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Abstract— By adopting different reconstruction techniques, 
3D sensors generate different point clouds of various scales for 
the same object. This paper presents a new algorithm to align 
point clouds of different scales. First, shape descriptors based on 
different neighboring sizes are calculated on each point. 
Secondly, for each neighboring size, principle components 
analysis is applied on all descriptors to generate the cumulative 
contribution rates, which are fitted by B-spline curves. Then, 
finding scale different between two 3D point clouds in 3D space, 
is reduced to finding scale difference between two sets of 2D B-
spline curves in 2D space. Finally, a numerical solution is 
presented to find the unknown scale, which is experimentally 
proved to have higher accuracy than existing methods. 
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I.  INTRODUCTION 

Many applications are relied on fusion of data from 
different sensors [1]. However, different sensors based on 
different reconstruction techniques may sense the same object 
into point clouds of different scales [2]. Without a baseline, a 
single camera with structure-from-motion techniques cannot 
image an object with the desired scale [3]. As such, the scale 
difference between two point clouds need to be identified 
before point cloud fusion [4-6]. 

Point cloud library (PCL) [7] implements many scale 
invariant shape descriptors for aligning and fusing point clouds 
of the same scale, including Spin Image [8], Fast Point Feature 
Histograms (FPFH) [9], Rotational Projection Statistics (RoPs) 
[10], and Signature of Histograms of Orientations (SHOT) 
[11]. Each descriptor is based on a neighboring size defining a 
neighboring region for each point, thus does not encode the 
scale information of the whole point cloud. They cannot be 
directly deployed for fusion of point clouds with different 
scales.  

Based on point cloud resolution as the median of distances 
between points, the scale difference was estimated as the 
resolution difference between two point clouds [12]. Such 
method is not stable for point clouds with different point 
densities. Instead of the resolution, a key scale [4] was derived 
as a scale descriptor for each point cloud. Accordingly, the 
scale difference between two point clouds became their key 
scale difference. To obtain the key scale, the cumulative 
contributions rates (CCR) was derived from principle 
components analysis (PCA) on spin images [8] based the same 
neighboring size. Merging all CCRs with different neighboring 
sizes together, the point cloud’s key scale is a minimum of 
CCRs. Similar to the solution, key scale may not be captured 

correctly due to noises. As a result, estimated scale based on 
such single-value descriptors may not be accurate. Scale ratio 
method [5] identified the scale difference by comparing the 
two CCRs instead of the two key scales. The algorithm formed 
a point-to-point correspondence between the two CCRs, and 
formulated the scale difference as a value give the best scale 
matching. For higher accuracy, both key scale method [4] and 
scale ratio method [5] rely on a dense set of neighboring sizes, 
which is computationally expensive. To work with a sparse set 
of neighboring sizes, polynomial curves are fit to CCRs, which 
turn the scale matching into polynomial curves matching 
instead of CCRs matching [13]. However, polynomial curves 
may not have very good fitting to the discrete CCRs. 
Compared with polynomial curves, B-spline curves [14] can 
have better fitting to discrete data. 

This paper proposes a B-spline scale registration method by 
further improving the scale ratio method [5] to  avoid  the 
discrete CCRs matching, and avoiding the ill-fitting problem 
using polynomial curves [13]. Analytical B-spline curves are 
used to replace the CCRs and polynomial curves for a robust 
matching. By reformulating the best matching problem into 
finding the best match between two sets of B-spline curves, a 
numerical solution based on B-spline tessellation is presented 
and analyzed. The matching performance of the proposed 
algorithm is illustrated in different experiments. 

II. SCALE REGISTRATION 

A. Descriptor Analysis 

Similar to the key scale method [4], scale ratio method [5] 
and polynomial method [13], the proposed B-spline scale 
registration method also relies on descriptor analysis to derive 
CCR. In this section, we extend the calculation of  CCR [4, 5] 
to different descriptors. 

Generally, given a point cloud P ,  the shape descriptor on 
the point p P is defined based on a neighboring size e  and 

denoted as ep , which varies for different neighboring sizes    

  1 2, , , ,me e e e    (1) 

where m  is the number of neighboring sizes.  

 For different points, all descriptors are of the same 
dimension d . PCA on all descriptors of the same neighboring 
size, i.e.  

 ,e eP p p P                                (2) 



gives d  eigenvalues 
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The CCR for the point cloud P  are 
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In this paper, we refer CCR as the discrete points  
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and denote the point cloud as 
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PCL [7] implementations of Spin Image [8], FPFH [9], 
RoPs [10], and SHOT [11] are used as shape descriptors for 
scale matching (TABLE I). Fig. 1 plots different CCRs 
using different descriptors for the Standford bunny [15], 
where the black dots are the discrete CCRs. 

TABLE I.  PCL IMPLEMENTATION OF SHAPE DESCRIPTORS 

 Spin Image[8] FPFH[9] RoPS[10] SHOT[11] 
Descriptor 

size d    
225 33 135 352 

CCR in 
Fig. 1 
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Fig. 1. CCRs for different shape descriptors. 

B. B-spline Fitting 

Given two different point clouds with corresponding CCRs 

as     1 2, , , , ,m i i I
P e e e 


  and     1 2, , , , ,m i i I

P e e e 


     , 

Keyscale method [4], which identifies the key scale as the 
minimal CCR, may fail for descriptors providing no minimal in 
CCR (FPFH [9] produce CCR in top right image in Fig. 1. 
Scale ratio [5] formed a point-to-point correspondence between 
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Without a dense set of neighboring sizes, the incorrect point-to-
point correspondence will highly reduce the accuracy (see 
example in Section III.B). Polynomial method [13] can 
improve the accuracy via polynomial fitting, which, however, 
may not fit well to the discrete points (see comparison in 
Section III.E).  

Given a tolerance, B-spline can fit the discrete points with a 
given tolerance, thus provide higher accuracy [14]. An 
algorithm based on matching B-spline curves instead of 
matching the discrete points and polynomial curves will be 
developed which can 

 avoid searching minimum from discrete points [4], 
 avoid incorrect correspondence [5],  
 avoid ill-fitting [13], and 
 provide higher accuracy. 

 

For the point cloud in Eq.(6), each CCR i  can be least 
square fitted [14] by a cubic B-spline curve with n  
segments as  
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where ijA  are control points, ( )ijN t  are cubic B-spline base 

functions defined over a knot sequence iT , and n  is  the 
number of segments during the fitting. Generally, 
increasing n  makes the B-spline curve closer to the CCR. 

 The most important step for the B-spline fitting is to 
decide an initial parameterization of the sampling points, 
i.e. finding parameter jt  for each CCR point as  

  ,( ) , .
ji j j i ef t e    (9) 

These parameters can defined as 
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Fig. 2 presents different the fitted B-spline curves for 
different   values. In this paper,  1   is assumed to 
have a better fitting result. 
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Fig. 2. B-spline fitting of CCR with different parameters: blue dots for 
CCR; red curve for 1  ; green curve for  0.5  ; blue curve for 0  . 

C. B-spline Tessellation 

As will discussed in the following sections, the proposed 
algorithm tessellates a B-spline curve to a polygon during the 
calculation for the unknown scale. This section will prove that 
such tessellation only need to be done once on curves of 
different scales.   

The distance from a point p  to a B-spline curve ( )if t is 

( , ( )) min ( ) .i it
D p f t p f t                    (11) 

Given a tolerance  , the B-spline curve  ( ) ( ), ( )i ix iyf t f t f t  

can be tessellated into a polygon 
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i
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such that the distance between the polygon and the curve is not 
bigger than  , i.e 
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Where  , 1( ),i ij i jD f t f f   is the distance from the point ( )if t   

to the edge , 1ij i jf f  .  

Scaling   on the first coordinate of ( )if t  gives  

  ( , ) ( ), ( )i ix iyf t f t f t    (14) 

And the scaled polygon becomes 

   ( ) ,
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According to the scale invariance property of B-spline, for 
1  , we have  

  ( , ), ( ) , [0,1].i iD f t F t       (16) 

As such, the tessellation needs to be done once for the 
original B-spline curve ( )if t . Eq.(15) is a tessellated 
polygon of Eq.(14) with the tolerance  .  

D. B-spline Based Scale Matching 

For i I , denote B-spline curves for two different point 
cloud as 
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For each  , the matching between  ( , )if t  in Eq.(14) and 

( )ig s  is evaluated as 

  
1

0
( , ) ( ) .i iD f t g s dt    (18) 

Scale matching is to find the unknown scale   such that  
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Since Eq.(19) is a nonlinear minimization problem with non-
differentiable objective function, we proposed a numerical 
method to find a solution. Substituting ( , )if t  with its 

tessellated polygon ( )iF   in Eq.(15) into Eq.(19) gives 
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Project ( )iF   to the curve ( )ig s  to derived the projected 

points  
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Eq.(20) becomes 
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The solution for the above equation can be derived iteratively 
as 
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Coupling with Eq.(15) and Eq.(21), we have 
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E. Scale Registration Algorithm 

The proposed scale registration algorithm is summarized as 
follow: 

Input: two different point clouds 1P  and 2P  

Output: the scale    

Step 1: Initialization 

Choose a descriptor  

e

CCR 



Specify the number of neighboring size m  

Initialize the size d  and set  1,2, ,I d    

Step 2: B-spline fitting 

For  1 2,P P P   

Estimate the resolution   of P  

Initialize  1 2, , , me e e  according to   

For  1 2, , , me e e e   

Derive the descriptors eP  in Eq.(2) 

Perform PCA on eP  to get   1

d

ei i



 in Eq.(3) 

Calculate CCR in   1

d

ie i



Eq.(4) 

For i I  

Form discrete points i  in Eq.(5) 

Fit a B-spline ( )if t  to i  

Step 3: Scale registration 

Step 3.1 Initialize 0 , 0k    

Initialize  ( ), ( )i i i I
f t g t


 in Eq.(17)  

Tessellate  ( ), ( )i i i I
f t g t


 into iF   in Eq.(12) and iG  

Derive 0  using scale ratio [5] based on iF  and iG  

Step 3.2 Calculate 1k   and update 1k k     

Derive ( )i kF   in Eq.(15) 

Derive ( )i kG   in Eq.(21) 

Update 1k   in Eq.(24) 

Step 3.3 Repeat Step 3.2 until k  converge. Set k  .  

III. EXPERIMENTS 

The proposed B-spline scale registration algorithm can 
achieve higher accuracy than existing methods [5, 12, 13]. The 
first point cloud is taken as the Standford bunny [15] with 
69451 points, and the second point cloud  is a scaling of the 
first one by the factor of 0.2. The accuracy is 

0.2
( , ) .

0.2
m n


 


   

The accuracy   is a function of the B-spline segments n  and 
the number of neighboring size m . First experiment will be 
conducted to show how accuracy various according to n  and 
m . Second experiment applies different levels of noises onto 
both point clouds to analyze the accuracy. The third experiment 

will study how different descriptors and CCRs affect the 
accuracy.  

A. Selection of B-spline Segments n   

Spin Images are selected as shape descriptors. CCRs are fitted 
by different B-spline curves with different number of 
segments. Different   values are derived for 

 11,12, ,17m   and  2,3, ,7n  . For each m, the 

accuracy adopting different n values is plotted as one curve in 
Fig. 3. Meanwhile, for each n , the accuracy variation  

( ) max ( , ) min ( , ),
mm

n m n m n        

is plotted in Fig. 4. Combining the data from Fig. 3 and Fig. 4, 
all n values can provide a high accuracy  98.5%   with a 

low variation  0.013   . In the following we assume n=2. 
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Fig. 3. Accuracy   over n: different curves for different m. 
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Fig. 4. Accuracy variatoin    over n. 

B. Performance over different m   

For  5,6, ,17m  , the accuracies   for the proposed 

method and scale ratio method [5] are collected separated and  
presented in different curves in Fig. 5: the red curve indicates 
the accuracy of the proposed method; the blue curve presents 
the accuracy of scale ratio method [5]. Based on the same 
CCRs, the proposed method can achieve higher accuracy and 
outperform the scale ratio method [5]. 
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Fig. 5. Accuracy for scale ratio method [5] (blue) and the proposed 
method (red). 

 

For selected m values, Fig. 6 and Fig. 7 show the different 
results from both methods. Compared with the proposed 
method, the scale ratio method [5] can better match CCRs, i.e. 
matching the red circles to the blue circles in Fig. 6 and Fig. 7. 
However, as illustrated in the left bottom image in Fig. 6, the 
two B-spline curves may not match very well. The proposed 
method provides a better matching between B-spline curves 
(the right bottom image in Fig. 6) and achieve a higher 
accuracy (Fig. 5).  

Since the shape descriptor on each point need to be 
calculated for m  different neighboring sizes, smaller m  is 
desired for a faster computation (the computation time for 

10m   is only 56% of that for 18m  ). However, for a 
smaller m , the error in point-to-point correspondence in [5] 
may highly reduce the accuracy (Fig. 7).  On the other hand, 
the proposed method still can achieve a higher accuracy. In the 
following, 10m   is assumed.   
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Fig. 6. Point based matching VS B-spline based matching: circles for 
CCR; left column for scale ratio [5]; right column for our results; second row 

for zoom view of the first row. 
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Fig. 7. Point based matching VS curve based matching: circles for CCR; 
left for scale ratio [5]; right for our results. 

C. Performance over noises 

Define noise at level L  as Gaussian noise with mean zero and 
standard deviation L  , where   is the point cloud 
resolution. The same level of noise are added to the both point 
clouds, and the accuracy for different methods under different 
levels of noises is presented in Fig. 8. The proposed method 
does not significantly affected by Gaussian noise. 
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Fig. 8. Accuracy in different noises: curve with circles for [5]; curve with 
squares for ours. 

D. Performance of descriptors 

Adopting different descriptors in TABLE I will generate 
different CCRs. Accordingly, the accuracy varies as listed in 
TABLE II. Our method can provide a higher accuracy.  

TABLE II.  SCALE ACCURACY USING DIFFERENT DESCRIPTORS 

Descriptors Scale ratio[5] Our method 

Spine Image [8] 81.93% 97.72% 

FPFH [9] 80.14% 83.90% 

RoPS [10] 80.19% 90.89% 

SHOT [11] 79.25% 93.90% 

 

E. Compared with polynomial method 

Based on a sparse set of radii, the accuracy of the scale ratio 
method [5] is below 85% (Fig.5 first 4 blue circles). 
Polynomial based method can improve the registration 
accuracy to 85%~90% [13]. The proposed B-spline based 
method can further increase the accuracy to above 90% (Fig.5 
first 4 red squares).  
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IV. CONCLUSIONS 

A new scale registration algorithm based on B-spline 
curves is proposed in this paper. For each point cloud, PCA on 
selected descriptors generates CCR. Cubic B-spline curves are 
fitted to the CCR and used for scale registration. The unknown 
scale is formulated as the one giving the best matching between 
two sets of B-spline curves. A numerical algorithm has been 
implemented to derive the desired scale difference. In different 
experiments, the proposed method outperforms existing 
methods with higher accuracy. 
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