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Multi-Source Video Domain Adaptation with
Temporal Attentive Moment Alignment Network
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Abstract—Multi-Source Domain Adaptation (MSDA) is a more
practical domain adaptation scenario in real-world scenarios,
which relaxes the assumption in conventional Unsupervised
Domain Adaptation (UDA) that source data are sampled from a
single domain and match a uniform data distribution. The MSDA
is more challenging due to the existence of different domain shifts
between distinct domain pairs. When considering videos, the
negative transfer would be provoked by spatial-temporal features
and can be formulated into a more challenging Multi-Source
Video Domain Adaptation (MSVDA) problem. In this paper, we
address the MSVDA problem by proposing a novel Temporal
Attentive Moment Alignment Network (TAMAN) which aims for
effective feature transfer by dynamically aligning both spatial and
temporal feature moments. The TAMAN further constructs ro-
bust global temporal features by attending to dominant domain-
invariant local temporal features with high local classification
confidence and low disparity between global and local feature
discrepancies. To facilitate future research on the MSVDA prob-
lem, we introduce comprehensive benchmarks, covering extensive
MSVDA scenarios. Empirical results demonstrate a superior
performance of the proposed TAMAN across multiple MSVDA
benchmarks.

Index Terms—Multi-source, video domain adaptation, action
recognition, moment alignment, dataset.

I. INTRODUCTION

V IDEO-BASED tasks (e.g., action recognition [1]–[3])
have been studied widely due to their applications.

Among existing methods, neural networks have made re-
markable advances in these tasks thanks to the emergence
of large-scale labeled datasets for training and testing. How-
ever, sufficient labeled training videos may not be readily
available in real-world scenarios owing to the high cost of
video data annotation. Subsequently, various Unsupervised
Domain Adaptation (UDA) and Video Unsupervised Domain
Adaptation (VUDA) methods have been introduced to transfer
knowledge from a labeled source domain to an unlabeled target
domain by reducing discrepancies between source and target
domain.
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Fig. 1. MSVDA is more generic compared to VUDA where source data
come from multiple domains, with different data distributions. MSVDA is
more challenging due to the negative transfer caused by domain shifts among
source domains (depicted as dashed arrow) and the need to jointly align the
target domain T and the different source domains S1 and S2. Such negative
transfer could be provoked by both spatial and temporal features in MSVDA.

Though existing UDA and VUDA methods [4]–[7] enable
the transfer of knowledge across domains, they normally
assume that the source data are sampled from a single domain
and match a uniform data distribution. Such an assumption
may not hold in real-world applications. In practice, with the
availability of a variety of large-scale labeled public datasets,
source data are more likely to be collected from multiple
datasets. This scenario is defined as Multi-Source Domain
Adaptation (MSDA) which relaxes the constraint of identical
source data distribution by assuming that source data are
sampled from multiple domains corresponding to different data
distributions. The MSDA problem is more difficult owing to
the existence of different levels of domain shifts among source
domains and between different source-target domain pairs,
which adversely affects the alignment of target data, resulting
in negative transfer.

Besides spatial features that are used in image represen-
tations, temporal features are also the key component in
video representations. The presence of the additional fea-
tures engenders a novel Multi-Source Video Domain Adap-
tation (MSVDA) problem, which aims to transfer networks
trained with data from the multiple source domains to the
target domain. The MSVDA empowers models trained in
a collection of large-scale video datasets (e.g., UCF101 [8]
and HMDB51 [9]) to be employed directly to smaller-scale
datasets (e.g., ARID [10]) without label supervision. For the
MSVDA, negative transfer would be triggered if we directly
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reduce the divergence between multiple domain pairs regard-
less of inconsistent domain shifts caused by distinct spatial
and temporal feature distributions, as shown in Fig. 1.

The key towards solving the MSVDA problem lies in
leveraging the additional temporal features explicitly to miti-
gate negative transfer in the MSVDA. To tackle the negative
transfer in the MSVDA, we argue that the temporal features
should be utilized from two perspectives: firstly, effective
global temporal features should be constructed with attention
to dominant local temporal features with higher local clas-
sification confidence, alleviating the probability of provoking
the negative transfer caused by temporal features; secondly,
the temporal features should contribute towards the overall
feature alignment process together with the spatial features,
alleviating the possible misalignment of the spatial features.
Empirical results as shown in Sec. V justify such argument.

To this end, we propose a novel Temporal Attentive
Moment Alignment Network (TAMAN) to address the chal-
lenges in the MSVDA uniformly. The TAMAN first constructs
robust global temporal features with high transferability by
attentively combining local temporal features which repre-
sent the different characteristics of the overall motion. The
attention strategies depend on both the local temporal feature
classification confidence, as well as the disparity between
the global and local feature discrepancies. Meanwhile, the
TAMAN aligns spatial-temporal features jointly by aligning
the moments of both spatial and temporal features across all
domain pairs, mitigating the possible negative transfer caused
by the misalignment of spatial features.

To promote MSVDA relevant research, we further propose
two sets of comprehensive benchmarks, utilizing both widely
used public datasets in action recognition and a more recent
dataset built with dark videos. The proposed benchmarks are:
(i) Daily-DA, constructed with the ARID [10], HMDB51 [9],
Kinetics [11], and Moments-in-Time [12] datasets; and (ii)
Sports-DA, constructed with the UCF101 [8], Sports-1M [13],
and Kinetics datasets. The proposed benchmarks cover ex-
tensive MSVDA scenarios with distinct domain shifts across
included domains.

In summary, our contributions are threefold.

� Firstly, we formulate a novel practical and challenging
Multi-Source Video Domain Adaptation (MSVDA) prob-
lem. To the best of our knowledge, this is an initial work
that investigates multi-source domain adaptation in the
video classification field, especially action recognition.

� Secondly, we analyze the challenges of the MSVDA
problem and propose a novel TAMAN to address the
challenges. The TAMAN learns robust global temporal
features with local temporal attention strategies, while uti-
lizing moments of both the spatial and temporal features
for feature alignment across domain pairs jointly.

� Finally, we introduce two sets of MSVDA benchmarks
and exhibit the capability of TAMAN, which achieves
superior performances across all the proposed MSVDA
benchmarks.

II. RELATED WORK

Unsupervised Domain Adaptation (UDA). Current UDA
methods aim to distill shared knowledge across domains
with the labeled source domain and unlabeled target do-
main, thus improving the transferability of models. In gen-
eral, these methods could be divided into three categories:
a) reconstruction-based methods [14]–[17], where domain-
invariant features are obtained by encoders trained under
data-reconstruction schemas, typically formulated as encoder-
decoder networks; b) adversarial-based methods [5], [7], [18]–
[20], which are inspired by the success of GAN [21], and are
designed with additional domain discriminators that are trained
jointly with feature generators in an adversarial manner [22],
minimizing adversarial losses [23]; and c) discrepancy-based
methods [4], [24]–[27], which alleviate domain shifts across
source-target domain pairs by employing various metric learn-
ing schemas, such as MMD [24], CORAL [28] and KL-
divergence [29]. Discrepancy-based methods do not require
additional network structures (e.g., domain classifiers), thus
are more stable and easy to train. More recently, with the
wide applications of videos in various fields, there has been
increasing research for Video Unsupervised Domain Adap-
tation (VUDA). The success of obtaining domain-invariant
features with the above UDA methods extends to VUDA, with
multiple VUDA methods proposed for tasks such as action
recognition [6], [30]–[32] and action segmentation [33].

Multi-Source Domain Adaptation (MSDA). Though UDA
and VUDA methods have made outstanding progress, current
approaches generally assume that the training source data are
sampled from a single domain and follow a uniform data
distribution. A more general and practical scenario that relaxes
this assumption is denoted as Multi-Source Domain Adap-
tation (MSDA) [34], [35], which enables models to transfer
knowledge from multiple sources. Earlier MSDA methods rely
on either hand-crafted feature representations [36], [37] or pre-
trained classifiers [38], [39]. These works demonstrate the ap-
plications of MSDA in fields such as image classification [34],
[36] and multimedia classification [37], [40].

With the advances in deep neural networks, various end-to-
end MSDA methods have been proposed in conjunction with
deep learning. Among these, MDAN [41] aligns the target
domain to source domains globally with adversarial learning,
applying a domain discriminator for each source-target domain
pair and a single task classifier. Meanwhile, DCTN [42]
improves on MDAN by deploying a separate task classifier
for each source domain, with the final result being a weighted
combination of the output predictions. Further, MDDA [43]
introduces a source distillation mechanism for fine-tuning both
the feature extractor and the task classifier while CMSS [44]
introduces a dynamic curriculum that updates the error rate
of domain discriminators constantly. Meanwhile, M3SDA [45]
utilizes a moment matching component for transferring knowl-
edge. More recently, LtC-MSDA [46] propose to assist model
prediction on the target domain by learning from how source
domains interact with each other leveraging on knowledge
graphs, along with a Relation Alignment Loss to constrain the
global and local relations of feature representations. Further,
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MCC [47] measures the pairwise class confusion on the target
domain, while MOST [48] propose a rigorous OT-based theory
to leverage imitation learning for MSDA.

Despite the notable progress made in the MSDA with its
various applications, the current MSDA approaches are mostly
built for image-based MSDA, with both the source and target
domains being image data. However, the MSVDA, which
focuses on video-based knowledge transfer, has not been dealt
with. The MSVDA is more challenging due to the possibility
that negative transfer could be triggered by temporal features,
which do not exist in images. We propose to tackle the
MSVDA with a novel method that constructs robust global
temporal features with local temporal attention strategies while
utilizing moments of both spatial and temporal features for
effective feature alignment.

III. PROPOSED METHOD

In the scenario of Multi-Source Video Domain Adapta-
tion (MSVDA), we are given a collection of M source
domains denoted as S = fS1;S2; :::;SMg, with domain
Sm = f(ViSm ; yiSm)gnSm

i=1 containing nSm i.i.d. labeled videos
associated with K classes and characterized by a probability
distribution of pSm

.
A single target domain T = fViT gnT

i=1 with nT i.i.d.
unlabeled videos characterized by a probability distribution of
pT is accessed. We assume that the unlabeled target domain
videos share the same label space with the source domain
videos. To tackle the MSVDA problem, our goal is to build
a robust network capable of learning transferable features
across the multiple video source domains and the video target
domain, while minimizing the target classification risk. In
contrast to the conventional VUDA, the MSVDA is more
challenging owing to the existence of both domain shifts
between the different source-target domain pairs and among
the different source domains.

Moreover, while there are existing MSDA approaches that
tackle the negative effect brought by the extra domain shifts,
these approaches are mostly built for image-based MSDA
problems. Negative transfer in these problems would only
be provoked by domain shifts caused by spatial features.
However, videos contain temporal features which represent
the temporal correlation information, thus negative transfer
could be further triggered by different domain shifts w.r.t.
temporal features. Since only spatial features are relevant
for image-based MSDA problems, temporal features have not
been considered in existing MSDA works. Therefore, a novel
Temporal Attentive Moment Alignment Network (TAMAN) is
proposed to transfer from multiple video source domains while
alleviating the negative transfer with a full usage of effective
temporal features built in an attentive manner. We start with a
brief review of discrepancy-based MSDA approaches utilizing
moment alignment, proceeded by a detailed description of the
proposed TAMAN.

A. Discrepancy-based MSDA with Moment Alignment
The goal of conventional UDA and its variants is to align the

data distributions of source and target domains. Discrepancy-
based approaches are widely used thanks to their ability in

alleviating domain shift through metric learning schemas with-
out additional network components. Given the feature extractor
Gf , the source classifier CS , with xS and xT being collections
of nS source domain samples and nT target domain samples,
the overall objective of discrepancy-based DA methods are
generally formulated as:

L =
1

nS

X
x2xS

LS(CS(Gf (x)); y)

+ �d d (Gf (xS); Gf (xT ));

(1)

where LS stands for the source classification loss with y being
the ground truth label of input x from the source domain, while
�d is the trade-off parameter for the cross-domain discrepancy
d. While various forms of discrepancies have been proposed,
a major line of which is moment-based. Minimizing such
discrepancies could therefore be viewed as moment alignment
schemas. Typical examples include MMD [24], which matches
the first moments of distributions, and CORAL [28], which
matches the second moments of distributions.

While these moment alignment methods could align data
distributions under conventional UDA settings, their perfor-
mances degrade substantially when applying directly to the
MSDA tasks, due to the negative transfer caused by the domain
shifts between the different source-target domain pairs and
within the different source domains.

As proven in [45], the upper bound of the target classifica-
tion risk relates closely with the pairwise cross-moment dis-
crepancy between the target domain and each source domain,
denoted as dCM (S; T ), which can be formulated as:

dCM (S; T ) =

MX
j=1

�Sj

X
k

dCMk (Sj ; T ); (2)

where dCMk (Sj ; T ) is the k-th moment discrepancy between
the j-th source domain and the target domain. Since dCMk (�; �)
is a metric, it follows the triangle inequality, formulated as:

dCMk (Si;Sj) � dCMk (Si; T ) + dCMk (Sj ; T ): (3)

This implies that the cross-moment discrepancy between do-
mains Sj ; T is lower bounded by the pairwise discrepancies
between source domains. Combining Equations 2 and 3, a
moment distance is introduced as:

dCM (S; T ) =
X

k

(
1

M

MX
i=1

kE (xSi

k)�E (xT
k)k2

+

�
M

2

��1 X
i;j2[1;M ]

kE (xSi

k)�E (xSj

k)k2):

(4)

The moment distance dCM enables effective multi-source
domain adaptation through minimizing both the source-target
domain discrepancies and discrepancies among the different
source domains. The overall objective function of MSDA is
finally formulated as suggested in [45]:

Lms =
MP

j=1

1
nSj

P
x2xSj

LSj (CSj (Gf (x)); y) + �d dCM (S; T ); (5)

where LSj stands for the source classification loss for the j-th
source classifier with y being the ground truth of input x from
the Sj , while �d is the trade-off parameter.
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Fig. 2. Architecture of the proposed TAMAN. To perform the MSVDA effectively, the robust global temporal feature is constructed by attentive aggregation
of clip-level local temporal features, obtained from time-ordered frame-level spatial features. The weights of the local temporal features include both the local
confidence weight and the dominance weight. Moment alignment is performed jointly across the spatial features and global temporal features. Dashed arrows
indicate how the classifiers for each source domain is propagated during training. The final prediction is obtained from a weighted ensemble schema.

B. Temporal Attentive Moment Alignment Network

To achieve the MSVDA, an intuitive approach would be
to apply the moment matching to video data directly by
integrating videos into Eq. (5), i.e., x = V . Meanwhile, the
original image feature extractors (e.g., 2D-CNN) could simply
be substituted with video feature extractors (e.g., 3D-CNN).

Despite the simplicity of the moment alignment, empirical
results suggest that such a method is insufficient to deal with
the negative transfer in the MSVDA well, leading to inferior
adaptation results. We can expect such inferior results, since
the video representations obtained through common feature
extractors (i.e., convolutional neural network (CNN)-based
extractors) focus primarily on spatial features. In contrast,
temporal features are normally obtained vaguely with a simple
pooling process across the temporal dimension, leading to
tremendous distribution shifts. Without explicit considering
the temporal features, domain adaptation through moment
alignment may only be performed on the spatial features. The
negative transfer provoked by the temporal features could not
be addressed by simply reducing the moment distance.

Based on the above observation, we introduce a novel Tem-
poral Attentive Moment Alignment Network (TAMAN) to
perform multi-source adaptation by exploiting both spatial and
temporal features, with its structure shown in Fig. 2. To utilize
the temporal features for moment alignment, a key prior is
to obtain the temporal features explicitly. Compared to con-
ventional CNN-based extractors (e.g., 3D-ResNet [49]) whose
temporal features are obtained implicitly via a temporal pool-
ing, the Temporal Relation Network (TRN) [50] is adopted.
This is thanks to its ability to extract temporal features through
reasoning over the correlations between spatial representa-
tions, which coincides with the human approach on recogniz-

ing actions and is therefore more effective then other spatial-
temporal networks [51]. The TRN has also been adopted in
other VUDA tasks and approaches, such as PVDA [52] and
SFVDA [53], bringing state-of-the-art results. With the frame-
level spatial features obtained from the shared spatial feature
extractor Gsp, the v-th input video from domain Sm with h

frames is expressed as Vv Sm = ff (1)
v Sm

; f
(2)
v Sm

; :::; f
(h)
v Sm
g. Here

f
(i)
v Sm

is the i-th frame-level spatial feature of the v-th video
from domain Sm. For clarity, the subscript v is omitted in
subsequent equations. The TRN constructs the global temporal
features of VSm denoted by tSm by aggregating multiple clip-
level local temporal features, each of which is built from r
temporally-ordered frames with r 2 [2; h]. A clip-level local
temporal feature is defined as:

lt
(r)
Sm

=
X

z
g

(r)
lt ((V

(r)
Sm

)z): (6)

Here (V
(r)
Sm

)z = ff (a)
Sm
; f

(b)
Sm
; :::; gz represents the z-th clip

that contains r temporal-ordered frames, with frame indices
a and b. Note that b > a but a and b can be nonconsecutive.
The local temporal feature lt(r)

Sm
is computed by integrating

the collection of temporal-ordered frame-level spatial features
through an integration function g(r)

lt , implemented as a Multi-
layer Perceptron (MLP).

The global temporal features could be obtained by simple
aggregation strategies applied to all the local temporal features
(e.g., an average operation). However, the contribution of
each local temporal feature is empirically not equal, which
motivates us to develop a local attention mechanism with
two attention strategies for dominant domain-invariant local
temporal features. Firstly, inspired by findings in [30], we
enable TAMAN to focus on more transferable local temporal
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features. To this end, TAMAN learns the global temporal fea-
tures that attend to more transferable local temporal features,
which correspond to a higher local class prediction confidence.
Specifically, the prediction of each local temporal feature is
first obtained by applying the classifier of domain Sm to
feature lt

(r)
Sm

, denoted as ŷr
lt;Sm

= CSm
(lt

(r)
Sm

). It indicates
the probability of the local temporal feature classified as each
video class. Suppose there are a total of K video classes,
the confidence of prediction ŷr

lt;Sm
is defined as the additive

inverse of its entropy computed over all the probabilities as:

C(ŷ
(r)
lt;Sm

) =

KX
c=1

ŷ
(r)
lt;Sm; clog(ŷ

(r)
lt;Sm; c); (7)

where ŷ
(r)
lt;Sm; c corresponds to the prediction of the c-th

class. The local confidence weight corresponding to the local
temporal feature lt

(r)
Sm

is generated by adding a residual
connection for more stable optimization, and a tanh function
for constraining the weights within the range of [0; 1]. The
formulation of the local confidence weight is thus:

w
(r)
C;Sm

= tanh(1 + C(ŷ
(r)
lt;Sm

)): (8)

Secondly, inspired by temporal action localization and ac-
tion detection tasks, it is believed that most actions would be
observed in a local temporal range [54]–[56], therefore effec-
tive global temporal features should be constructed by focusing
on the dominant local temporal features while discarding
the ineffective clips that may lead to domain shifts. Due to
the fact that target videos are unlabeled, it is impossible to
obtain the prediction accuracies of each local temporal feature.
Instead, the dominance weight is derived from the disparity
between the global and local temporal feature discrepancies.
Formally, the raw global temporal features from the source
domain Sm and the target domain T , denoted as t̂Sm

and
t̂T , are obtained by a simple additive aggregation of the
clip-level local temporal features, i.e., t̂Sm

=
P
r
lt

(r)
Sm

and

t̂T =
P
r
lt

(r)
T . The feature discrepancy is defined based on

the cross-moment discrepancy in Eq. (4), where the moment-
based local temporal discrepancy d(r)

lt is formulated as:

d
(r)
lt (S; T ) =

X
k

(
1

M

MX
i=1

kE ((lt
(r)
Si

)k)�E ((lt
(r)
T )k)k2

+

�
M

2

��1 X
i;j2[1;M ]

kE ((lt
(r)
Si

)k)�E ((lt
(r)
Sj

)k)k2):

(9)

The global temporal discrepancy dt̂ is defined similarly. The
dominance weight is subsequently generated by the disparity
between dt̂ and d

(r)
lt , computed as d(r)

d = jdt̂ � d
(r)
lt j. The

dominance weight w(r)
dom is therefore formulated as:

w
(r)
dom = ed

(r)
d =

X
r

ed
(r)
d : (10)

Finally, the global temporal feature is an attentive aggre-
gation of all local temporal features, with the local attention
weight w(r)

Sm
being the multiplication of the local confidence

weight and the dominance weight, i.e., w(r)
Sm

= w
(r)
C;Sm

w
(r)
dom.

It is further normalized such that
P

r w
(r)
Sm

= 1. The global

temporal feature for the source data in domain Sm, denoted
as tSm is therefore formulated as:

tSm
=
X

r
w

(r)
Sm

lt
(r)
Sm
: (11)

The global temporal feature for the target data tT is defined
similarly with the subscript Sm replaced by T . However, as
the target data are unlabeled, the weights of its temporal local
features would depend solely on the dominance weight, i.e.,
w

(r)
T = w

(r)
dom, tT =

P
r w

(r)
T lt

(r)
T .

With the global temporal features extracted, the TAMAN
aims to perform feature alignment for the spatial and temporal
features jointly. This is achieved by minimizing the moment-
based feature discrepancies df and dt concurrently. Both df

and dt are defined equivalently with Eq. (9). Overall, the
objective function for the TAMAN is expressed as:

Lvms =

MX
j=1

1

nSj

X
v
LSj (CSj (tv Sj ); yv Sj )

+ �df df (S; T ) + �dt dt(S; T );

(12)

where LSj
stands for the classification loss for the j-th source

classifier with yv Sj
being the ground truth of the v-th input

source video from domain Sj , while �df and �dt are the trade-
off parameters for the moment-based spatial and temporal
feature discrepancies respectively.

During the testing phase, the target data are first propagated
through the spatial and temporal feature extractors, and then
the M classifiers trained by the source data. To obtain the final
classification prediction, the outputs from all the classifiers
Pj = CSj

(tT ); j 2 [1;M ] are combined. The most intuitive
method is to average all the outputs. Yet, since the domain
shift between different source-target domain pairs are different,
their target accuracies also vary. To address this issue, we
propose a weighted ensemble schema to combine the outputs
effectively. The idea behind the prediction weight wP is that
the final prediction should focus on the classifier whose output
is of higher certainty. Given that the sum of the weights, i.e.,PM

j=1 wP j should be 1, the prediction weight is defined as:

wP j = �(

KX
c=1

Pj; c log(Pj; c)): (13)

Here K is the number of video classes, Pj; c corresponds to
the prediction of the c-th class from the j-th classifier, while
� is the softmax function performed across the M classifiers,
i.e., �(xj) = exp(xj) =

PM
j=1 exp(xj). The final prediction is

therefore the weighted sum of predictions from each classifier
guided by the prediction weight wP .

In summary, TAMAN addresses MSVDA by constructing
highly transferable global temporal features by attentively
combining local temporal features, focusing on those that are
more transferable with higher local class prediction confidence
and those that are more dominant with lower disparity be-
tween the global and local discrepancies, while discarding
the ineffective clips. TAMAN further aligns the spatial and
temporal features jointly by minimizing separate moment-
based discrepancies across all domain pairs. To highlight the
novelty of TAMAN, we compare our TAMAN with previous
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TABLE I
DETAILED COMPARISON OF TAMAN WITH RELATED BUT DIFFERENT MSDA AND VUDA METHODS.

Method Publication Task Techniques

M3SDA [45] ICCV-19

Multi-Source Domain Adaptation (MSDA): labeled
source data collected from multiple domains corre-
sponding to different data distribution, target data are
unlabeled, image-based.

M3SDA leverages a moment matching component operating on the
image features which aligns the multiple source domains with the
target domain while aligning the source domains with each other
simultaneously.

LtC-MSDA [46] ECCV-22

Multi-Source Domain Adaptation (MSDA): labeled
source data collected from multiple domains corre-
sponding to different data distribution, target data are
unlabeled, image-based.

(a) LtC-MSDA assist model prediction on the target domain by learning
from the interactions across source domains leveraging on knowledge
graphs; (b) LtC-MSDA further constraints the global and local relations
of image feature representations through applying a Relation Alignment
Loss on the category level.

TA3N [30] ICCV-19
Video Unsupervised Domain Adaptation (VUDA): la-
beled source video data collected from single domain,
target video data are unlabeled, video-based.

(a) TA3N aligns videos across the source and target domains by ap-
plying adversarial-based domain adaptation with a single video domain
discriminators across both spatial and local temporal features; (b) TA3N
attends to the local temporal features with high domain discriminability.

ACAN [32] TNNLS-22
Video Unsupervised Domain Adaptation (VUDA): la-
beled source video data collected from single domain,
target video data are unlabeled, video-based.

(a) ACAN adopts an adversarial-based framework with a single video
domain discriminator and aligns the correlation features of source and
target videos in the form of long-range spatiotemporal dependencies;
(b) ACAN further improves the correlation alignment by aligning the
joint distribution of correlation information across the source and target
video domains through minimizing a Pixel Correlation Discrepancy.

TAMAN (Ours) -

Multi-Source Video Domain Adaptation (MSVDA): la-
beled source video data collected from multiple domains
corresponding to different video data distribution, target
video data are unlabeled, video-based.

(a) TAMAN constructs robust global temporal features with high
transferability by attentively combining local temporal features; (b)
TAMAN adopts a local attention mechanism to focus on local temporal
features that are more transferable with higher local class prediction
confidence and are more dominant with lower disparity between the
global and local feature discrepancies; (c) TAMAN aligns both the
spatial and temporal features jointly by aligning the moments of spatial
and temporal features across all domain pairs.
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Fig. 3. Sampled frames of videos from sampled classes in Daily-DA.
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Fig. 4. Sampled frames of videos from sampled classes in Sports-DA.

MSDA and VUDA methods. Specifically, we compare with
M3SDA [45], LtC-MSDA [46], TA3N [30], and ACAN [32].
The methods are compared from two perspectives: the tasks
they tackle and the techniques leveraged, as shown in Table I.

TABLE II
LIST OF OVERLAPPING CLASSES FOR DAILY-DA DATASET.

ARID Class HMDB51 Class Moments-in-Time Class Kinetics Class
Drink drink drinking drinking shots

Jump jump jumping
jumping bicycle

jumping into pool
jumping jacks

Pick pick picking picking fruit
Pour pour pouring pouring beer

Push push pushing

pushing car
pushing cart

pushing wheelbarrow
pushing wheelchair

Run run running running on treadmill

Walk walk walking walking the dog
walking through snow

Wave wave waving waving hand

IV. MSVDA BENCHMARKS

There are very limited cross-domain benchmark datasets for
VUDA and its variant tasks. For the few cross-domain datasets
available such as UCF-HMDBfull [30] for VUDA and HMDB-
ARIDpartial [52] for Partial Video Domain Adaptation (PVDA),
the source domains are always constraint to be a single
domain. To facilitate MSVDA research, we propose two sets
of comprehensive benchmarks, namely the Daily-DA and the
Sports-DA datasets. Both datasets cover extensive MSVDA
scenarios and provide adequate baselines with distinct domain
shifts to facilitate future MSVDA research.

a) Daily-DA dataset: The Daily-DA dataset comprises
of videos with common daily actions. It is constructed from
four action datasets: ARID (A) [10], HMDB51 (H) [9],
Moments-in-Time (M) [11], and Kinetics (K) [12] (using the
Kinetics-600 version). Among them, the HMDB51, Moments-
in-Time, and Kinetics datasets are widely used for action
recognition benchmarking collected from various public video
platforms (e.g. YouTube, Flickr). The ARID is a more recent
dataset, comprised with videos shot under adverse illumination
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TABLE III
LIST OF OVERLAPPING CLASSES FOR SPORTS-DA DATASET.

UCF101 Class Sports-1M Class Kinetics Class
Archery archery archery

Baseball Pitch baseball catching or throwing baseball
hitting baseball

Basketball Shooting basketball playing basketball
shooting basketball

Biking bicycle riding a bike
Bowling bowling bowling

Breaststroke breaststroke swimming breast stroke
Diving diving springboard diving
Fencing fencing fencing (sport)

Field Hockey Penalty field hockey playing field hockey
Floor Gymnastics floor (gymnastics) gymnastics tumbling

Golf Swing golf
golf chipping
golf driving
golf putting

Horse Race horse racing riding or walking with horse
Kayaking kayaking canoeing or kayaking

Rock Climbing Indoor rock climbing rock climbing
Rope Climbing rope climbing climbing a rope
Skate Boarding skateboarding skateboarding

Skiing skiing skiing crosscountry
skiing mono

Sumo Wrestling sumo wrestling
Surfing surfing surfing water
Tai Chi t’ai chi ch’uan tai chi

Tennis Swing tennis playing tennis
Trampoline Jumping trampolining bouncing on trampoline
Volleyball Spiking volleyball playing volleyball

conditions. Statistically, videos in the ARID are characterized
by their low RGB mean value and standard deviation, which
results in larger domain gap between the ARID and other video
domains. A total of 8 overlapping classes are collected, which
are listed in Tab. II, resulting in a total of 18,949 videos. There
are 2,776 training videos and 1,289 testing videos from ARID;
560 training videos and 240 testing videos from HMDB51;
4,000 training videos and 400 testing videos from Moments-
in-Time; and 8,959 training videos and 725 testing videos from
Kinetics. When performing MSVDA, one dataset is selected
as the target domain, with the other three datasets as the
source domains. We therefore construct four MSVDA tasks:
Daily!A, Daily!H, Daily!M, and Daily!K. The training
and testing splits are separated following the official splits for
each dataset. Fig. 3 shows the comparison of sampled frames
from sampled classes in the Daily-DA dataset.

b) Sports-DA dataset: The Sports-DA dataset comprises
of videos with common sport actions, and is built from
three large-scale action datasets: UCF101 (U) [8], Sports-
1M (S) [13], and Kinetics (K) (also using the Kinetics-600
version). Compared to the Daily-DA, this dataset is much
larger in terms of both the number of classes and videos.
A total of 23 overlapping classes are collected which are
listed in Tab. III, resulting in a total of 40,718 videos, making
the Sports-DA dataset one of the largest cross-domain video
datasets introduced. There are 2,145 training videos and 851
testing videos from UCF101; 14,754 training videos and 1,900
testing videos from Sports-1M; and 19,104 training videos
and 1,961 testing videos from Kinetics. As videos in both
the original Sports-1M and Kinetics dataset are provided as
YouTube links, we ensure that the collected videos are still
valid. Invalid links are all omitted during collection. The

Sports-DA dataset is designed to validate the effectiveness
of MSVDA approaches on large-scale video data. Similar to
the Daily-DA dataset, one dataset is selected as the target
domain, with the other two datasets as the source domains
when performing MSVDA, resulting in three MSVDA tasks:
Sports!U, Sports!S, and Sports!K. We follow the official
split for separating the training and testing sets. Fig. 4 shows
the comparison of sampled frames from sampled classes in
the Sports-DA dataset.

To further demonstrate the challenge of both benchmarks,
we provide the baseline results under the vanilla VUDA
[32] setting (i.e., single source), utilizing the discrepancy
based MMD approach [23] and the adversarial based DANN
approach [24] as demonstrated in Tab. IV and Tab. V. We also
present the results without applying any domain adaptation
approach (i.e., source-only results).

V. EXPERIMENTS

In this section, we evaluate our proposed TAMAN by con-
ducting cross-domain action recognition on MSVDA bench-
marks proposed in Sec. IV. We present superior results on both
proposed benchmarks. Ablation studies and empirical analysis
of TAMAN are also presented to justify our design.

A. Experimental Settings

Cross-domain action recognition tasks are performed on
both the Daily-DA and Sports-DA datasets, with a total of
7 cross-domain settings as presented in Sec. IV. Following
standard UDA evaluation protocols [57], source videos are
labeled while target videos are strictly unlabeled. For fair
comparison, both the proposed TAMAN and all compared
methods employ the Temporal Relation Network (TRN) [50]
as the feature extractor backbone, which is pretrained on
the ImageNet [58]. All experiments are implemented with
PyTorch [59] library. To obtain video features, we instantiate
the TRN with the ResNet-101 [60] as the backbone for video
feature extraction for both source and target domain videos,
with the model pretrained on the ImageNet [58]. The TRN
has been widely adopted in previous video domain adaptation
tasks, such as VUDA [30] and PVDA [52] and brought
state-of-the-art results on these tasks through its capability in
obtaining explicit temporal features, as presented in Sec. III-B.
The source and target feature extractors share parameters. New
layers are trained from scratch, and their learning rates are set
to 0.001. The pretrained layers which outputs the frame-level
spatial features f are frozen.

The stochastic gradient descent (SGD) algorithm [61] is
used for optimization, with the weight decay set to 0.0001 and
the momentum to 0.9. The batch size is set to 64 per GPU per
domain. Our initial learning rate is set to 0.001 and is divided
by 10 for three times during training. We train our networks
with a total of 100 epochs for the Daily-DA dataset and 40
epochs for the Sports-DA dataset. The trade-off weight for
the moment-based spatial and temporal feature discrepancies
�df and �dt are set to 0.005 and 0.01. All experiments are
conducted using two NVIDIA RTX 2080 Ti GPUs.
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TABLE IV
BASELINE RESULTS ON DAILY-DA DATASET UNDER THE VANILLA VUDA SETTINGS (SINGLE SOURCE). IN EACH SUB-TABLE, THE ROW-WISE DOMAINS

ARE THE SOURCE DOMAINS WHILE THE COLUMN-WISE DOMAINS ARE THE TARGET DOMAINS.

Source-only ARID HMDB51 MIT Kinetics
ARID N/A 28.75 22.25 27.17
HMDB51 16.84 N/A 26.50 38.90
MIT 24.36 44.17 N/A 64.69
Kinetics 24.52 38.75 25.75 N/A

MMD ARID HMDB51 MIT Kinetics
ARID N/A 28.75 23.25 26.07
HMDB51 24.90 N/A 25.75 33.79
MIT 21.02 50.42 N/A 57.48
Kinetics 25.45 36.25 24.00 N/A

DANN ARID HMDB51 MIT Kinetics
ARID N/A 30.83 19.75 27.03
HMDB51 14.20 N/A 29.50 38.24
MIT 22.81 43.33 N/A 58.76
Kinetics 21.18 37.50 21.75 N/A

TABLE V
BASELINE RESULTS ON SPORTS-DA DATASET UNDER THE VANILLA VUDA SETTINGS (SINGLE SOURCE). IN EACH SUB-TABLE, THE ROW-WISE

DOMAINS ARE THE SOURCE DOMAINS WHILE THE COLUMN-WISE DOMAINS ARE THE TARGET DOMAINS.

Source-only UCF101 Sports-1M Kinetics
UCF101 N/A 46.32 62.13
Sports-1M 80.02 N/A 68.86
Kinetics 85.90 55.16 N/A

MMD UCF101 Sports-1M Kinetics
UCF101 N/A 47.21 64.17
Sports-1M 73.55 N/A 69.22
Kinetics ARID HMDB51 N/A

DANN UCF101 Sports-1M Kinetics
UCF101 N/A 46.74 61.77
Sports-1M 81.20 N/A 68.35
Kinetics 86.60 55.05 N/A

TABLE VI
RESULTS FOR MSVDA ON DAILY-DA AND SPORTS-DA DATASETS (MEAN ± STD).

Methods Daily-DA Sports-DA
Daily→A Daily→H Daily→M Daily→K Sports→U Sports→S Sports→K

Source-only TRN 23.58±0.21 44.17±0.31 33.75±0.25 61.93±0.58 88.72±0.63 56.32±0.44 74.10±0.85

Adversarial-
based

s-DANN [23] 22.03±0.35 34.15±0.31 22.50±0.25 61.93±0.72 82.50±0.75 51.84±0.45 66.22±0.58
s-ADDA [18] 22.30±0.21 33.95±0.28 23.75±0.20 62.86±0.54 85.94±0.76 52.53±0.43 68.20±0.50
s-TA3N [30] 21.76±0.16 39.91±0.39 33.75±0.30 61.75±0.55 83.76±0.66 53.52±0.56 73.15±0.75
s-ACAN [32] 23.44±0.22 43.06±0.41 34.50±0.30 62.33±0.52 86.58±0.75 55.53±0.50 74.21±0.68
c-DANN [23] 22.15±0.33 36.76±0.46 20.00±0.25 61.66±0.68 83.08±0.68 51.55±0.52 65.38±0.63
c-ADDA [18] 22.65±0.25 35.04±0.30 24.25±0.25 62.58±0.52 86.55±0.65 53.87±0.37 71.10±0.64
c-TA3N [30] 22.24±0.20 40.42±0.32 33.80±0.30 62.18±0.60 84.68±0.72 55.76±0.48 74.30±0.87
c-ACAN [32] 23.95±0.28 44.28±0.39 35.25±0.25 62.84±0.60 90.15±0.73 57.15±0.45 75.23±0.63
MDAN [41] 23.75±0.38 43.33±0.42 33.75±0.50 62.02±0.42 88.26±0.72 57.04±0.46 72.96±0.54
DCTN [42] 24.94±0.36 44.24±0.48 34.25±0.30 62.28±0.44 88.92±0.64 57.56±0.38 67.68±0.60
MDDA [43] 22.73±0.26 45.30±0.35 35.00±0.50 63.21±0.63 89.81±0.70 57.63±0.40 74.48±0.66

Discrepancy-
based

s-MMD [24] 21.62±0.22 39.25±0.35 31.25±0.30 60.53±0.49 86.28±0.62 53.12±0.56 67.21±0.65
s-MCD [26] 23.80±0.28 39.95±0.36 32.00±0.25 61.63±0.57 87.36±0.62 57.08±0.43 74.50±0.75

s-CORAL [28] 21.51±0.15 38.76±0.26 33.00±0.25 61.35±0.45 86.10±0.52 53.72±0.32 68.75±0.45
c-MMD [24] 24.28±0.36 42.50±0.45 30.50±0.30 62.07±0.55 88.64±0.76 56.38±0.48 73.06±0.60
c-MCD [26] 25.68±0.28 44.45±0.33 33.50±0.25 62.92±0.78 89.92±0.80 58.47±0.21 74.54±0.62

c-CORAL [28] 23.96±0.16 41.78±0.24 34.25±0.25 61.38±0.33 87.36±0.58 57.98±0.32 74.36±0.44
LtC-MSDA [46] 24.98±0.12 44.03±0.18 32.00±0.25 62.50±0.35 90.32±0.44 68.35±0.25 69.88±0.26

MCC [47] 22.65±0.35 38.05±0.27 30.75±0.75 63.48±0.64 88.00±0.60 51.95±0.22 75.28±0.54
MOST [48] 26.28±0.46 43.68±0.52 35.25±0.50 60.36±0.92 89.54±1.26 59.30±0.65 65.64±0.96

M3SDA [45] 24.83±0.23 42.50±0.35 33.25±0.50 62.21±0.41 88.75±0.70 55.25±0.39 75.48±0.86
Ours TAMAN 29.95±0.35 48.33±0.38 36.75±0.50 64.36±0.69 92.26±0.84 62.15±0.52 79.12±0.54

B. Overall Results and Comparisons

We first compare the TAMAN with various UDA/VUDA
and MSDA approaches, which include: (i) adversarial-
based methods: DANN [23], ADDA [18], TA3N [30],
ACAN [32], MDAN [41], DCTN [42] and MDDA [43];
and (ii) discrepancy-based methods: MMD [24], MCD [26],
CORAL [28], LtC-MSDA [46], MCC [47], MOST [48],
and M3SDA [45]. For UDA/VUDA approaches (i.e., DANN,
ADDA, TA3N, ACAN, MMD, MCD, and CORAL), two
strategies are employed: (i) single-best (‘s-’), where the adap-
tation is performed for each source-target pair with the best
result selected; and (ii) source-combined (‘c-’), where all
source domains are combined to form a domain. The results
are presented in Tab. VI. Following [45], we report the mean
and standard deviation (std) of the top-1 accuracy with 5
runs under identical network settings. For comparison, we also
report the results of the backbone TRN trained with supervised
source data only and tested on the target data (source-only
results).

Results in Tab. VI demonstrate the effectiveness of
TAMAN, achieving the best results on all MSVDA tasks
and outperforming all prior approaches by noticeable gains.
Notably, the TAMAN outperforms all the image-based MSDA
approaches (e.g., MDAN, DCTN, and MDDA) consistently
by an average of more than 10% relative improvements in
mean accuracy. This empirically justifies the effectiveness of
constructing the temporal attentive robust global temporal fea-
tures which are more transferable while incorporating both the
spatial and temporal features for feature moment alignment.
Further, it could be observed that for all prior UDA/VUDA and
MSDA approaches, the adaptation results are inferior to that of
the backbone TRN trained without any adaptation approaches
(i.e., the source-only results) in at least 1 MSVDA task. This
suggests that all the methods suffer from negative transfer. In
particular, the negative effect is more severe for the Daily-DA,
with an average of 12 out of 17 approaches evaluated suffering
from the negative transfer. This owes to the fact that the Daily-
DA dataset contains data collected from ARID with distinct
statistical characteristics, resulting in larger cross-domain gaps.
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(a) TRN (b) c-DANN (c) M3SDA (d) TAMAN

Fig. 5. Visualization of features learned by (a) TRN, (b) c-DANN, (c) M3SDA, and (d) TAMAN with class information. Different classes are denoted by
different colors.

TABLE VII
ABLATION STUDIES FOR local attention weight.

Methods Daily→A Daily→H
TAMAN 29.95 48.33

TAMAN w/o local confidence 27.85 46.25
TAMAN w/o dominance 28.32 45.42

TAMAN w/o local attention 25.21 43.75

TABLE VIII
ABLATION STUDIES FOR OBTAINING dominance weight.

Methods Daily→A Daily→H
TAMAN 29.95 48.33

TAMAN w/o dominance 28.32 45.42
TAMAN w min. d(r)lt dominance 28.22 45.12
TAMAN w max. d(r)lt dominance 27.58 44.17

Meanwhile, it is also worth noticing that the improvements
of TAMAN towards the source-only results are less significant
when the domain shift between source domains is large. As
presented in Tab. VI, the TAMAN improves on the source-
only results by more than 27% for Daily!A, while the
improvements lessen to around 7% for other tasks on the
Daily-DA when ARID is selected as the source domain. This
may be mainly caused by the TAMAN’s inability to focus on
the different source domain adaptively. Thus source domain
further away from the target domain (i.e., ARID for tasks on
the Daily-DA) would negatively affect the knowledge transfer
process.

C. Ablation Studies and Feature Visualization

To further validate the efficacy of TAMAN and justify
its design, we perform detailed ablation studies and feature
visualization. The ablation studies are conducted from four
perspectives: (i) local attention weight and its components;
(ii) different strategies for obtaining dominance weight; (iii)
different prediction ensemble schemas; and (iv) significance
of leveraging both spatial and temporal feature moment dis-
crepancies. Ablation studies are conducted with the Daily!A
and Daily!H tasks.

a) Local attention weight: We evaluate TAMAN against
3 variants to justify the design of the local attention weight:
(a) TAMAN w/o local confidence, where the local confidence

TABLE IX
ABLATION STUDIES FOR PREDICTION ENSEMBLE SCHEMAS.

Methods Daily→A Daily→H
TAMAN 29.95 48.33

TAMAN by avg 29.02 47.58
TAMAN by src. only accuracy 29.17 47.92

TABLE X
ABLATION STUDIES FOR SPATIAL AND TEMPORAL MOMENT

DISCREPANCIES.

Methods Daily→A Daily→H
TAMAN 29.95 48.33

TAMANdf 26.72 44.03
TAMANdt 28.07 46.55

weights are set to be equal for all local temporal features; (b)
TAMAN w/o dominance, where the local attention weight
does not incorporate dominance weights; and (c) TAMAN w/o
local attention, where the global temporal features are built
by additive aggregation of local temporal features. Results
presented in Tab. VII clearly demonstrate the necessity of both
the local confidence weight and the dominance weight, both
of which help construct the robust global temporal features for
alignment. By employing either weight, TAMAN learns more
transferable temporal features given the better result compared
to all approaches evaluated in Tab. VI. It is also noted that
though TAMAN w/o local attention falls behind TAMAN by
a notable gap, it still performs better than most image-based
MSDA approaches, justifying the need for joint alignment of
both the spatial and temporal features.

b) Obtaining dominance weights: We propose the domi-
nance weight which is obtained from the disparity between
the global and local feature discrepancies in Sec. III-B.
Alternatively, the dominance weight could be obtained di-
rectly by comparing the local temporal feature discrepancies.
Therefore, we justify the current strategy for obtaining the
dominance weight by evaluating TAMAN against TAMAN
w/o dominance and two other variants: (a) TAMAN w min.
d

(r)
lt dominance, where the global temporal features are set

to focus on the local temporal feature with the minimum
cross-domain moment discrepancy; and (b) TAMAN w max.
d

(r)
lt dominance, whose global temporal features attend to the

local temporal feature with maximum cross-domain moment
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discrepancy. As shown in Tab. VIII, the results justify the
design of the dominance weight through the disparity of
discrepancies. While the other two strategies are computed
with ease, their inferior results to TAMAN w/o dominance
show that the sub-optimal dominance weight may negatively
affect the global temporal features.

c) Prediction ensemble schemas: TAMAN utilizes a
weighted ensemble schema based on prediction certainty. To
justify such an approach, we compare TAMAN with the
following variants: (a) TAMAN by avg, whose final prediction
is ensembled by directly averaging across outputs from each
classifier; and (b) TAMAN by src. only accuracy, whose
prediction is ensembled following [45], with the weights of
each prediction output derived by the source only accuracy
between each source-target domain pair. As demonstrated
in Tab. IX, the performance improvement of the ensemble
strategy in TAMAN is marginal, indicating that the domain-
variant feature learning plays a more vital role in MSVDA.
It is noted that though the ensemble method in [45] is more
effective than simple averaging, it requires the evaluation of
source-only results with each individual source-target domain
pair, resulting in more computation and less efficiency.

d) Spatial and temporal feature moment discrepancies:
The TAMAN leverages moment-based discrepancies for both
spatial and temporal features. To better understand the sig-
nificance of leveraging both spatial and temporal features
for computing moment-based discrepancies, we compare the
proposed TAMAN with variants TAMANdf and TAMANdt,
where (a) TAMANdf only optimizes the moment-based spatial
discrepancy, while (b) TAMANdt only optimizes the moment-
based temporal discrepancy. Note that both the TAMANdf and
TAMANdt optimize the classification loss for the source clas-
sifiers. As compared in Tab. X, optimizing both the moment-
based spatial discrepancy and the moment-based temporal
discrepancy complements each other, justifying the need to
optimize both discrepancies for ultimate knowledge transfer.
It should also be noted that while both the TAMANdf and
TAMANdt perform inferior against TAMAN, the performance
of TAMANdf falls behind by a larger gap. This proves the
importance of aligning temporal features for MSVDA. Mean-
while, with effective temporal features constructed, TAMANdf
still outperforms most image-based MSDA approaches, justi-
fying the significance of effective temporal feature construc-
tion in tackling MSVDA.

e) Feature visualization: We further plot the t-SNE em-
beddings [62] of the features learned by the TRN, c-DANN,
M3SDA, and TAMAN for the Sports!U task with class
information in the target domain as shown in Fig. 5. It
can be observed that the features learned by TAMAN are
much more clustered. This justifies the effectiveness of the
features extracted by TAMAN with local attention, which
possesses higher discriminability. On the contrary, the features
learned by c-DANN are even less clustered compared with the
TRN backbone. This suggests negative transfer where features
are misaligned across the multiple source domains and are
of lower discriminability. The above observations imply the
superiority of our TAMAN in tackling the MSVDA.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose a novel method for tackling
Multi-Source Video Domain Adaptation (MSVDA). In con-
trast to prior works where only spatial features are aligned,
TAMAN deals with MSVDA by dynamically aligning both the
spatial and temporal feature moments. TAMAN also attends
to dominant domain-invariant local temporal features with
high local classification confidence and low disparity between
global and local feature discrepancies. We further pioneer in
introducing novel MSVDA benchmarks to facilitate future
MSVDA research. Our proposed TAMAN tackles MSVDA
well, supported by extensive experiments and ablation studies
across the proposed MSVDA benchmarks.

While the TAMAN has proved to be effective for the
MSVDA, there is still room for improvements. While the
TAMAN constructs global temporal features adaptively, it
transfers knowledge from all source domains equally. Intu-
itively, with different domain shifts between different source
domains and the target domain, knowledge transferred from
the different source domains should be combined adaptively,
focusing on the more relevant domain. Such an idea is relevant
to adaptive transfer learning [63] where relevant samples are
selected for better adaptation. Meanwhile, With the increasing
emphasis on data privacy, methods that require source data
access could raise serious privacy issues. Source-Free Video
Domain Adaptation [64], [65] have been proposed to cope with
privacy concerns which can be further extended to MSVDA.
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