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Abstract: Extracellular vesicles (EVs) are membrane-enclosed vesicles that are released into the
extracellular environment by various cell types, which can be classified as apoptotic bodies,
microvesicles and exosomes. EVs have been shown to carry DNA, small RNAs, proteins and
membrane lipids which are derived from the parental cells. Recently, several studies have
demonstrated that EVs can regulate many biological processes, such as cancer progression, the immune
response, cell proliferation, cell migration and blood vessel tube formation. This regulation is achieved
through the release and transport of EVs and the transfer of their parental cell-derived molecular
cargo to recipient cells. This thereby influences various physiological and sometimes pathological
functions within the target cells. While intensive investigation of EVs has focused on pathological
processes, the involvement of EVs in normal wound healing is less clear; however, recent preliminarily
investigations have produced some initial insights. This review will provide an overview of EVs and
discuss the current literature regarding the role of EVs in wound healing, especially, their influence
on coagulation, cell proliferation, migration, angiogenesis, collagen production and extracellular
matrix remodelling.
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1. Introduction

Membrane-enclosed extracellular vesicles (EVs) include apoptotic bodies, microvesicles and
exosomes which are released by various cell types, and have been found in cell culture media, as
well as body fluids such as breast milk, urine, amniotic fluids, saliva and blood [1–11]. During EV
biogenesis, a number of biological molecules are encapsulated into the EV, including DNA, small
RNAs, proteins and lipids which are derived from parental cells [6,11]. However, the real significance
of EVs lies in their ability to deliver their contents to recipient cells, thereby altering biological and
cellular processes. Furthermore, aberrant delivery of EV cargo to recipient cells has been implicated in
several pathologies such as some autoimmune disorders and cancers [12–15].

Wound healing is a complicated process which involves an overlapping cascade of events
characterised into four distinct phases (Figure 1). These include:
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• Haemostasis, where blood loss ceases;
• The inflammatory phase, characterised by infiltration of immune cells to combat infection and

remove cellular debris;
• The proliferative phase, where fibroblasts and keratinocytes at the wound margins migrate into

the wound and increase in cell number to re-establish the barrier function of the skin; and
• The remodelling phase, during which reorganisation of the dermis occurs and the preliminary

extracellular matrix (ECM), laid down during the earlier phases of the healing response,
is remodelled to strengthen the wound area through the reduction of scar tissue [16].

Preliminary studies have shown that EVs may be involved in wound healing through the control
of a number of cellular processes [17–21]. Therefore, this review will summarise the role of EVs derived
from predominant cells involved in the wound healing process. An overview of EV classification,
biogenesis, components, and cell-to-cell communication via EVs is also described.
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and (iv) remodelling. Each phase consists of different cellular events which requires the interplay of 
multiple cell populations [22]. 

2. Extracellular Membrane Vesicles (EVs) 

EVs have a phospholipid bilayer similar to the cell membrane, with diameters ranging from 40 
nm to 5 µm. In general, EVs can be classified into three subtypes: apoptotic bodies (also known as 
apoptotic vesicles); microvesicles (also known as shedding vesicles); and exosomes. 

2.1. Apoptotic Bodies 

Apoptotic bodies are the largest vesicle population, with a diameter ranging from 1 to 5 µm and 
have a heterogeneous morphology. Apoptotic bodies are released when cells undergo apoptosis and 
therefore they contain various components from their parental cells often including organelles and 
DNA fragments [23]. 

Apoptosis and necrosis are major mechanisms of cell death, which produce cell debris but are 
activated by diverse biological stimuli [23–25]. In contrast to apoptosis which is programed cell 
death, necrosis is passive and activated by mechanical damage or disease [25]. Interestingly, 
apoptotic bodies are released into the extracellular environment through several stages. During the 
early and intermediate stages, the cell membrane is contracted, the cytoplasm is condensed, and the 
cells become smaller in size [23]. Simultaneously, nuclear chromatin is also condensed and 
undergoes alteration, and the plasma membrane deteriorates such that its permeability increases in 

Figure 1. Wound healing process. The normal tissue repair process is comprised of continuous and
overlapping phases. These four phases include: (i) Haemostasis; (ii) inflammation; (iii) proliferation;
and (iv) remodelling. Each phase consists of different cellular events which requires the interplay of
multiple cell populations [22].

2. Extracellular Membrane Vesicles (EVs)

EVs have a phospholipid bilayer similar to the cell membrane, with diameters ranging from
40 nm to 5 µm. In general, EVs can be classified into three subtypes: apoptotic bodies (also known as
apoptotic vesicles); microvesicles (also known as shedding vesicles); and exosomes.

2.1. Apoptotic Bodies

Apoptotic bodies are the largest vesicle population, with a diameter ranging from 1 to 5 µm and
have a heterogeneous morphology. Apoptotic bodies are released when cells undergo apoptosis and
therefore they contain various components from their parental cells often including organelles and
DNA fragments [23].

Apoptosis and necrosis are major mechanisms of cell death, which produce cell debris but are
activated by diverse biological stimuli [23–25]. In contrast to apoptosis which is programed cell
death, necrosis is passive and activated by mechanical damage or disease [25]. Interestingly, apoptotic
bodies are released into the extracellular environment through several stages. During the early and
intermediate stages, the cell membrane is contracted, the cytoplasm is condensed, and the cells become
smaller in size [23]. Simultaneously, nuclear chromatin is also condensed and undergoes alteration,
and the plasma membrane deteriorates such that its permeability increases in the late stage. As a result,
the plasma membrane undergoes a process that is commonly known as blebbing [24]; and the cellular
content is disintegrated into distinct membrane enclosed vesicles known as apoptotic bodies [24].
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Therefore, apoptotic bodies contain the cytoplasm, but does not necessarily include tightly packed
organelles or nuclear fragments. However, if organelles are encapsulated within apoptotic bodies,
these organelles have been shown to have their integrity maintained [23]. During the formation process
of apoptotic bodies, phosphatidylserine (PS) residues that are normally located on the internal surface
of the plasma membrane, subsequently translocate to the external surface. This process presents
extracellular signals that attract macrophages to clear the apoptotic bodies via phagocytosis (Figure 2).
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mechanism of microvesicles at the cell surface, although it is hypothesised that the formation of 
membrane microvesicles may be a result of the dynamic interplay between phospholipid 
redistribution and cytoskeletal protein contraction [28,29]. This process is regulated by several 
enzymes such as calpain, flippase, floppase, scramblase and gelsolin [30]. Flippases transfer 
phospholipids from the outer leaflet to the inner leaflet while floppases transfer phospholipids from 
the inner leaflet to the outer leaflet [31]. The translocation of PS to the outer-membrane leaflet is a 
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microvesicle formation was associated with ADP-ribosylation factor 6 (ARF6), a small GTPase 
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Figure 2. Formation of apoptotic bodies and clearance by phagocytosis. Formation of apoptotic
bodies includes the condensation and segregation of the nucleus, and the deterioration and blebbing
of the plasma membrane. The result of these processes is a separation of the cellular contents into
membrane-enclosed vesicles which can be cleared by phagocytic cells.

2.2. Microvesicles

Microvesicles, also known as “ectosomes”, are the second largest vesicle type between 100
and 1000 nm in diameter, which are formed by the outward budding and fission of the plasma
membrane [26,27]. However, there is limited understanding about the formation and shedding
mechanism of microvesicles at the cell surface, although it is hypothesised that the formation of
membrane microvesicles may be a result of the dynamic interplay between phospholipid redistribution
and cytoskeletal protein contraction [28,29]. This process is regulated by several enzymes such as
calpain, flippase, floppase, scramblase and gelsolin [30]. Flippases transfer phospholipids from the
outer leaflet to the inner leaflet while floppases transfer phospholipids from the inner leaflet to the
outer leaflet [31]. The translocation of PS to the outer-membrane leaflet is a signal that induces
the membrane budding/vesicle formation (Figure 3) [28]. In addition, microvesicle formation was
associated with ADP-ribosylation factor 6 (ARF6), a small GTPase protein, which regulating the
activation of myosin light chain kinase (MLCK) and subsequent phosphorylation of MLCK lead to
a promotion of contraction of actin-based cytoskeleton [32]. Thereby, the budding process is completed
through the contraction of cytoskeletal structures via actin and myosin interactions [32,33].
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are formed and developed via the endocytic pathway, and are subsequently released to the 
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endocytic trafficking pathways into transport vesicles [37,38]. The transport vesicles then fuse with 
one another or with an existing sorting endosome to form early endosomes. During the next 
developmental stage, early endosomes may collect proteins and other components and develop into 
late endosomes, and that late endosome may recycle its components back to the plasma membrane 
or be subjected to degradation by lysosomes [37,39]. Alternatively, that late endosomes may 
develop to become multi-vesicular bodies (MVBs) carrying and releasing exosomes when MVBs 
fuse with the cellular membrane (Figure 4) [39,40]. Thus while complex and much remains 
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by multiple signalling mechanisms. For instance, some evidence suggests that Endosomal Sorting 
Complexes Required for Transport (ESCRT) pathway is needed for exosome biogenesis [39,41] as is 
Rab27a/b which is involved in endosome development and docking of MVBs to the cellular plasma 
membrane [42]. 

Figure 3. Phospholipid translocase activity via floppase and flippase which translocates
phosphatidylserine and other phospholipids from the inner leaflet to the outer leaflet, and outer
leaflet to inner leaflet, respectively, during microvesicle formation. These processes are adenosine
triphosphate (ATP)-dependant [28,30,32,33].

2.3. Exosomes

Exosomes are the smallest class of EVs with diameters between 40 and 100 nm and a cup shape
morphology according to previous studies using electron microscopy [34]. Although the mechanism
of exosome biogenesis is not fully understood, it is commonly accepted that exosomes are formed and
developed via the endocytic pathway, and are subsequently released to the extracellular environment
by exocytosis [35,36]. The formation and release process begins when fluids, solutes, macromolecules,
plasma components and particles are internalized by various endocytic trafficking pathways into
transport vesicles [37,38]. The transport vesicles then fuse with one another or with an existing sorting
endosome to form early endosomes. During the next developmental stage, early endosomes may collect
proteins and other components and develop into late endosomes, and that late endosome may recycle
its components back to the plasma membrane or be subjected to degradation by lysosomes [37,39].
Alternatively, that late endosomes may develop to become multi-vesicular bodies (MVBs) carrying
and releasing exosomes when MVBs fuse with the cellular membrane (Figure 4) [39,40]. Thus while
complex and much remains unknown about exosome biogenesis, it is clear that their formation and
release are tightly regulated by multiple signalling mechanisms. For instance, some evidence suggests
that Endosomal Sorting Complexes Required for Transport (ESCRT) pathway is needed for exosome
biogenesis [39,41] as is Rab27a/b which is involved in endosome development and docking of MVBs
to the cellular plasma membrane [42].
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Figure 4. Exosome biogenesis. Beginning from internalization of membrane proteins and lipid
complexes by endocytosis, endocytotic vesicles are delivered to early endosomes, which fuse with
each other resulting in formation of late endosomes/multivesicular bodies (MVB). MVBs either release
exosomes by fusion with the cellular membrane, or their contents are degraded if they fuse with
lysosomes [40,42,43]. The key steps of the exosomal formation and development process are highlighted
in red.

3. Cell-to-Cell Communication

Cell-to-cell communication is a pivotal mechanism that enables the differentiation of cells and
the development of multicellular organisms. The mechanisms of cell-to-cell communication are very
complex and involve intercellular and intracellular signals, which includes cell junctions, adhesion
contacts and soluble factors [44,45]. Cells can form bridges (cytonemes) to connect and exchange
surface-associated cargo to neighbouring cells based on the mechanism of adhesion [46], or tunnelling
nanotubes to contact and transfer both cell surface molecules and cytoplasmic components to other
cells [46,47]. Recently, EVs were found to be a new means of communication because they carry
functional molecules and can horizontally transfer these to neighbouring cells [19].

Cell-to-cell communication by EVs is described as a way for cells to interact with neighbouring
cells or one another over long distances, when EVs were detected in the circulation and other body
fluids [44]. The binding of EVs to target cells is specific with examples including: platelet-derived EVs
binding to neutrophils [48]; neutrophil-derived EVs binding to dendritic cells [49] or to monocytes and
endothelial cells [50]; and leukocyte-derived EVs binding to platelets [51]. The interaction between
EVs and target cells are thought to require the coordinated action of the cytoskeleton and vesicle fusion
machinery [28]. Despite the limited understanding about EVs transport, different mechanisms of
interaction between EVs and recipient cells include ligand–receptor interaction, internalisation and
direct membrane fusion have been studied [52] (Figure 5).

Examples of ligand–receptor interaction mechanisms include studies of EVs released from
dendritic cells and platelets [53,54]. Dendritic cell-derived exosomes contain MHC class II and CD9 on
their membrane and were found to bind to the surface of activated T cells [53]. This binding could
be an interaction between MHC II molecules on exosome membranes and T cell receptors on T cell
membranes [53]. Interestingly, exosomes only bound to the surface of the plasma membrane without
fusing and internalisation into T cells [53]. Similarly, platelet-derived microvesicles containing the
CD41 antigen were discovered to bind to the membrane of human bone marrow CD34+ cells, which
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then stimulated the adhesion of these cells to the endothelium as well as directed them from peripheral
blood back into the bone marrow [54].

Regarding the mechanism of direct membrane fusion, some evidences suggested that
microvesicles fused directly with the plasma membrane and transferred their contents to the
intracellular milieu of the recipient cells [55–58]. In the case of microvesicles enriched selectively with
P-selectin glycoprotein ligand-1 (PSGL-1), the fusion may be controlled by Annexin V or antibody to
PSGL-1 [55]. Additionally, it seems that the fusion of EVs to the plasma membrane is also dependant on
SNARE proteins, which regulate the fusion and target specificity in intracellular vesicle trafficking [58].
When EVs fuse with and transfer membrane components such as receptors and ligands to their targets,
these can increase the resistance to apoptosis in the case of macrophages receiving chemokine receptors;
or induce an increased frequency of apoptosis in the case of T lymphocytes receiving the Fas ligand
(a death-receptor ligand) [56,57].

Morelli et al. found evidence of the internalisation of circulating EVs into dendritic cells,
phagocytes of spleen, and Kupffer cells in the liver via clathrin-dependent endocytosis [59].
This internalisation of EVs by dendritic cells requires participation of the dendritic cell cytoskeleton as
well as surface molecules such as externalised PS, CD11a, CD54, CD9 and CD81 [59]. Additionally,
cellular maturity also influences the internalisation of EVs by dendritic cells, since immature dendritic
cells exhibit a higher internalisation capability than mature dendritic cells [59]. This internalisation of
EVs into target cells could induce peripheral T-cell tolerance in the absence of danger signals [59] or
stimulate cell proliferation and migration [21]. 
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Figure 5. Interaction of EVs with target cells: (A) intracellular signalling due to EV membrane ligand
cell surface receptor interactions [53,54]; (B) direct membrane fusion which induces cell function
through release of EV cargo into target cells [55–58]; and (C) internalisation of EVs into target cells,
prior to the release of their cargo into the recipient cell cytoplasm inducing functional effects [21,59].
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4. Functional Components of EVs

4.1. Proteins

In general, all three populations of mammalian EVs share some common characteristics such as
structure (lipid bi-layer), and tend to have common types of cargo such as protein, lipid or genetic
material. However, these characteristics may be distinct depending on the manner of formation as
well as the nature of their parental cells. Specific molecules that are unique to each vesicle population
can be used to distinguish between them. For example, PS is only transferred to the external plasma
membrane surface when cells undergo apoptosis and where microvesicles are formed and shed [28,60].
In another example, the tetraspanin family (e.g., CD9, CD63, and CD81) form a complex network
of interacting molecules which play a role in trafficking of transmembrane proteins [61]. Thus CD9,
CD63, and CD81 are enriched and often detected in exosomes since they are often involved in exosome
biogenesis pathways [8,52,62], however these components are also detected in other vesicles [63].
Interestingly, CD24 could be considered as a marker of exosomes isolated from urine and amniotic
fluids [8]. Additionally, the CD24 has been found to be over-expressed in various cancer cell lines such as
ovarian, breast, non-small cell lung, prostate and pancreatic carcinomas [64]. In terms of other functional
proteins, Dujarin et al. reported that Tau, a microtubule-associated protein, and matrix metalloproteinase
1 (MMP-1) protein, were enriched in microvesicles compared to exosomes [17,65]. However, no studies
have reported whether or not Tau and MMP-1 proteins are enriched in apoptotic bodies.

Importantly, specific EV biomolecular cargo has previously been linked to cancer and tumour
development [50,66,67]. For example, apoptotic bodies, which contained DNA encoding the oncogenes
H-rasV12 and c-myc, were found to induce tumour formation and growth in severe combined
immunodeficient (SCID) mice [66]. Interestingly, the authors also found that these H-rasV12 and
c-myc genes were replicated and incorporated into the recipient genome in newly formed tumour
cells in vivo (SCID mice model) [66]. Furthermore, microvesicles carrying MMP-9 released from breast
carcinoma cells, fibrosarcoma cells and polymorphonuclear leucocytes functioned in the digestion of
the extracellular matrix, which is necessary for the progress of cancer growth and inflammation [50,67].

EVs have also been found to carry components associated with angiogenesis and coagulation
processes [55,68,69]. For instance, endothelial cell-derived microvesicles, which were enriched with
MMPs, could stimulate the invasion and formation of capillary-like structures of human umbilical
vein endothelial cells (HUVECs) [69]. Indeed, MMPs have been identified as important mediators
of angiogenesis [70,71], but exactly how the EV MMPs contribute to the angiogenic process has not
yet been revealed. Interestingly, the accumulation of MMPs within microvesicles was shown to be
stimulated by angiogenic factors including, fibroblast growth factor (FGF)-2 and vascular endothelial
growth factor (VEGF) [69]. Moreover, EVs were also associated with coagulation since microvesicles
contained tissue factor (TF) derived from platelets and monocytes [55,68].

EVs also have a function in the regulation of immune responses, since exosomes have been
found to contain major histocompatibility complex (MHC) class I and II molecules and may transfer
these molecules to dendritic cells [5,72,73]. The transferral of MHC I molecules from melanoma cell
line-derived exosomes to dendritic cells, triggered the production of Interferon γ in these cells [73].
Furthermore, MHC I molecules carried by dendritic cell derived exosomes could activate CD8+ T
cell responses [5,73]. These studies indicate that exosomes can potentially act as extracellular antigen
sources, which could help to develop immune interventions.

Finally, cytoplasmic proteins, such as tubulin, actin, actin-binding proteins, annexins and Rab
proteins, which are involved in intracellular membrane fusion and transport, and ESCRT machinery
complex proteins are also found in exosomes [39,41,74,75]. In addition, molecules responsible for
signal transduction, such as protein kinases, 14-3-3 and heterotrimeric G proteins, are enveloped
during exosome formation and release [39,74,76,77]. While there is evidence to support the conclusion
that the molecular components of EVs may be delivered to and elicit functional responses in recipient
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cells, unequivocal evidence is still required [19]. Taken together, these studies indicate that EVs and
their cargo are functional and could influence recipient cell behaviour.

4.2. Lipids

Interestingly, EV lipid composition, which includes cholesterol, sphingomyelin, ceramide,
phospholipids and glucans can provide an additional means of identification for exosomes [78–81]. Indeed,
exosomes have been found to be enriched with higher amounts of cholesterol and sphingolipids, including
sphingomyelin and hexosylceramide, but contain lower amounts of accumulated phosphatidylcholine,
compared to parent cell membranes [81]. Importantly, Trajkovic et al. showed that high concentrations
of ceramide exist in the micro-domains where multi-vesicular endosomes are formed. This led to the
hypothesis that ceramide could be useful for enlarging micro-domains and facilitating the inducement
of domain budding [81]. These studies indicate that lipids can partially regulate the formation and
release of vesicles [78,81].

4.3. Genetic Materials (Messenger RNAs and miRNAs)

Regarding genetic biomolecules, RNAs including messenger RNAs (mRNAs) and microRNAs
(miRNAs) have also been found in EVs which have been increasingly found to elicit various functions
in recipient cells [11,82–90]. In particular, large amounts of mRNAs and miRNAs were found in
all three EV types released from both cell cultures and body fluids [14,82–84,87–90]. Importantly,
these EV-derived genetic molecules were selectively sorted into EVs and as such could be used for
diagnostics, such as cancer markers, or as potential treatment targets [90–94]. In addition to carrying
the information from secreting cells, EV mRNAs and miRNAs can also function to promote biological
processes, including proliferation, angiogenesis and apoptosis [86,92,95,96]. Interestingly, there is
evidence showing that EV mRNAs were horizontally transferred to recipient cells and are able to be
translated into proteins [3,95,96]. Additionally, the proteins translated from transferred EV mRNAs
have been shown to activate PI3K/AKT signalling pathways in recipient endothelial cells [96] and
accelerate morphological and functional recovery in rat liver [95]. While these studies provide some
evidence for the role of EV mRNAs and miRNAs in the regulation of biological processes, it is clear that
further studies are required to more fully understand the functional consequences of EV genetic cargo.

5. The Role of EVs in Cutaneous Wound Healing

Wound healing is an essential process that enables the restoration of the structure and function
of damaged or injured tissues. For most tissues, the process requires multiple cell types from
several distinct lineages where each responds to and generates a range of signals at different
times [97]. The wound healing process involves a series of overlapping phases including: haemostasis;
inflammation; migration; and tissue remodelling [16]. During these phases, a series of precise biological
events occur including: rapid vascular spasms, platelet plug formation and coagulation (collectively
known as haemostasis); inflammation; cell migration into the wound site; cell proliferation and
differentiation to form granulation tissue; angiogenesis; and extracellular-matrix reorganisation [97].
Evidence for the involvement of EVs in wound healing has been described for coagulation, cell
proliferation, cell migration and angiogenesis and summarised in Table 1 [17–19,21].

5.1. Coagulation

The blood coagulation cascade is complex and regulated by a range of factors such as calcium ions,
PS and TF in addition to many others. TF is an initiator of coagulation activation that was found to be
present on the plasma membrane of EVs, including microvesicles and exosomes, which were derived
from various cell types such as human monocytes/macrophages [55] human platelets [98]; and EVs
isolated from human saliva [99]. Indeed, monocyte-derived microvesicles enriched with TF and PSDL-1
were found to bind, fuse and transfer their content to collagen-activated platelets [55]. The result of this
TF transfer from microvesicles to the platelets enabled TF to become “decrypted”/activated, and thus
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initiate the extrinsic coagulation cascade leading to conversion of prothrombin to thrombin and fibrin
clot formation [55]. Furthermore, in an in vitro study, salivary EVs that contain TF in association with
coagulation factor VII significantly reduced the clotting time of human wound blood (Figure 6) [99].
Similarly, EVs carrying TF from pericardial blood of cardiac surgery patients induced coagulation
in vitro and stimulated thrombogenicity in rats [98]. Conversely, EVs from the venous blood of healthy
individuals also carrying TF did not reduce clotting time [98]. This may be due to soluble inhibitors
including Tissue Factor Pathway Inhibitor (TFPI) or conformational regulation of TF in plasma that
impedes the binding of coagulation factor VII and inhibits its activity [55].

5.2. Cell Proliferation

Cell proliferation, a pivotal cellular process underpinning wound healing, has been shown to
be regulated by EVs derived from a plethora of cell types, such as human mesenchymal stem cells
(MSCs) [21,100,101], fibroblasts [18], murine embryonic stem cells [102], and human endothelial
progenitor cells [103]. The regulation of cell proliferation by EVs occurred through the binding to
or internalisation of EVs into recipient cells and delivery of EV content such as RNAs [104,105].
For instance, the internalisation of EVs into fibroblasts greatly enhanced the cell proliferation due
to the activation of the Akt and Erk1/2 effector pathway by EVs [18,21,100,106,107]. Additionally,
embryonic stem cell-derived EVs may facilitate fibroblast proliferation, possibly through the activation
of the mitogen-activated protein kinase (MAPK) pathway [102]. Importantly, these aforementioned
activated pathways induce the expression of a number of genes involved in cell cycle progression
such as c-myc, cyclin A1 and cyclin D2 which then support cell proliferation [21,106]. Furthermore,
activation of these pathways also promoted the production of growth factors, including insulin-like
growth factor-1 (IGF-1), stromal-derived growth factor-1 (SDF-1) and cytokine interleukin-6 (IL-6),
VEGF-α and transforming growth factor beta (TGF-β) [18,21,101,102]. Thus, it seems clear that EVs can
promote cell proliferation by activation of signalling pathways not only directly involved in stimulation
of cell cycle but also involved in the regulation of growth factor expression. Additionally, this growth
factor expression can act in a paracrine or autocrine fashion to further stimulate cell growth responses.

5.3. Migration

Following clotting, immune cells including neutrophils and macrophages are recruited to remove
necrotic tissues, debris, and bacteria from the wound site. Within hours after injury, other cells
including epithelial cells and fibroblasts migrate into the wound site to perform specific tasks, such as
induction of growth factor secretion, the synthesis of extracellular matrix, angiogenesis and stimulation
of wound closure [97]. Preliminary studies have been conducted investigating the involvement of EVs
in the migration of various cells associated with cutaneous repair, such as human and murine epithelial
cells [108], bovine endothelial cells [109], human MSCs [100], human keratinocytes and fibroblasts
in vitro [110].

Evidently, keratinocyte migration has been shown to be influenced by EVs released from various
cell types; however, different results were observed depending on the specific biomolecules carried
by the EVs [110,111]. For example, CoCl2-treated tumour cell-derived exosomes which contained
C4.4A (Ly6/PLAUR domain-containing protein 3), α6β4 integrin and MMP-14 inhibited keratinocyte
migration through degradation of laminin 332 resulting in delayed wound closure [111]. Conversely,
keratinocyte derived exosomes with heat-shock protein (HSP) 90α cargo significantly enhanced the
migration of primary human keratinocytes in a wound scratch model [110]. Additionally, the migration
of endothelial cells, which are crucial for vascular repair and regeneration, has also been shown to
be influenced by EVs released from cells such as human keratinocytes [108], human MSCs [112,113];
and bovine endothelial cells [109]. However, the mechanisms that facilitate EV mediated endothelial
migration are unclear.

In a wound healing context, fibroblasts are known to release growth factors which induce other
cells to proliferate and migrate, and also produce collagen (COL) that provides structure to the
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wound [16,114]. Interestingly, EVs have been shown to regulate the migration of fibroblasts towards
wound sites [104,105,110]. Cheng et al. showed that TGFα stimulates HSP90α secretion from human
keratinocytes via the exosome pathway [110]. Most exosomes contain some member of the heat-shock
protein (HSP) family, such as HSP70 and HSP90 [39,76,115]. This protein family supports the folding
of nascent peptides; prevents the aggregation of proteins; assists with the transportation of other
proteins across cell membranes [116], and can induce cell motility [115,117]. Interestingly, human
keratinocyte conditioned media containing exosomes with HSP90α cargo was found to stimulate
the rapid migration of dermal fibroblasts [110]. HSP90α is comprised of four domains, including an
N-terminal domain, a charged sequence connected to the N-terminal domain, a middle domain and
a C-terminal domain [118]. It is thought that HSP90α may promote cell migration through binding
interactions with the cell surface receptor LRP-1/CD91 [110,117]. Furthermore, in corroboration with
cell migration enhancement, EVs released from mesenchymal stem cells and keratinocytes were also
shown to promote the expression of important genes such as TGF-β, transforming growth factor beta
receptor II, COL I, COL III, N-cadherin, cyclin-1, MMP-1, MMP-3 and IL-6 in fibroblasts [104,105].
These genes are involved in the Erk1/2 signalling pathway, which has roles in both cell proliferation
and migration.

5.4. Angiogenesis

New blood vessel formation is critical for wound healing in order to supply nutrients and oxygen
to newly formed tissues. The formation of new blood vessels requires the proliferation of endothelial
cells, as well as the interaction between endothelial cells, angiogenic factors (such as VEGF and
fibroblast growth factor) and surrounding ECM proteins [119]. Under chemotaxis, endothelial cells
penetrate the underlying vascular basement membrane, invade ECM stroma and form tube-like
structures that continue to extend, branch, and create networks [119,120]. Interestingly, all three
populations of EVs (apoptotic bodies, microvesicles and exosomes) contribute to the regulation of vessel
formation by enhancing the expression of pro-angiogenic factors [21,92,102,103,106,107,109,112,120,121].
For example, exosomes released from human embryonic MSCs [92,113] and human endothelial
cells [103,106] enhanced angiogenesis by promoting endothelial cell proliferation and migration
towards the wound site. Furthermore, a large number of blood vessels were observed in
exosome-treated sites compared to control treatment [106,107,112].

Interestingly, various critical pro-angiogenic genes, including IL-6, IL-8, angiopoietin-1, E-selectin,
and fibroblast growth factor 2, which activate the Erk1/2 signalling pathway, were up-regulated
after platelet-rich plasma and endothelial progenitor cell-derived exosome stimulation [106,122].
Additionally, the downstream target of the Erk1/2 signalling pathway such as inhibitor of DNA binding
1, cyclooxygenase 1, VEGFA, VEGFR-2, c-Myc and cyclin-D1, were also increased after treatment
with exosomes [106,122,123]. This provides further evidence that exosomes enhance endothelial cell
function through activation of the Erk1/2 signalling pathway (Figure 7) [106]. In contrast, microvesicles
from multiple cellular sources inhibited tube-like structure formation of microvascular endothelial
cells via CD36 on the treated cell membrane, while exosome derived from the same cell source
as the microvesicles did not have the same inhibitory activity [124]. Taken together, the previous
studies imply that EVs could potentially be used in vascular regenerative medicine. Moreover, the EV
bioactivities may depend on EV types and the physiological conditions of administered cells However,
further research is required to investigate which specific EV derived biomolecules are responsible for
the stimulation of angiogenesis.

5.5. Collagen Production and ECM Remodelling

Successful wound healing requires the contribution of many cellular events and biological
processes in addition to coagulation, cell proliferation, cell migration and angiogenesis. Besides the
involvement of EVs in the above events, EVs have also been shown to regulate ECM remodelling
which is the last phase of wound healing. For example, EVs have been shown to stimulate an increase
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in elastin secretion, which is a structural protein of the ECM [102,112]. Furthermore, when wound sites
are treated with MSC-derived exosomes, an increase of COL I and III were observed in the early stage
of wound healing [105,112,125]. However, in the late stage of wound healing, exosomes may inhibit
collagen expression [105]. Interestingly, EVs catalyse the crosslinking of collagen in the ECM via lysyl
oxidase-like 2 (LOXL2), which is located on the exterior of the exosome membrane [126]. In addition,
a study by Huleihel et al. (2016) observed that EVs present within the ECM were closely associated
with the collagen network of the matrix, but these EVs could be separated from the fibre network [127].
This may indicate that EVs attend to the ECM formation and function. Furthermore, EVs have also
been demonstrated to significantly increase the healing rate and reduce scar widths by interaction with
Annexin A1 and formyl peptide receptors in a rat model [107,108,125]. Taken together, these studies
indicate that EVs play a pivotal role in the ECM remodelling phase of wound healing.

Table 1. Summary of research investigating EVs involvement in wound healing.

Events EV Types Parental Cells Target Cells
Secreted
Factors/Factors
Presented in EVs

Molecules/Pathways Activated References

Coagulation

Mv, Ex Saliva/granulocytes,
EPC Blood TF Trigger coagulation by initiating

TF/factor VII [99]

Mv Monocytes Activated
Platelet TF, PSGL-1 [55]

Mv
Plasma/Platelet,
erythrocytes,
granulocytes

Blood TF Promote thrombus formation [98]

Proliferation

Ex MSC FB, EC

Increase expression levels of HGF,
IGF1, NGF, SDF1; increase
re-epithelialisation; reduce scar widths;
promote collagen maturity and the
creation of newly formed vessels;
accelerate maturation of wound sites;
activate Akt, Erk and Stat3 signalling

[21,112]

Ex/nanoparticles * ESC FB
Enhance the expression levels of
mRNA, EVGFα, TGFβ, collagen I,
Ki-67

[102]

Mv, Ex MyoFB FB, EC [18]
Ex KC FB HSP90 Could not promote cell proliferation [110]

Ex Platelet-rich plasma EC VEGF, bFGF,
PDGFBB

Activating Pi3K/Akt and Erk
signalling pathway [107]

Ex EC, EPC EC Activating Erk1/2 signalling pathway [103,106]

Mv Platelet-rich plasma
after exercise HUVEC [128]

Migration

Ex MSC FB, EC
Induction the expression of HGF, IGF1,
NGF, SDF1; activate Akt, Erk and Stat3
signalling

[21,112]

Ex KC KC,
HDMECs HSP90

Hsp90-Ex increased cell migration
without the need to bind any cofactor
or ATP; CD91 is receptor of
extracellular Hsp90; TGFβ could not
inhibit cell migration

[110]

Ex/Ev EC Murine
wound Annexin-I [108]

Ex/nanop-articles * ESC FB Higher expression of mRNA, EVGFα,
TGFβ, collagen I, Ki-67 [102]

Ex Platelet-rich plasma EC VEGF, bFGF,
PDGFBB

Activating Pi3K/Akt and Erk
signalling pathway [107]

Ex EC, EPC EC Activating Erk1/2 signalling pathway [103,106]
Ex hUSC HUVEC [121]

Ev Multiple cellular
sources EC CD63 [124]
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Table 1. Cont.

Events EV Types Parental Cells Target Cells
Secreted
Factors/Factors
Presented in EVs

Molecules/Pathways Activated References

Angiogenesis

Ex MSC FB, EC

Induction the expression of HGF, IGF1,
NGF, SDF1; promote the creation and
maturation of newly formed vessels,
increase re-epithelialisation, reduce
scar widths

[21,112]

Ex/nanop-articles* ESC FB
Enhance the expression levels of
mRNA, EVGFα, TGFβ, collagen I,
Ki-67

[102]

Mv, Ex MyoFB Fb, EC VEGF, FGF2 Increase angiogenesis [18]

Ex Platelet-rich plasma EC VEGF, bFGF,
PDGFBB

Activating Pi3K/Akt and Erk
signalling pathway [107]

Ex EC EC Activating Erk1/2 signalling pathway [103,106]

Ex MSC EC EMMPRIN, VEGF,
MMP9 ERK/Akt pathway [123]

Ex MSC EC miR-125a Direct target DLL4 [92]
Ex hUSC HUVEC [121]
Ex Epithelium cells EC VEGFR [129]

Ev Multiple cellular
sources EC CD63 [124]

Mv Platelet-rich plasma
after exercise HUVEC [128]

Collagen
production
and ECM
remodelling

Ex MSC FB TF Increase reepithelialisation, reduce scar
widths, promote collagen maturity and
maturation of wound sites

[112]

Ex MSCs, FB FB Increase collagen production [105,125]
Ex Hypoxic EC ECM LOXL2 ECM remodelling [126]

FB: Fibroblasts, KC: Keratinocytes, MSCs: Mesenchymal stem cells, EC: Endothelial cells, ESC: Embryonic stem cells,
EPC: Epithelial cells, hUSC: Human urine derived stem cells, HUVUEC: Human umbilical vein endothelial cells,
Mv: Microvesicle(s), Ex: Exosome(s), EMMPRIN: Extracellular matrix metalloproteinase inducer, (*) nanoparticles
mimicking. Exosome were extracted from living cells.

Int. J. Mol. Sci. 2017, 18, 956 12 of 20 

 

Ex EC, EPC EC  
Activating Erk1/2 signalling 
pathway

[103,106] 

Ex hUSC HUVEC   [121] 

Ev 
Multiple cellular 
sources 

EC CD63  [124] 

Angiogenesis 

Ex MSC FB, EC  

Induction the expression of 
HGF, IGF1, NGF, SDF1; 
promote the creation and 
maturation of newly formed 
vessels, increase 
re-epithelialisation, reduce 
scar widths 

[21,112] 

Ex/nanop-articles* ESC FB  
Enhance the expression 
levels of mRNA, EVGFα, 
TGFβ, collagen I, Ki-67 

[102] 

Mv, Ex MyoFB Fb, EC VEGF, FGF2 Increase angiogenesis [18] 

Ex Platelet-rich plasma EC 
VEGF, bFGF, 
PDGFBB 

Activating Pi3K/Akt and Erk 
signalling pathway 

[107] 

Ex EC EC  
Activating Erk1/2 signalling 
pathway

[103,106] 

Ex MSC EC 
EMMPRIN, 
VEGF, MMP9 

ERK/Akt pathway [123] 

Ex MSC EC miR-125a Direct target DLL4 [92] 

Ex hUSC HUVEC   [121] 

Ex Epithelium cells EC VEGFR  [129] 

Ev 
Multiple cellular 
sources 

EC CD63  [124] 

Mv 
Platelet-rich plasma 
after exercise 

HUVEC   [128] 

Collagen 
production 
and ECM 
remodelling 

Ex MSC FB TF Increase reepithelialisation, 
reduce scar widths, promote 

collagen maturity and 
maturation of wound sites 

[112] 

Ex MSCs, FB FB  Increase collagen production [105,125] 

Ex Hypoxic EC ECM LOXL2 ECM remodelling [126] 

FB: Fibroblasts, KC: Keratinocytes, MSCs: Mesenchymal stem cells, EC: Endothelial cells, ESC: 
Embryonic stem cells, EPC: Epithelial cells, hUSC: Human urine derived stem cells, HUVUEC: 
Human umbilical vein endothelial cells, Mv: Microvesicle(s), Ex: Exosome(s), EMMPRIN:  
Extracellular matrix metalloproteinase inducer, (*) nanoparticles mimicking. Exosome were 
extracted from living cells. 

 
Figure 6. Promotion of coagulation by TF-barring microvesicle treatment. Rapid coagulation is 
triggered by the initiating TF/Factor VII and promotion of fibrin strand formation [98,99]. Figure 6. Promotion of coagulation by TF-barring microvesicle treatment. Rapid coagulation is

triggered by the initiating TF/Factor VII and promotion of fibrin strand formation [98,99].Int. J. Mol. Sci. 2017, 18, 956 13 of 20 

 

 

Figure 7. Promotion of angiogenesis by MSC-derived exosomes. Exosomes released from human 
MSCs can induce expression of genes and activate PI3K/Akt and Erk1/2 signalling pathways in 
endothelial cells leading to promotion tube formation and newly formed vessels. 

6. Conclusions 

In the past, EVs were disregarded simply as cellular debris. However, current research has 
demonstrated that EVs contain bioactive molecules and are able to deliver these to recipient cells via 
newly described cell-to-cell communication mechanisms. In wound healing, EVs were initially 
shown to regulate inflammation, proliferation, migration, angiogenesis, collagen production and 
ECM remodelling. Such regulation could be mediated through the enhancement of gene expression, 
suppression of gene translation, and/or activation of signalling pathways important for wound 
healing processes. However, the current level of knowledge regarding how the EV molecular cargo 
regulates the process of wound healing remains unclear. Therefore, more research is required to 
clarify the regulation of EVs during the wound healing process, and to translate these results to the 
clinic. 

Acknowledgement: The authors would like to acknowledge the support of the Australian Government’s 
Cooperative Research Centre Programme. 

Author Contributions: All authors contributed significantly to the study. Uyen Thi Trang Than did the search 
and extracted the information. Uyen Thi Trang Than, Tony Parker, David Leavesley and Dominic Guanzon 
drafted the manuscript. All authors contributed to interpretation of data and critically reviewed the manuscript 
for important intellectual content. 

Conflicts of Interest: The authors declare no conflict of interest. 

Abbreviations 

ARF6 ADP-ribosylation factor 6 
COL Collagen 
DNA Deoxyribonucleic acid 
EC(s) Endothelial cell(s) 
ECM Extracellular matrix 
EMMPRIN Extracellular matrix metalloproteinase inducer 
EPC(s) Epithelial cell(s) 
ESC(s) Embryonic stem cell(s) 
ESCRT Endosomal sorting complex required for transport 
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6. Conclusions

In the past, EVs were disregarded simply as cellular debris. However, current research has
demonstrated that EVs contain bioactive molecules and are able to deliver these to recipient cells
via newly described cell-to-cell communication mechanisms. In wound healing, EVs were initially
shown to regulate inflammation, proliferation, migration, angiogenesis, collagen production and
ECM remodelling. Such regulation could be mediated through the enhancement of gene expression,
suppression of gene translation, and/or activation of signalling pathways important for wound healing
processes. However, the current level of knowledge regarding how the EV molecular cargo regulates
the process of wound healing remains unclear. Therefore, more research is required to clarify the
regulation of EVs during the wound healing process, and to translate these results to the clinic.
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EV(s) Extracellular membrane vesicle(s)/extracellular vesicle(s)
Ex Exosome(s)
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