with minor

performance decrease is still acceptable. In this paper, the
presented results are based on the attribute all-in strategy.

F. Parameter Sensitivity (RQ3)

In this subsection, the effects of hyper-parameters are inves-
tigated on the performance of user-outfit preference prediction.
Impact of attribute-aware fashion KG structure. We mod-
ify the structure of established fashion knowledge graph
by linking the item’s attributes (i.e., outfit- and item-level
attributes) to the item entity node rather than the outfit
entity node. For example, given an outfit P including a
red sweather (item A), for the originally constructed KG-O
(utilized throughout the paper), it connects the outfit node
“outfit P” to color node “red” via the color-category relation
“color of the sweather”. While the adapted KG-I , it links
the attribute node “red” and category node “sweather” to
item node “item A”. From Table IX, KG-O achieves better
performance partially because of its more comprehensive
local structure with an enhanced representation capability.
Taking the computation and memory into account, we only
consider the one-hop neighbor instead of multi-hop high-
order connectivity. Compared to KG-I , the attribute nodes
of KG-O are directly connected with the outfit entity node,
the aggregation of which thus incorporates more semantics
to the outfit embedding. It is worthwhile mentioning that the
experiments throughout the paper are conducted on KG-O.
Impact of user embedding dimension We investigate how
the dimension of user embedding dm affects the perfor-
mance by searching the candidate value in the range of
{4, 8, 16, 32, 64, 128, 256}. The results are shown in Ta-
ble VIII. From the results, with dm increasing from 4, the
performance gradually increases and it achieves the best
performance when dm reaches 64. It is reasonable as larger
embedding size means better representation capability.
Impact of number of neighbor size We vary the number
of sampled entity neighbors from 2 to 32 to investigate the
importance of sampled neighbors. The results are shown in
Table X. When the number of neighbors is small, the outfit
entity representation is not comprehensive to aggregate the
information from its connected nodes. We find that even with
a small neighborhood size as 2, the network still demonstrates
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TABLE VIII: Performance in terms of different user embedding dimension dm.

Metrics
dm 4 8 16 32 64 128 256

Pt-AUC 0.8691 0.9004 0.9142 0.9260 0.9289 0.9281 0.9214
Pt-ACC 0.7985 0.8308 0.8441 0.8546 0.8575 0.8556 0.8473
Pt-F1 0.8049 0.8383 0.8504 0.8584 0.8606 0.8574 0.8489

Pr-AUC 0.8684 0.8975 0.9128 0.9249 0.9276 0.9275 0.9241

TABLE IX: Performance in terms of different attribute-aware
fashion KG structure.

KG structure KG-I KG-O

Pt-AUC 0.9165 0.9289
Pt-ACC 0.8414 0.8575
Pt-F1 0.8424 0.8606

Pr-AUC 0.9156 0.9276

TABLE X: Performance in terms of number of neighbor size
L.

Metrics
L

2 4 8 16 32

Pt-AUC 0.8801 0.8918 0.9118 0.9289 0.9255
Pt-ACC 0.8004 0.8121 0.8337 0.8575 0.8509
Pt-F1 0.8038 0.8129 0.8342 0.8606 0.8510
Pr-F1 0.8799 0.8928 0.9114 0.9276 0.9258

excellence in the prediction performance. Taking a closer look
into the dataset statistics, we find that about outfit nodes with
no more than 8, 16 neighbors occupy by 29% and 98% of the
overall size, respectively. Therefore, setting the neighbor size
L as 16 is the best choice to incorporate all types of connected
nodes.

G. Case Study (RQ4)

One of the potential application of the proposed system
is the explainable personalized recommendation, which of-
fers plausible reasons for the returned results. We aim to
explore the fine-grained aesthetic tastes of users as well as
their multi-dimensional interest. A user with ID u2407505 is
randomly selected and several exemplar outfit compositions
are displayed. From the behavior sequence, we can find that
from the global aspect, he/she demonstrates preference on the
light color (e.g., gray, white) clothes, casual/sporty style. From
the local aspect, stripped pattern, hoodies and blue-colored
long trousers are to the user’s appetite. To validate whether
the returned results are in consistency with our observation,
the top-3 attentive weights are extracted for demonstration,
from Fig. 6, we can find that the top-1 returned outfit is
among the user’s interacted outfits, which proves the success
of our system in the recommendation task. In addition, the
top-3 recommended outfits share similar styles with the history
record. And the reason for recommendation is also in line with
our observation. One interesting finding is that the system is
capable of discovering that the user is fond of denim material,
as shown in the last two rows.

Pattern of bottom
Style of the outfit
Color of hoody

Rank 1

Outfit Style
Color of top

Pattern of bottom

Rank 2

Pattern of top
Outfit Style

Pattern of bottom

Rank 3

User 2407505

Score: 0.9910

Score: 0.9876

Score: 0.9870

Fig. 6: Visualization of top-3 recommendation results (last
three rows). The first and second rows show examples of the
user’s historically clicked outfits. The matched one is high-
lighted with dashed green bounding box. Attribute preference
ordering are illustrated in bars of different colors. Best viewed
in color.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose an end-to-end personalized outfit
recommender system (A3-FKG), which investigates the usage
of knowledge graph in capturing the connectivity between
entities (which can be outfit, items, attributes) and exploit
the complementary benefits of the multi-modal information.
To differentiate the varying contribution of outfit-attribute
relations in the knowledge graph as well as the activation
of user’s diverse interests with respect to the target item, we
develop two-level attention modules, corresponding to user-
specific relation-aware and target-aware networks. The effec-
tiveness of the proposed system is validated on the real-world
dataset. This work represents an initial attempt to integrate the
knowledge graph into the recommender system in the fashion
domain. In the future, we will attempt to borrow the domain
knowledge of clothing matching rules into the construction of
fashion-aware knowledge graph.
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