
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. XX, MARCH 2015 1

Improper Gaussian Signaling Scheme
for the Z-Interference Channel

Ernest Kurniawan, Member, IEEE, and Sumei Sun, Senior Member, IEEE

Abstract—This paper studies improper Gaussian signaling
in the Z-Interference-Channel (ZIC) for the case when the
interference is treated as noise. The extra degree of freedom
from improper signaling provides better interference manage-
ment, allowing to balance the trade-off between maximizing the
direct link throughput and controlling the effect of interference,
hence giving better achievable rate than the proper signaling
counterpart. In this work, a closed form solution to the sum-rate
maximizing real-composite transmit covariance matrix is derived
for the ZIC. The structure of the real-composite covariance
matrix reveals some interesting insights, such as the optimality
of binary power control, the channel condition when improper
signaling is strictly better than the proper signaling strategy, as
well as the relationship between the choice of the real-composite
transmit covariance matrix and the system parameters. The
connection between the results obtained in this work and those
available in the literature are also pointed out.

Index Terms—Z-Interference Channel, Improper Gaussian
Signaling, Sum-Rate Maximization, Real-Composite Transmit
Covariance Matrix.

I. INTRODUCTION

PROPER Gaussian signals with independent and equal
variance on the real and imaginary components, have

been widely used for analyzing different types of channels
in the past. This is largely due to the entropy-maximizing
property of proper Gaussian signals [1]. While the assump-
tion of proper signal is convenient for analysis, it does not
necessarily hold in practice. Some signal constellations such
as BPSK (Binary Phase Shift Keying) and a family of CPM
(Continuous Phase Modulation) are known to exhibit improper
characteristics with non-identical variance on the real and
imaginary components [2]. This motivates a study on widely
linear receivers [3]−[4], which are shown to perform better
in dealing with improper signals by achieving lower MSE
(Mean Square Error). An in-depth analysis on the second
order property of complex signals is given in [5]–[7], showing
the additional characteristics describing improper signals com-
pared to the proper signals. In contrast to the strictly linear
receivers, this extra information is exploited by the widely
linear receivers to make a better decision, leading to lower
MSE. This advantage has been demonstrated in [8] for the
relay channels.

Besides MSE minimization, the use of improper signaling
has been shown to improve other performance metrics as well.
For the degrees of freedom (DoF), which is the capacity
scaling factor in high signal to noise ratio (SNR) regime,
[9] showed that improper Gaussian signaling can achieve 1.2
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DoF per user in 3-user interference channel (IC). This is
higher than proper signaling, which limits the DoF to be at
most one for any IC [10]. This higher achievable DoF using
improper signaling is due to its ability to control the inter-
ference signal dimension, and it is one form of interference
alignment [11]. The DoF results have also been extended to
IC with larger number of users, such as 4-user IC, which
is shown to have 4/3 DoF per user [12]. Beyond the DoF
analysis for IC, [13] showed that improper signaling with
widely linear receiver in point-to-point Multiple Input Multiple
Output (MIMO) channels can reduce the bit error rate as
compared to proper signaling. The same conclusion also holds
for multiuser MIMO broadcast channels [14], in which higher
rate is shown to be achievable using improper signaling. In
practical systems, improper signaling has been considered in
both GSM (Global System for Mobile communication) [15]–
[17] and 3GPP (3rd Generation Partnership Project) GERAN
(GSM EDGE Radio Access Network) [18], [19].

Another area that has attracted a lot of interest is the
achievable rate region characterization of IC using improper
Gaussian signaling when interference is treated as additional
noise. This has practical applications especially in the systems
with low complexity receiver where interference decoding is
not possible. A rank-1 transmission strategy using improper
Gaussian signals in two-user Single Input Single Output
(SISO) IC was proposed in [20], and was shown to enlarge
the achievable rate region compared to the proper Gaussian
signaling strategy. Dropping the rank-1 signaling assumption,
[21] considered a sub-optimal method to sequentially optimize
the covariance and pseudo-covariance matrices of the improper
Gaussian signals. The same author also considered joint opti-
mization algorithm for the covariance and pseudo-covariance
matrices [22] as well as the K-user Multiple Input Single
Output (MISO) IC extension of the results [23]. This algorithm
involves solving a set of convex feasibility problem iteratively
together with a bisection method to maximize the sum-rate
for any given profile, therefore the computational complexity
required to calculate the optimal transmit covariance and
pseudo-covariance matrices is relatively high. For each rate
profile, the algorithm returns a single Pareto-optimal point on
the achievable rate regime.

A special case of IC whereby the interference is only expe-
rienced by one of the receivers is known as the Z-Interference
Channel (ZIC) [24], or one-sided IC. Despite its simplicity,
there are real-world wireless communication scenarios that can
be well approximated by the ZIC model. One good example is
in multi-cell downlink transmission where one user is located
at the cell boundary while the other user is located near the
cell center of the neighboring cell and hence far away from the
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interfering base station. Another scenario is when one of the
receivers is blocked from the interfering transmitter by a large
building or a thick wall, while the other receiver is exposed
to the interference.

Some notable works on ZIC include [25], which derives the
capacity region of MIMO ZIC under the very strong interfer-
ence and aligned strong interference conditions, and the sum-
capacity under the noisy interference condition. The results
have been further extended to MIMO IC in [26] by the same
authors, and a more rigorous treatment for the sum-capacity of
MIMO IC is provided in [27] for the noisy interference case.
The sum-capacity of the parallel Gaussian ZIC was derived in
[28] for multi-carrier communications in frequency selective
channels. Application of improper Gaussian signaling for the
ZIC is considered in [29], and it is shown that the achievable
rate region can be enlarged compared to the proper Gaussian
counterpart. The design of optimal improper Gaussian signals
in [29], however, contains a variable that controls the degree
of impropriety and has to be swept across a range of values to
obtain the largest rate region. As such, the optimal design is
not presented in closed form, making it difficult to draw any
intuition on the optimal transmission strategy.

Under the same assumption of treating interference as noise,
we study the application of improper Gaussian signaling to the
ZIC, and we focus on the achievable sum-rate of the system.
In particular, we investigate how the transmission strategy
and the optimal covariance structure change as the system
parameters are varied. Throughout this paper, we use the
doubled-dimensional real representation of complex variable,
which is obtained by stacking the real part on top of the
imaginary part of the variable. Correspondingly, we follow
the definition used in [30] to denote the covariance matrix as
the real-composite covariance matrix. By deriving in closed
form the optimal sum-rate-maximizing real-composite trans-
mit covariance matrix, we analyze the behavior of the optimal
strategy. This sheds light on how improper Gaussian signaling
makes use of the correlation between real and imaginary part
of the signal to achieve better sum-rate. In summary, the
contributions of this work are as follows.

• Derive a closed form expression for the sum-rate
maximizing real-composite transmit covariance ma-
trix: we formulate the problem of finding the best real-
composite transmit covariance matrix into a convex opti-
mization framework, and show that the optimal solution
can be found by checking a finite number of candidates.
This closed form solution requires significantly lower
complexity to compute, and provides important practical
insight into the optimal transmission strategy.

• Provide intuitive explanations on the optimal trans-
mission scheme: analyzing the obtained expression for
the optimal real-composite covariance matrices, we are
able to draw interesting insight into the optimal strategy
for different channel conditions. In the weak interference
regime, the improper signaling strategy reduces to proper
signaling. In addition, a binary power control policy
is found to be optimal in all cases. We also provide
explanations on the condition when the interfering user
should transmit at full power, how the rotation angle of

h11

h22

+

h12

S1

S2 +

D1

D2

x1

x2

n1

n2

W1

W2

W1

W2

^

^

y1

y2

Fig. 1. Z-Interference channel model.

the optimal real-composite covariance matrix should be
adjusted, and also on the relationship between the number
of used signal dimensions and the optimization domain.

• Show the sum-rate benefit of using improper signal-
ing via numerical study: we demonstrate the sum-rate
performance advantage of using improper signaling as
compared to proper signaling, especially in the strong
interference regime where the gain is significant, and
show the effect of channel parameters to the amount of
gain achieved.

The rest of this paper is organized as follows. Section II
describes the system model. Section III provides the derivation
of the optimal transmission strategy for the complex ZIC.
Analysis on the optimal real-composite covariance matrix
structure and the intuitions it provides on the interference
management strategy are given in Section IV. Numerical
results are then presented in Section V to demonstrate the gain
achieved by using improper Gaussian signaling, and Section
VI concludes this paper.

II. SYSTEM MODEL

A ZIC as illustrated in Fig. 1 comprises two transmitter-
receiver pairs (denoted as S1-D1 and S2-D2), whereby the
transmission from one of the senders S2 introduces inter-
ference to the non-intended receiver D1, while the other
receiver D2 is free from interference [24]. The transmitter Sk

encodes the message Wk onto xk, which is intended for the
receiver Dk who then makes an estimate Ŵk from the received
signal yk. For simplicity, we consider the case where each
node is equipped with a single antenna. Using the doubled-
dimensional real representation of a complex variable, the
received signals at the two receivers can be expressed as

y1 = |h11|J(θ11)x1 + |h12|J(θ12)x2 + n1, (1a)

y2 = |h22|J(θ22)x2 + n2, (1b)

where the transmitted signal from user k is defined as xk �[
x
(r)
k

x
(i)
k

]
, while the received signal and the noise at the

receiver k are defined as yk �
[

y
(r)
k

y
(i)
k

]
and nk �

[
n
(r)
k

n
(i)
k

]
,

respectively. The superscripts (·)(r) and (·)(i) have been used
to denote the real and imaginary components, respectively. In
the above, the channel between transmitter j to receiver i for
i, j ∈ {1, 2} is denoted by hij = |hij |J(θij), with the rotation

matrix J(θij) defined as J(θij) �
[

cos(θij) − sin(θij)
sin(θij) cos(θij)

]
.
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As such, the received signal model in (1) is equivalent to a
2 × 2 real MIMO channel, whereby the channel matrix is a
scaled unitary matrix.

When a proper Gaussian signal is used, the real-composite
transmit covariance matrix Σxk

= E
[
xkx

T
k

]
is a scaled

identity matrix1, which implies that the real and imaginary
components of xk are uncorrelated (E

[
x
(r)
k x

(i)
k

]
= 0) and

they have equal variance/power (E
[
|x(r)

k |2
]
= E

[
|x(i)

k |2
]
=

E
[|xk|2

]
/2). Here, the notation E [·] is used to denote

statistical expectation operation, and the superscript (·)T de-
notes the transpose operation. On the other hand, when an
improper Gaussian signal is used, the real-composite transmit
covariance matrix Σxk

can be any arbitrary real symmetric
positive semidefinite matrix. As the additive noise at both the
receivers are proper Gaussian, their real-composite covariance
matrices are given by Σnk

� E
[
nkn

T
k

]
= Nk

2 I, where
E
[|nk|2

]
= Nk is the corresponding noise variance. The

maximum available transmit power at user k imposes the
constraint Tr (Σxk

) ≤ Pmax
k . Here, Tr(.) denotes a trace

operation. Using the following transformations

x̃1 =
|h11|√
N1/2

J(θ11)x1,

x̃2 =
|h22|√
N2/2

J(θ22)x2,

H̃ =
|h12|

√
N2

|h22|
√
N1

J(θ12 − θ22) � |h̃| J(θ12 − θ22),

we obtain the following standard form-equivalent channel for
the received signal model

ỹ1 = x̃1 + H̃x̃2 + ñ1, (2a)

ỹ2 = x̃2 + ñ2, (2b)

where the gains of the direct links have been normalized to
unity. The effective noise covariance matrices at both receivers
are given by Σñ1 = Σñ2 = I. For simplicity of notation,
we define γij � |hij |2/Ni, which can be viewed as the
interference-free effective SNR of the link from transmitter
j to receiver i when the transmit power is normalized to one.
Using this notation, the transmit power constraint is given by
Tr (Σx̃k

) ≤ 2γkkP
max
k .

III. REAL-COMPOSITE TRANSMIT COVARIANCE MATRIX

OPTIMIZATION FOR COMPLEX ZIC

Using the standard model in (2), the sum-rate maximization
problem when receiver 1 is restricted to treat interference as
noise can be formulated as

max
Σx̃1 ,Σx̃2≥0

R1 +R2 (3)

s.t. Tr (Σx̃1) ≤ 2γ11P
max
1 ,

Tr (Σx̃2) ≤ 2γ22P
max
2 ,

1It is noted that this scaled identity matrix form holds only for scalar proper
complex Gaussian random variables. For a general proper complex Gaussian
random vectors, the real-composite covariance matrix is not necessarily block
diagonal. Instead, it has a special block pattern, and its sub-block components
must satisfy the conditions given in [31, eq. (9)].

where R1 and R2 are the rates at D1 and D2, respectively,
and are given by

R1 =
1

2
log2

∣∣∣I+Σx̃1+|h̃|2J(θ12−θ22)Σx̃2J
T (θ12−θ22)

∣∣∣∣∣∣I+ |h̃|2J(θ12−θ22)Σx̃2J
T (θ12−θ22)

∣∣∣ , (4)

R2 =
1

2
log2 |I+Σx̃2 | , (5)

where | · | denotes the determinant of the matrix argument. It is
known that when the interference link gain is relatively large
(i.e. the ZIC is in the strong interference regime), interference
decoding can enlarge the achievable rate region of a ZIC
at the price of increased receiver complexity. However, it
is sometimes desirable to have a simple receiver that treats
interference as noise. The present work focuses on this prac-
tical consideration, and no interference decoding is used at
the receiver. Under this setup, we investigate the sum-rate
maximizing transmission strategy. We will first consider the
case where the transmitters are restricted to use only proper
Gaussian signaling.

As explained earlier, the real-composite transmit covariance
matrix Σxk

of the proper Gaussian signal xk is a scaled
identity matrix. It can be shown that after transforming it
into the standard form-equivalent channel, the transmitted
signal x̃k will still be proper, therefore its real-composite
covariance matrix Σx̃k

will still be a scaled identity matrix. Let
Σx̃k

= P ′
kI, the optimization problem in (3) can be rewritten

into

max
P ′

1,P
′
2

log2

(
1 + P ′

2

1 + |h̃|2P ′
2

(1 + P ′
1 + |h̃|2P ′

2)

)
(6)

s.t. 0 ≤ P ′
1 ≤ γ11P

max
1 ,

0 ≤ P ′
2 ≤ γ22P

max
2 .

As the objective function above is increasing with P ′
1, the

optimal choice is to set P ′
1 = γ11P

max
1 . When |h̃|2 ≤ 1, the

above objective function is also increasing with P ′
2, therefore

P ′
2 = γ22P

max
2 maximizes the objective function. Otherwise,

when |h̃|2 > 1, the argument inside the logarithm is convex
in P ′

2, since its second derivative satisfies P ′
1
2|h̃|2(|h̃|2−1)

(1+|h̃|2P ′
2)

3
> 0.

Hence in this case the optimal choice of P ′
2 is given by

P ′
2 =

{
0 when |h̃|2(γ11Pmax

1 −γ22P
max
2 )>1+γ11P

max
1

γ22P
max
2 otherwise.

(7)
Remark: Whenever γ22Pmax

2 > γ11P
max
1 , the optimal choice

is to always set P ′
2 to its maximum value of γ22P

max
2 . This

has an interesting interpretation. Namely, when the highest
achievable rate through the direct link of the interfering user is
larger than that of the other user in the absence of interference,
the best strategy is to use maximum available transmit power
for the interfering user. This is because interference reduction
does not improve the sum-rate.

When the transmitters are no longer restricted to use
proper Gaussian signaling, the extra degree of freedom made
available by improper Gaussian signaling allows for fur-
ther optimization on the real-composite covariance matrices.
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Consider again the sum-rate maximization problem in (3).
Let Σx̃2 be decomposed into Σx̃2 = Vx2Λx2V

T
x2

, where
Λx2 = diag{λ(1)

x2 , λ
(2)
x2 } is a diagonal matrix consisting of the

corresponding eigenvalues. Multiplying each of the determi-
nant arguments inside the rate expressions in (4) and (5) with
VT

x2
JT (θ12 − θ22) on the left and J(θ12 − θ22)Vx2 on the

right, we can simplify R1 and R2 into

R1 = 0.5 log2

∣∣∣I+Σx̂1 + |h̃|2Λx2

∣∣∣∣∣∣I+ |h̃|2Λx2

∣∣∣ , (8)

R2 = 0.5 log2 |I+Λx2 | , (9)

where Σx̂1 = VT
x2
JT (θ12 − θ22)Σx̃1J(θ12 − θ22)Vx2 . It

is known that for a random vector x with covariance Σx,
multiplication with any unitary matrix x̃ = Ux does not alter
the determinant or the trace of its covariance matrix. Therefore,
in the optimization problem in (3) we can use the simplified
rate expressions (8) and (9), with the power constraints given
by Tr (Σx̂1) ≤ 2γ11P

max
1 and Tr (Λx2) ≤ 2γ22P

max
2 .

It is clear from the above that the optimal Σx̂1 is di-
agonal, since the non-zero off-diagonal elements will only
decrease R1. Denoting the optimal choice of Σx̂1 as Σ∗

x̂1
=

diag{λ(1)
x1 , λ

(2)
x1 }, the sum-rate can be expressed as

R1 +R2 = 0.5 log2

(
(1 + λ(1)

x2
)(1 + λ(2)

x2
)(

1 +
λ
(1)
x1

1 + |h̃|2λ(1)
x2

)(
1 +

λ
(2)
x1

1 + |h̃|2λ(2)
x2

))
. (10)

Since the transmission from S1 does not introduce any in-
terference in ZIC, it is optimal to set its transmit power to
the maximum possible value. Furthermore, by denoting the
transmit power used at S2 as P2 (which will be optimized
later), we can use the substitution λ

(2)
x1 = 2γ11P

max
1 − λ

(1)
x1

and λ
(2)
x2 = 2γ22P2 − λ

(1)
x2 to rewrite the sum-rate expression

into a function of only λ
(1)
x1 , λ(1)

x2 , and P2, as

Rsum= 0.5 log2

(
(1 + λ(1)

x2
)(1 + 2γ22P2 − λ(1)

x2
)(

1 +
λ
(1)
x1

1 + |h̃|2λ(1)
x2

)(
1 +

(2γ11P
max
1 − λ

(1)
x1 )

1 + |h̃|2(2γ22P2 − λ
(1)
x2 )

))
.(11)

It can be shown that the sum-rate in (11) is a strictly concave
function of λ(1)

x1 , since the logarithm of a concave function is
concave, and the second derivative of the argument inside the
logarithm satisfies

−2
1 + λ

(1)
x2

1 + |h̃|2λ(1)
x2

1 + 2γ22P2 − λ
(1)
x2

1 + |h̃|2(2γ22P2 − λ
(1)
x2 )

< 0. (12)

With the sum-rate expression in (11), the optimization problem
in (3) can be equivalently written as

max
λ
(1)
x1

,λ
(1)
x2

,P2

Rsum (13)

s.t. 0 ≤ λ(1)
x1

≤ 2γ11P
max
1 ,

0 ≤ λ(1)
x2

≤ 2γ22P2, 0 ≤ P2 ≤ Pmax
2 .

Noting the structure of the problem in (13), namely the

concavity of the objective function with respect to λ
(1)
x1 and

the fact that the domain of λ(1)
x1 is not coupled with the other

two optimization variables, we use the following lemma to
help solve the problem.

Lemma 1: Define the following optimization problem

max
x1,x2,x3

f(x1, x2, x3) = g(x2, x3) + h(x1, x2, x3) (14)

s.t. x1 ∈ X1 ⊂ R+, (x2, x3) ∈ X2,3 ⊂ R
2
+,

where both X1 and X2,3 are closed convex sets. Let the
globally optimal parametric solution of x1 be

x∗
1 � arg max

x1∈X1

h(x1, x2, x3) = s(x2, x3). (15)

Since the domain of x1 is not coupled to that of x2 and x3,
the original problem can be simplified into

max
x2,x3

g(x2, x3) + h (s(x2, x3), x2, x3) (16)

s.t. (x2, x3) ∈ X2,3 ⊂ R
2
+.

When h(x1, x2, x3) is strictly concave in x1, the parametric
solution x∗

1=s(x2, x3) is unique, which simplifies the analysis.
Proof: The proof follows directly from the definition of

x∗
1.
By applying Lemma 1, we can simplify our sum-rate

maximization problem in (11) by computing the parametric
solution of λ(1)

x1 , which is given by

λ(1)∗
x1

� arg max
0≤λ

(1)
x1

≤2γ11Pmax
1

0.5 log2

(
1 +

λ
(1)
x1

1 + |h̃|2λ(1)
x2

)
+

0.5 log2

(
1 +

(2γ11P
max
1 − λ

(1)
x1 )

1 + |h̃|2(2γ22P2 − λ
(1)
x2 )

)
. (17)

Note that we have extracted the terms in the objective function
that are dependent on λ

(1)
x1 . It is apparent that the problem in

(17) is a power allocation problem over two parallel chan-
nels, with total power constraint of 2γ11Pmax

1 and equivalent
subchannel gains

g1 =
1

1 + |h̃|2λ(1)
x2

(18a)

g2 =
1

1 + |h̃|2(2γ22P2 − λ
(1)
x2 )

. (18b)

The solution to this power allocation problem is given by the
well-known water-filling technique. In order to apply Lemma
1, we need a closed form expression to the optimal λ(1)

x1 , which
is given as follows.

Lemma 2: The optimum power allocation over n parallel
channels having subchannel gain gi with total power constraint∑
i

λi ≤ PT is given by the water-filling solution [32]−[33]

λ∗
i =

(
1

γ
− 1

gi

)+

,

where (x)+ � max(0, x), and γ is chosen such that
∑
i

λ∗
i =

PT . Defining the sorting order π(i) such that gπ(i) ≥ gπ(j)
for all i < j, and denoting K ∈ {1, · · · , n} as the number
of subchannels that are allocated non-zero power, the optimal
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power allocation for subchannel π(i), ∀1 ≤ i ≤ K is given
by

λπ(i) =
PT

K
− 1

gπ(i)
+

1

K

K∑
t=1

1

gπ(t)
. (19)

Proof: The detailed proof of the water-filling algorithm
above can be found in [32, Ch. 7.5] and [33, Sec. 3.1]. The
same closed form characterization of this power allocation can
also be obtained using a piece-wise defined function, as that
used in [34, eqs. (14) and (15)].

Specializing Lemma 2 to the two-subchannels case in (17)
with the gains in (18), the optimal λ(1)

x1 can be expressed as

λ(1)∗
x1

=

⎧⎪⎨
⎪⎩
γ11P

max
1 + |h̃|2γ22P2 − |h̃|2λ(1)

x2

if Pmax
1 > |h̃|2(γ22P2 − λ

(1)
x2 )/γ11

2γ11P
max
1 otherwise.

(20)

In (20), we assumed that λ
(1)
x2 ≤ γ22P2 without loss of

generality. This is due to the symmetry of the subchannel gain
in (18) with respect to λ

(1)
x2 = γ22P2. When this assumption

does not hold, we can substitute λ
(1)
x1 with 2γ11P

max
1 − λ

(1)
x1

to arrive at the same solution.
Using this parametric solution of λ(1)∗

x1 , the original problem
in (13) can now be solved to find the optimal value of λ(1)

x2 and
P2. Since the two cases in (20) correspond to different domains
of the optimization variables, it is necessary to consider both
of them and select the one that produces the best result. In the
following subsections, we address the two cases separately and
derive the optimal solution.

A. Case 1: Pmax
1 >

|h̃|2(γ22P2−λ(1)
x2

)

γ11

Substituting the optimal value of λ
(1)∗
x1 = γ11P

max
1 +

|h̃|2γ22P2 − |h̃|2λ(1)
x2 into the sum-rate expression in (11), we

obtain

Rsum = 0.5 log2

(
1 + λ

(1)
x2

1 + |h̃|2λ(1)
x2

1 + 2γ22P2 − λ
(1)
x2

1 + |h̃|2(2γ22P2 − λ
(1)
x2 )(

1 + γ11P
max
1 + |h̃|2γ22P2

)2)
. (21)

Several observations can be made from the rate expression in
(21):

Proposition 1: When the condition |h̃|2 ≤ 1 or equivalently
|h22|2
N2

≥ |h12|2
N1

is satisfied, the sum-rate expression in (21) is

a concave function of λ(1)
x2 for any value of P2.

Proof: It is sufficient to show that the argument of the
logarithm in (21) is concave with respect to λ

(1)
x2 . It is easy

to show that the first term
1+λ(1)

x2

1+|h̃|2λ(1)
x2

is a concave increasing

function of λ
(1)
x2 . Also, the second term

1+2γ22P2−λ(1)
x2

1+|h̃|2(2γ22P2−λ
(1)
x2

)

is a concave decreasing function of λ
(1)
x2 , as its first and

second derivatives are negative. Furthermore, the third term
is independent of λ

(1)
x2 and can be treated as constant. The

concavity of the sum-rate expression follows from the fact
that the product of two positive valued concave functions,
where one of them is increasing while the other one is

decreasing, produces a concave function. To see this, let
f(x) = g(x)h(x), where both g(x) and h(x) are positive
concave functions (∂

2g(x)
∂x2 ≤ 0 and ∂2h(x)

∂x2 ≤ 0). The second

derivative ∂2f(x)
∂x2 = ∂2g(x)

∂x2 h(x) + 2∂g(x)
∂x

∂h(x)
∂x + g(x)∂

2h(x)
∂x2

is negative as long as one of either g(x) or h(x) is increasing
while the other one is decreasing.

By setting the first derivative of the sum-rate in (21) to
zero, it can be checked that the sum-rate is maximized by
λ
(1)∗
x2 = γ22P2. Furthermore, it is also apparent that in this

case, the sum-rate is a monotonically increasing function of
P2. As such, the optimal choice of P2 is P ∗

2 = Pmax
2 . For this

choice of λ(1)∗
x2 and P ∗

2 , the condition Pmax
1 >

γ12P2−|h̃|2λ(1)
x2

γ11

is automatically satisfied, therefore it is a valid solution. The
scenario when |h̃|2 > 1 is more complicated as described in
the following.

Proposition 2: When the condition |h̃|2 > 1 or equivalently
|h22|2
N2

< |h12|2
N1

is satisfied, the optimal choice of λ
(1)∗
x2 and

P ∗
2 are taken from a finite number of possible candidates as

follows

(λ(1)∗
x2

, P ∗
2 ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(0, 0)

(γ22P
max
2 , Pmax

2 )(
γ22

(
Pmax
2 − |h11|2

|h12|2P
max
1

)+
, Pmax

2

)
(
0,min

(
Pmax
2 , |h11|2

|h12|2P
max
1

))
.

(22)

Proof: Maximizing the sum-rate in (21) is equivalent to
maximizing its argument inside the logarithm. Note, however,
that the convexity of this argument does not imply the con-
vexity of the sum-rate. Whenever |h̃|2 > 1, the domains of P2

and λ
(1)
x2 are coupled in general. To simplify the optimization

process, we use the following substitutions

x = λ
(1)
x2 , y = 2γ22P2 − λ

(1)
x2 , c = 2 + 2γ11P

max
1 , (23)

to rewrite the optimization problem in (21) as follows

max
x,y

f1(x, y) �
[
1

4

(1 + x)

(1 + |h̃|2x)
(1 + y)

(1 + |h̃|2y)(
c+ |h̃|2x+ |h̃|2y

)2]
(24)

s.t. x, y ≥ 0,

x+ y ≤ 2γ22P
max
2 ,

0 ≤ y − x ≤ 2γ11P
max
1 /|h̃|2.

The first constraint in (24) is the positivity constraint of the
powers, the second one is the total power constraint, while the
third is the condition for the current case (case 1) to hold. Also
recall that we have assumed λ

(1)
x2 ≤ γ22P2, therefore y ≥ x.

The resulting optimization domain is a closed polytope in R
2
+

as depicted in Fig. 2.

It can be shown that the function f1(x, y) is element-wise
convex in its argument. Namely, for a fixed value of y, the
function is convex in x as its second derivative is positive
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Fig. 2. Optimization domain.

definite

1

4

(1 + y)

(1 + |h̃|2y)

(
2|h̃|2(|h̃|2 − 1)(c+ |h̃|2x+ |h̃|2y)

(1 + |h̃|2x)3

((c− 2) + |h̃|2(y − x)) + 2|h̃|4 (1 + x)

(1 + |h̃|2x)

)
> 0. (25)

The same holds for the other variable due to symmetry
f1(x, y) = f1(y, x). Since a closed polytope is convex [35],
element-wise convexity of the objective function implies that
the optimal solution resides at the boundary of the domain.
This is because from any point in the interior, there is always
a direction (either along x or y) where the objective function
is increasing.

To find the optimal point on the boundary of the domain,
we evaluate the trend of f1(x, y) along the line segments that
constitute the boundary of the optimization domain. Following
the labels given in Fig. 2, it is apparent that f1(x, y) is
convex along the line A-D since it is element-wise convex.
Along the line A-B, substituting y = x into f1(x, y) gives

f1(x, x) =
(

1
2

(1+x)

(1+|h̃|2x)(c+ 2|h̃|2x)
)2

. The second deriva-
tive of the expression inside the bracket is positive definite
( |h̃|

2(|h̃|2−1)

(1+|h̃|2x)3 (c−2) > 0), therefore f1(x, y) is convex along the

line A-B. The same approach can be used to show that f1(x, y)
is convex along the line B-C. Substituting y = 2γ22P

max
2 − x

and evaluating its second derivative with respect to x, we
obtain

K1

[
(1 + |h̃|2)(1 + |h̃|2(2γ22Pmax

2 − x))

|h̃|2 +

(2γ22P
max
2 −x)(1 + |h̃|2(2γ22Pmax

2 −x))2 + x(1 + |h̃|2x)2+(
1+|h̃|22γ22Pmax

2 +|h̃|4x2+2|h̃|4(2γ22Pmax
2 −x)(γ22P

max
2 −x)

)]
,

where

K1 =
|h̃|2(|h̃|2 − 1)(c+ 2|h̃|2γ22Pmax

2 )2

2(1 + |h̃|2x)3(1 + |h̃|2(2γ22Pmax
2 − x))3

.

It can be shown that the second derivative above is positive
definite as long as γ22Pmax

2 −x ≥ 0 (which is always satisfied
since y ≥ x). Finally, the convexity of f1(x, y) along the
line D-C can also be established in a similar way. However,
instead of showing the convexity with respect to x, it is

easier to work on the original sum-rate expression in (21)
in terms of variables λ

(1)
x2 and P2. Making the substitution

y = x +
2γ11P

max
1

|h̃|2 representing the line D-C, which is

equivalent to substituting λ
(1)
x2 = γ22P2 − γ11P

max
1

|h̃|2 in (21),
the second derivative of the logarithm argument with respect
to P2 is given by

4|h̃|2γ11γ2
22P

max
1

(1 + |h̃|2(γ22P2 − γ11Pmax
1

|h̃|2 ))3
×

[
(1 + γ22P2)(|h̃|2 − 1) + γ11P

max
1 (1 + γ22P2 − γ11P

max
1

|h̃|2 )

+
(1+|h̃|2γ22P2+γ11P

max
1 )(1+|h̃|2(γ22P2− γ11P

max
1

|h̃|2 ))2

2|h̃|2γ11Pmax
1

⎤
⎦ .

As long as γ22P2 − γ11P
max
1

|h̃|2 ≥ 0, which is always true

since λ
(1)
x2 ≥ 0, the second derivative given above is positive

definite, and therefore the objective function is convex in P2.
Consequently, since x = λ

(1)
x2 = γ22P2 − γ11P

max
1

|h̃|2 is an affine
function of P2, convexity with respect to P2 implies convexity
in x.

With the convexity of the objective function along all the
line segments constructing the boundary of the domain, the
optimal solution is guaranteed to be located at the corner
points of the polytope. As such, it is sufficient to check only
the four corner points (A, B, C, and D) of the optimization
domain, which correspond to the four possible choices of
optimal solutions given in (22) after appropriate mapping from
(x, y) to (λ

(1)
x2 , P2) according to (23).

Remark: For the case when |h11|2Pmax
1 > |h12|2Pmax

2 , the
last two candidate points in (22) coincide, hence reducing the
total number of points to be checked to three. Moreover, when
|h22|2/N2 < |h12|2/N1, the second point is never optimal,
which further reduces the total number of candidate points by
one.

B. Case 2: Pmax
1 ≤ |h̃|2(γ22P2−λ(1)

x2
)

γ11

In this case, only one of the subchannels is allocated non-
zero power. Substituting λ

(1)∗
x1 = 2γ11P

max
1 to the sum-rate

expression in (11), we obtain

Rsum = 0.5 log2

(
1 + λ

(1)
x2

1 + |h̃|2λ(1)
x2

(1 + 2γ11P
max
1 + |h̃|2λ(1)

x2
)

(1 + 2γ22P2 − λ(1)
x2

)
)
. (26)

By defining λ
(1)
x2 = 2αγ22P2 and ᾱ � 1 − α, the sum-rate

expression in (26) can be rewritten as

Rsum = 0.5 log2

(
1 + 2αγ22P2

1 + 2αγ12P2
(1 + 2γ11P

max
1 + 2αγ12P2)

(1 + 2ᾱγ22P2)) . (27)

The optimal value of P2 which maximizes the sum-rate in (27)
is given by the following proposition.
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Proposition 3: Setting P2 = Pmax
2 maximizes the sum-rate

in (27) for any value of α.
Proof: The proof is by contradiction. Let α∗ and P ∗

2 <
Pmax
2 be the optimal solution to the sum-rate maximization

problem in (27). There exist a value of α′ < α∗ such that
α′Pmax

2 = α∗P ∗
2 which achieves larger sum-rate, since the

first two terms in the logarithm argument are unchanged by
the substitution, while the last term is increasing with P2 and
decreasing with α. Therefore, the pair α∗ and P ∗

2 cannot be
optimal. The only case where α′ = α∗ is when P ∗

2 = Pmax
2 ,

hence this equality must hold in the optimal point.
We are now left with the optimization over α in (27).

By considering the valid range of P2 for this case P2 ≥
|h11|2Pmax

1

|h12|2(ᾱ−α) , and the optimal choice of P ∗
2 = Pmax

2 , it is
sufficient to consider the domain for α as follows

0 ≤ α ≤ 0.5− |h11|2Pmax
1

2|h12|2Pmax
2

. (28)

By using the substitutions

a = 2γ22P
max
2 , b = 2γ12P

max
2 , c = 2γ11P

max
1 ,

the sum-rate maximization problem in (27) can be reformu-
lated as follows

max
α

f2(α) �
[
(1 + aα)

(1 + bα)
(1 + c+ bα) (1 + a− aα)

]
(29)

s.t. 0 ≤ α ≤ 0.5(1− c/b).

The one-dimensional optimization problem in (29) can be
solved directly by setting the first derivative to zero, and
selecting the value of α from the candidate points given by
the extreme points of the domain (0 and 0.5(1 − c/b)), and
the positive real roots of the cubic polynomial within the valid
domain where the coefficients of each polynomial degree are
given as follows

degree 0 : a2(1 + c)− bc(1 + a), (30a)

degree 1 : 2a2(b− c− 1), (30b)

degree 2 : a2b(b− c− 4), (30c)

degree 3 : −2a2b2. (30d)

The optimal α∗ can therefore be solved by a simple compar-
ison test between at most 4 values, namely the three roots
of the polynomial and one extreme point α∗ = 0. The other
extreme point α∗ = 0.5(1− c/b) is redundant as it has been
considered in the previous subsection when the water-filling
solution uses both subchannels. Through extensive numerical
evaluations, we observed that the typical number of candidate
points that are within the valid range is only two.

IV. ANALYSIS AND DISCUSSIONS

In this section, we first summarize the closed form so-
lution of the sum-rate maximizing real-composite transmit
covariance matrix by combining all the results derived in
the previous section. Each of the possible matrix covariance
structures is associated with a set of conditions on the channel
parameters for which such structure is optimal. By analyzing
the physical interpretation given by the channel conditions,

we derive intuitions on how improper Gaussian signaling can
make use of the extra dimension to control the interference,
and achieve larger sum-rate as compared to proper Gaussian
signaling scheme.

To simplify the notation, we represent each of the conditions
on channel parameters using the equation number, and prefix
it with the negation sign ¬(·) to denote the complement
case where the condition specified in the equation number
is not satisfied. In order to obtain a compact expression,
we set the modal matrix Vx2 used in the real-composite
transmit covariance matrix of the second transmitter (Σx̃2 =
Vx2Λx2V

T
x2

) in the standard equivalent channel model in (2)
to Vx2 = JT (θ12− θ22− θ11). Note however, that this choice
of modal matrix does not affect the optimization process, and
any unitary matrix will achieve the same sum-rate as long
as both the transmitters adopt the same Vx2 . By denoting
α∗ as the solution to the optimization problem in (29), and
functions f1(x, y) and f2(α) as given in (24) and (29), the
optimal real-composite transmit covariance matrices Σ∗

x1
and

Σ∗
x2

for transmitter S1 and S2, respectively, are given by the
expressions on top of the following page.

It can be checked that the set of conditions associated
with each of the solutions for the real-composite covariance
matrices are disjoint, and their union encompasses all possible
scenarios, therefore the formulation of the optimal Σ∗

x1
and

Σ∗
x2

is complete.

Looking at the structure of the real-composite transmit
covariance matrices, it is apparent that for the weak inter-
ference regime and the case where the interfering user shall
remain silent (as given by the first two scenarios), proper
Gaussian signaling is the best choice. This is in line with
the observation in [22] for the IC case which shows that
improper Gaussian signaling outperforms the proper Gaussian
signaling only when the pseudo-covariance matrices can be
optimized to make the additional rate term (relative to that
achieved using proper Gaussian signaling strategy) strictly
positive. For the other scenarios where improper Gaussian
signaling is preferred, at least one dimension is unused, which
is reflected by the rank deficient real-composite covariance
matrix for one of the users. Intuitively, this accommodates
interference mitigation such that one dimension is not used
by the signal, allowing the interference to be aligned into the
unused dimension. Binary power control is optimal to achieve
the best sum-rate in ZIC when interference is treated as noise,
as all the real-composite transmit covariance matrices either
utilize the full power or zero power (staying silent).

The rotational matrix J(θ11 − θ12), which is only found
on the second transmitter Σ∗

x2
, suggests that it is the angle

difference between the direct link and the interference link
instead of its individual angle that matters. Furthermore, since
one receiver is interfered in the ZIC, it is sufficient to perform
the rotation at only one of the transmitters. This is different
from the SISO IC case, where the angle difference at the two
receivers are inter-dependent. In the following we describe the
physical interpretation of each condition, and relate it to the
optimal structure of Σ∗

x1
and Σ∗

x2
.



8 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. XX, MARCH 2015

Σ∗
x1
,Σ∗

x2
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
Pmax

1

2 0

0
Pmax

1

2

]
,

[
Pmax

2

2 0

0
Pmax

2

2

]
when (32);[

Pmax
1

2 0

0
Pmax

1

2

]
,

[
0 0

0 0

] when ¬(32), (33), and (34);
or ¬(32), ¬(33), and (35);[

Pmax
1

2 +
γ12P

max
2

2γ11
0

0
Pmax

1

2 − γ12P
max
2

2γ11

]
,J(θ11 − θ12)

[
0 0

0 Pmax
2

]
JT (θ11 − θ12)

when ¬(32), (33), and ¬(34);[
Pmax
1 0

0 0

]
,J(θ11 − θ12)

[
Pmax

2

2 − γ11P
max
1

2γ12
0

0
Pmax

2

2 +
γ11P

max
1

2γ12

]
JT (θ11 − θ12)

when ¬(32), ¬(33), and (36);[
Pmax
1 0

0 0

]
,J(θ11 − θ12)

[
α∗Pmax

2 0

0 ᾱ∗Pmax
2

]
JT (θ11 − θ12)

when ¬(32), ¬(33), and (37).

(31)

The corresponding description of the conditions are given in the following

γ22 ≥ γ12, (32)

γ11P
max
1 ≥ γ12P

max
2 , (33)

f1(0, 0) ≥ f1(0, P
max
2 ), (34)

f1(0, 0) ≥ max

(
f2(α

∗), f1

(
Pmax
2

2
− γ11P

max
1

2γ12
,
Pmax
2

2
+

γ11P
max
1

2γ12

))
, (35)

max (f1(0, 0), f2(α
∗)) ≤ f1

(
Pmax
2

2
− γ11P

max
1

2γ12
,
Pmax
2

2
+

γ11P
max
1

2γ12

)
, (36)

f2(α
∗) ≥ max

(
f1(0, 0), f1

(
Pmax
2

2
− γ11P

max
1

2γ12
,
Pmax
2

2
+

γ11P
max
1

2γ12

))
, (37)

where the functions f1 and f2 were defined in (24) and (29), respectively.

A. Strength of the Interference Link

The condition γ22 ≥ γ12 in (32), which is equivalent
to |h12|2/N1 ≤ |h22|2/N2, is satisfied when the ZIC is in
the weak interference regime. Under this condition, the best
strategy as given by the first scenario in (31), is to use proper
Gaussian signaling. This agrees with the information theoretic
result for the ZIC, which states that the sum-capacity in this
regime is achieved by treating interference as noise. Further-
more, the sum-capacity as calculated in [36] is achieved with
proper Gaussian signaling, which confirms the validity of the
real-composite covariance matrix returned by our optimization
algorithm.

B. Available Transmit Power for Water-filling Allocation

The condition γ11P
max
1 ≥ γ12P

max
2 in (33) is sufficient for

allocating non-zero power over both subchannels with water-
filling operation as per (17). The shaded region in Fig. 3(a)
illustrates the domain for power allocation at transmitter 2, and
the optimal solution is at one of its corner points as explained
earlier. When the condition in (32) is satisfied, the optimal
sum-rate is achieved at the corner point B, corresponding
to the proper Gaussian signaling utilizing all the available
power. Otherwise, the optimal operating point is either point
A (whereby transmitter 2 remain silent, which is optimal
when the condition in (34) is satisfied), or point C (whereby

(a) Always-sufficient power (case III-A is always true)

(b) General scenario (either case III-A or III-B may be true)

Fig. 3. Optimization domain for two different power conditions at the first
transmitter.

transmitter 2 transmits on only one of the dimensions with
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full power). In this scenario, since the power at transmitter 1
is always sufficient to use both subchannels, we do not need to
solve the problem in (29) to get the optimal power allocation
for transmitter 2.

When the condition in (33) is not satisfied, the last lin-
ear constraint in (24) is active, and the domain for power
allocation at transmitter 2 is given by the shaded region in
Fig. 3(b). In addition to the corner points, there are additional
possible optimal operating points located along the line C-D
in Fig. 3(b), which correspond to the case where the water-
filling power allocation for transmitter 1 uses only one of its
subchannels. The best point along the line C-D is determined
by the solution of the problem in (29). Overall, when the
condition in (32) is not satisfied, the choice on whether to
stay silent (point A), to transmit over both dimensions with
appropriate power allocation (point C), or to operate at a point
along the line C-D, is determined by the condition in (35),
(36), or (37), respectively.

C. Optimality Condition for Staying Silent

As remarked at the beginning of Section III when the
transmitters are restricted to use proper Gaussian signaling,
the best strategy is to let the interfering user transmit at full
power whenever the maximum amount of information that can
be transmitted through the direct link of the interfering user is
more than that of the other user in absence of interference.
Using improper Gaussian signaling, the condition in (34)
characterize the set of parameters for which the interfering
transmitter remains silent, which can be rewritten as

1 + 2γ12P
max
2

1 + 2γ22Pmax
2

≥
(
1 +

γ12P
max
2

1 + γ11Pmax
1

)2

. (38)

The left hand side and the right hand side of (38) are linear
and quadratic functions in γ12 (and therefore in |h12|2),
respectively, and for both curves to intersect, the following
condition has to be satisfied

γ11P
max
1 −2γ22P

max
2 < (1+γ11P

max
1 )(γ11P

max
1 − 4γ22P

max
2 ) .

(39)
One sufficient condition to ensure that the intersection point
does not exist is given by

0.25γ11P
max
1 < γ22P

max
2 < 0.5γ11P

max
1 , (40)

in which case it is always optimal to let the interfering user
transmit at full power. This states that whenever the maximum
amount of information that can be transmitted through the
direct link of the interfering user is more than just a fraction
of what the other user is capable of transmitting in the absence
of interference, the best strategy is to let the interfering user
transmit at full power. Therefore, improper Gaussian signaling
is able to relax the condition when the interfering transmitter
is allowed to transmit at full power, which is generally better
for the sum-rate.

V. NUMERICAL RESULTS

In this section, we demonstrate the sum-rate improvement
achieved by using improper Gaussian signaling with optimized

0 0.5 1 1.5 2 2.5 3 3.5 4
1

1.5

2

2.5

3

3.5

|h
12

| (with fixed θ
12

 = π/4)

Su
m

 R
at

e

P
1
max = P

2
max = 1, N

1
 = 2, N

2
 = 1, h

22
 = 1 + i 0.5

 

 
Sum Capacity
Improper Gaussian Signaling
Proper Gaussian Signaling

the point where S
2
 remain silent

transition from the strong to
very−strong interference regime

transition from the strong to
very−strong interference regime

h
11

 = 1 + i 2.5

h
11

 = 1 + i 1

strong int.
regime

weak int.
regime

Fig. 4. Sum-rate performance gain from using the optimized real-composite
transmit covariance matrix for different channel parameters as a function of
the interference link strength.

real-composite covariance matrix. For the baseline compari-
son, the sum-rate achieved when we are restricted to use only
proper Gaussian signaling (which is given by the solution to
(6)) is also shown. In addition, the sum-capacity plot is also
given to illustrate the sub-optimality of treating interference
as noise. The available transmit powers at both S1 and S2 are
set to Pmax

1 = Pmax
2 = 1, while the noise variances at D1

and D2 are set to N1 = 2 and N2 = 1, respectively.

A. Effect of Interference Link Strength

Fig. 4 shows the sum-rate achieved as a function of the
interference link gain |h12|. Here, the direct link h22 is fixed to
h22 = 1+i0.5, and two different values of h11 are considered,
namely h11 = 1+ i1 and h11 = 1+ i2.5. The sum-rate is then
evaluated as the interference link gain |h12| is varied from 0.1
to 4, while its angular degree is fixed to π/4. It is apparent
from Fig. 4 that improper Gaussian signaling outperforms
the proper Gaussian counterpart in the strong interference
regime, especially when the interference link gain |h12| is
large. Although proper Gaussian signaling is also able to avoid
performance degradation from excessive interference by letting
S2 to remain silent when the interference link gain |h12| is
large, the extra dimension provided by improper Gaussian
signaling is generally superior for the system sum-rate. This is
achieved by adjusting the interference and the desired signal to
be orthogonal to each other, hence eliminating the influence of
the interference while still allowing S2 to transmit. In the weak
interference regime, no performance difference is observed as
expected.

Fig. 4 also shows the gap from the sum-capacity in the
strong interference regime. This gap is due to the interference
decoding strategy at the receiver, which is necessary to achieve
the sum-capacity in the strong interference regime. As our
work considers the scenario where all the receivers can only
accommodate limited complexity and therefore simply treat
interference as noise, the achieved sum-rate is lower than the
sum-capacity in this regime. This motivates the use of more
complicated receiver that is capable of interference decoding
to improve the achieved sum-rate in the strong interference
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regime, especially when the direct link gain is strong (in which
case the potential improvement is large).

B. Effect of Direct Link Strength

The sum-rate achieved as a function of the direct link gain
|h11| for different h12 and h22 are shown in Fig. 5. The solid
curves correspond to the schemes using improper Gaussian
signaling with the optimized real-composite transmit covari-
ance matrix, while the associated dotted curves correspond to
the proper Gaussian signaling scheme. For reference purposes,
the dashed-dotted lines show the sum-capacity of the system
under each of the configurations.

When the system is in the weak interference regime
(|h12|2/N1 ≤ |h22|2/N2), the optimal scheme is to use
proper Gaussian signaling, which is in fact capacity achieving.
Therefore, all the schemes produce the same performance in
this regime, as shown by the curves with diamond marker that
coincide with one another in Fig. 5. In the strong interfer-
ence regime, the optimized improper Gaussian signaling can
achieve higher sum-rate for some values of |h11| compared
to the proper Gaussian signaling performance. As seen on
the solid curves with the star and circle markers in Fig. 5,
the gap will initially be zero when |h11| is small. As |h11|
increases, it becomes more beneficial for the sum-rate to avoid
the interference, and there is a transition point (depicted as a
sharp turn on both curves) whereby transmitter 2 changes its
strategy from transmitting on both signal dimensions to using
only one of the signal dimensions to avoid interference. It is
also observed that once the interference from transmitter 2 is
completely prevented by using only one of the signal dimen-
sions, the sum-rate is no longer dependent on the interference
link gain. Since both curves consider the same |h22| value
and they are plotted over the same range of |h11| values, the
two curves eventually coincide. The transition points, however,
depend on the interference link gain |h12|, therefore they are
different for the two curves.

This ability to avoid the interference by using only one of
the signal dimensions is the reason why improper Gaussian
signaling is superior to proper Gaussian signaling in this case.
Correspondingly, the location of the sharp turn is the point
where the improper Gaussian signaling starts to outperform
the proper Gaussian counterpart. The gap between the two
schemes, however, will eventually become constant as both
the solid and the dotted lines increase with the same slope.
Compared to the sum-capacity curves depicted by the dashed-
dotted lines with the star and circle markers in Fig. 5, since
treating interference as noise is suboptimal in the strong
interference regime, the achieved sum-rate is always below
the sum-capacity as expected. This gap is more pronounced
for larger direct link gain, and it grows more quickly in the
very strong interference regime.

C. Average Performance

In the previous two subsections, the sum-rate is evaluated
for a specific value of channel gains. Here, we consider the
scenario where the channel gains between any two nodes
are random, and evaluate the average sum-rate for different
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Fig. 5. Sum-rate performance gain from using the optimized real-composite
transmit covariance matrix under different interference link strength as a
function of |h11|.
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Fig. 6. Two network configurations depending on the interferer location,
namely (a) Similar distance of interferer and source node, and (b) Interferer
is closer than the source node.

normalized SNR levels. The channel is modeled as Rayleigh
fading (hi,j ∼ CN (0, σ2

i,j), a zero-mean complex normal
random variable with variance σ2

i,j ), and the channel power
is proportional to the distance according to E

[|hi,j |2
] ∝ dβi,j .

Here, di,j is the separation distance between the node i and j,
and β is the path loss exponent. For simplicity, we assume that
the distance corresponding to the direct link is normalized to
one, while the path loss exponent is chosen to be β = 4. Two
configurations are considered, namely when the interferer is at
about the same distance as the intended source (as illustrated
in Fig. 6(a)), and when the interferer is relatively near to the
non-intended receiver (as illustrated in Fig. 6(b)). We denote
the parameter η < 1 to indicate the ratio of the distance from
the interfering node with respect to that of the desired source
node.

Fig. 7 shows the average sum-rate of the system as a
function of normalized SNR for both configurations. The
noise powers at both destinations are assumed to be equal
(N1 = N2 = N ), and the normalized SNR is measured
with respect to a unit signal power (10 log10 (1/N)dB). The
parameter η is set to 0.2 to model the severe interference
scenario. It is apparent from the figure that in all cases,
the average sum-rate using the improper Gaussian signaling
is better than the proper Gaussian signaling, especially for
high SNR. Moreover, the gain is more significant for the
second configuration where the interfering node is closer,
which agrees with the earlier analysis that larger gain can
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be achieved when the interference is more severe. Fig. 7
also shows the average sum-capacity for both configurations.
As expected, the performance gap is larger for the second
configuration where the interference is more severe. This is
because it is more likely for the system to be in the strong
interference regime under this configuration. Therefore, as the
sum-capacity is better in this regime, the performance gap
from the achieved sum-rate is also larger.

VI. CONCLUSIONS

We studied the application of improper Gaussian signaling
to the ZIC when interference is treated as noise. We derived
the optimal real-composite transmit covariance matrix to max-
imize the sum-rate. By analyzing the structure of the optimal
real-composite covariance matrix, we showed how improper
Gaussian strategy is better at handling the interference. Numer-
ical study is then presented to demonstrate the sum-rate gain
achievable with improper signaling, both for a specific channel
realization and the average performance. For future work, we
will consider a multiuser multi-antenna scenario, where each
transmitter interferes with a subset or all of the receivers. The
search for an optimal solution in this case is complicated by
the large number of possible transmission strategies, especially
when the number of users and/or antennas is large. A low-
complexity alternative to achieve near-optimal performance
with a bounded gap is another interesting area to further
investigate.
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