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Abstract—Massive multiple input multiple output is a promis-
ing technology to keep up with the explosive demand of wireless
data traffic. The benefits of having a large number of antennas,
however, depend on the availability of channel state information
(CSI), especially at the transmitter. In frequency division duplex
systems, this CSI has to be sent back via the uplink channel,
hence incurring a large overhead and degrading the spectral
efficiency. Mobility of the users and the large number of antennas
exacerbate the problem with frequent tracking of the many time-
varying CSI coefficients. This paper presents one approach to
address this issue. By tracking only the principal components
of the channel gain, and exploiting the wide-sense stationarity
of the channel, the amount of required feedback can be reduced
significantly. Simulation study shows that the proposed technique
is able to achieve high sum-rate with good tracking capability
using only limited feedback.

I. INTRODUCTION

The exponential growth of wireless data traffic and the
limited available spectrum have made resource-efficient trans-
mission strategy critical in future wireless systems. Multiple
Input Multiple Output (MIMO) is a technique to increase the
spectral efficiency, and recently, the idea of deploying very
large number of antennas (massive MIMO) has attracted a lot
of attention, both in the academia [1]-[2] and industry [3].
Advantages of massive MIMO include the channel hardening
phenomena [4], where the channel between users are asymp-
totically orthogonal, hence eliminating the interference. Other
advantages such as increased capacity [5] and better energy
efficiency [6] have also been reported. Despite all the benefits
of massive MIMO, as with other multi-antenna systems, their
performance depends largely on the Channel State Information
(CSI) availability, especially at the transmitter. There has been
a lot of research on how to obtain this using only limited
feedback (e.g. [7]-[8] and reference therein). For massive
MIMO, however, the problem is more severe, and earlier
methods for conventional MIMO systems cannot be directly
applied due to the large dimension of the CSI. Furthermore,
in a mobile multiuser environment, the time variation requires
frequent channel tracking for each user at the base station,
making it impractical for massive MIMO implementation.

In Time Division Duplex (TDD) systems, channel reci-
procity can be used to alleviate this problem. In Frequency
Division Duplex (FDD) systems however, this is not the case,
the uplink and downlink CSI may be statistically independent
of each other when the two bands are separated wider than the
coherence bandwidth. This paper focuses on this FDD scenario

with mobile multiuser setting. Particularly, we develop a
technique to track channel variation of multiple mobile users,
while keeping the amount of feedback low.

The proposed scheme combines three strategies. Firstly,
the scheme tracks only its principal components instead of
tracking the actual channel vector. This idea of using a sparse
representation of the channel vector has been considered
before in the context of feedback reduction in massive MIMO
[9]. Here, we extend its application for channel tracking.

Secondly, in order to perform Principal Component Analysis
(PCA), the knowledge of channel spatial correlation matrix is
needed. Due to the large number of elements, it is impractical
for the receiver to feedback this information. To address this
issue, we exploit the propagation property of the channel.
Namely, for Wide-Sense-Stationary and Uncorrelated Scatter-
ing (WSSUS) channels, with the same dominant scatterers in
both uplink and downlink such that the Angle of Arrival (AoA)
and Angle of Departure (AoD) at and from the base station are
similar, the spatial correlation matrix is frequency independent
[10]. As such, the correlation matrix can be estimated in the
uplink channel using subspace learning techniques.

Lastly, we consider using a perturbation based channel
tracking. This idea is motivated by [11], whereby several
perturbation vectors (each occupying orthogonal downlink re-
sources) are added to the current tracking vector. The receiver
can then feedback only the index of the most favorable vector.

Simulation study shows that under typical 3rd Generation
Partnership Project (3GPP) Long Term Evolution (LTE) pa-
rameters, our proposed scheme is able to achieve approxi-
mately 8 to 10 b/s/Hz sum-rate improvement compared to the
case without channel tracking. Moreover, the proposed user
scheduling scheme is shown to prevent sum-rate saturation at
high Signal to Noise Ratio (SNR) as experienced by the round
robin scheme due to better interference management. All these
are achieved using only limited amount of feedback bits.

The remaining part of this paper is organized as follows.
Section II describes the system model used throughout the
analysis. The detailed description on the proposed scheme is
given in Section III, followed by simulation study in Section
IV. Finally, Section V ends this paper with conclusions.

II. SYSTEM MODEL

A cellular system with one Base Station (BS) equipped
with M >> 1 antennas communicating simultaneously with



K single-antenna1 Mobile Stations (MS) is considered. The
downlink transmission uses Orthogonal Frequency Division
Multiple Access (OFDMA), whereby different user groups
are allocated orthogonal resource blocks. The number of MS
in each group and the scheduling process will be explained
later. The uplink transmission, on the other hand, uses Single
Carrier Frequency Division Multiple Access (SC-FDMA), and
each user is assigned a non-overlapping subcarrier block. This
combination of downlink OFDMA and uplink SC-FDMA has
been used in the 3GPP LTE standard [12].

Denoting the set of subcarriers allocated for downlink and
uplink as FD and FU , respectively (with FD ∩ FU = ∅), the
discrete time signal models at the MS and BS corresponding
to user index k at its allocated subcarrier n (n ∈ FD for
downlink and n ∈ F (k)

U ⊂ FU for uplink) and time slot t are

y
(MS)
k [n, t] = hHk [n, t]x(BS)[n, t] + zk[n, t], n ∈ FD, (1)

y(BS)[n, t] = gk[n, t]x
(MS)
k [n, t] + z[n, t], n ∈ F (k)

U .(2)

We will drop the subcarrier index n and time index t whenever
the indexing is either irrelevant or it is clear from the context
to simplify the notation. The M × 1 column vector hk and
gk are the downlink and uplink channel gains between the BS
and the kth MS, respectively. The x

(MS)
k is the transmitted

uplink symbol from the kth MS, and the x(BS) is the downlink
transmitted symbol vector from the BS which is given by

x(BS)[n, t] =
∑

k∈Bn,t

vk[n, t]sk[n, t]. (3)

We have used the notation Bn,t for the set of MS indexes that
belong to the same user group assigned to subcarrier n during
time slot t. vk[n, t] and sk[n, t] are the beamforming vector
and the information symbol for the kth MS, respectively.

In massive MIMO, as the antennas are placed close to one
another, the channel gains tend to be correlated. Following the
WSSUS property (frequency independent spatial correlation)
and the channel reciprocity on each subcarrier, the spatial
correlation matrix of MS k’s channel can be calculated as

E
[
hk[n, t]h

H
k [n, t]

]
=E

[
gk[n, t]g

H
k [n, t]

]
=Rk(t), ∀{n, t}. (4)

While it is reasonable to assume that the channel gain in
the uplink and downlink on each subcarrier are conjugate to
each other, we only require statistical reciprocity, which is
less stringent and can be justified by the fact that the channel
propagation path in the uplink and downlink directions are
likely to go through the same set of dominant scatterers, hence
the AoA and AoD (for up and downlink) at the BS are similar.
For the temporal correlation, the channel of each user k is
modeled by a block fading Gauss-Markov process with time
correlation parameter τk∈ [0, 1] and coherence period NcTs as

hk[n, t+NcTs] = τk hk[n, t] +
√
1− τ2k δk[n, t], (5)

where δk[n, t] contains independent and identically distributed

1The proposed scheme works for arbitrary number of MS antennas,
although only single antenna is considered here for simplicity of exposition.

(i.i.d.) elements according to a complex normal distribution
CN (0,Rk), and it is uncorrelated with hk[n, t]. The coefficient
τk depends on the Doppler frequency fd,k (which in turn
depends on the mobility speed of kth MS) and coherence
interval NcTs according to Jake’s model [13] as follows

τk = J0 (2πfd,kNcTs) , (6)

where J0(·) is the zero order Bessel function of the first kind.

III. PROPOSED SCHEME

At every scheduling interval, the BS makes use of the
estimated correlation matrix Rk to perform user scheduling.
The idea is to group the users whose Rk dominant eigenspaces
are most mutually orthogonal. Each group is then assigned to
a disjoint set of subcarriers. Let Rk be decomposed into

Rk = UkλkUH
k ,

where λk = diag
[
{λk,i}rank{Rk}

i=1

]
is the diagonal eigenvalues

of Rk arranged in a decreasing order. Any channel realization
hk can then be expressed as

hk = R½
k h̃k = Ukλ

½
k h̃k =

∑
i

uk,iλ½
k,ih̃k,i, (7)

where uk,i and h̃k,i denote the ith column of Uk and the ith

element of h̃k, respectively. Here, h̃k is distributed according
to CN (0, I). Using the Dk-dominant eigenvectors to construct
the beamforming vector

vk = [uk,1, · · · , uk,Dk
][wk,1, · · · , wk,Dk

]T ,

� Ukwk

where wk is the Dk × 1 dimensional steering vector with unit
norm ‖wk‖2 = 1, the BS transmit vector and kth MS received
signal are given by

x(BS) =
∑

k∈Bn,t

vksk =
∑

k∈Bn,t

Ukwksk, (8)

y
(MS)
k = hHk x

(BS) + zk (9)

=[λ½
k,1h̃

H
k,1, · · · , λ½

k,Dk
h̃H
k,Dk

]︸ ︷︷ ︸
�(λ½

kh̃k)
H

wksk +
∑

k′∈Bn,t,k′ �=k

hHk Uk′wk′sk′+zk.

In the above, the first term is the desired signal, while the
second term is the interference. It is assumed that the transmit
power are distributed equally to all users, i.e., E[|sk|2] =
P/K, ∀k. The motivation to choose the user group with the
most orthogonal Rk eigenspaces is to limit the interference, as
in this case hHk Uk′ will be small for k �= k′. The maximum
transmission rate, which is defined by the mutual information
between y

(MS)
k and sk is given by

rk ≤ I(y(MS)
k ; sk)

= log2

⎛
⎜⎝1+

|h̃Hk λ½
kwk|2∑

k′∈Bn,t,k′ �=k

|hHk Uk′wk′ |2 + N0K
P

⎞
⎟⎠.(10)



The above maximum rate is achieved by using independent
Gaussian signaling on each user.

In order to implement the above scheme, we need to over-
come several challenges, e.g., obtaining the correlation matrix
Rk information at the transmitter to perform the PCA, user
scheduling and dominant subspace dimension Dk selection,
tracking the variation of the principal channel coefficients over
time, etc. The following three subsections address each of
these issues separately.

A. Spatial Correlation Matrix Estimation

In order to estimate the spatial correlation matrix Rk, we
dedicate some of the uplink resources for this purpose. Since in
SC-FDMA the uplink channel of different users occupy non-
overlapping carriers, there is no inter-user interference within
the cell, hence we will focus the discussion only on user k.

Denoting the time-frequency slots dedicated for correlation
training of user k as Pk ⊂

(
F (k)

U , {t−NpTs, · · · , t− Ts}
)

,

and setting2 x
(MS)
k [n, t] = 1, ∀(n, t) ∈ Pk, equation (2) gives

y(BS)[n, t] = gk[n, t] + z[n, t], (n, t) ∈ Pk. (11)

Since the spatial correlation is a second order statistics which
changes slowly, we can allocate a larger time scale than the
coherence period (Np > Nc) for Pk, as Rk is relatively
constant during this period. The problem is now to determine
Rk defined in (4) from the noisy observations in (11). The
simplest way to do this is to use the sample covariance as

R̂k =
1

|Pk|
∑

(n,t)∈Pk

y(BS)[n, t] (y(BS)[n, t])H − N0I,

where | · | denotes the cardinality of the set. Although con-
venient and it provides an unbiased estimate of Rk, there are
several problems associated with the above approach. The first
is the high computational complexity and memory requirement
to derive from Rk the eigenvalues and the eigenvectors, due
to its large dimension. The second problem lies with the well-
known over dispersion in the sample covariance, whereby
the obtained eigenvalues tend to be larger than that of the
actual population covariance. These problems are well known
in the field of subspace learning for pattern recognition, data
mining, as well as machine learning. Several approaches such
as shrinkage estimation [14], spectral regression [15], and
Nyström method [16] have been proposed to deal with these
issues. In this paper, we adopt the Nyström method due to its
low complexity and desirable shrinkage property. The main
idea is to approximate R̂k as

R̂k,NY S =

[
R̂k,11 R̂k,12

R̂
H

k,12 R̂
H

k,12R̂
−1

k,11R̂k,12

]
, (12)

which is a low-rank approximation of the sample covariance

R̂k =

[
R̂k,11 R̂k,12

R̂
H

k,12 R̂k,22

]
. (13)

2Setting the pilot symbols as 1 is sufficient in this case as there is no
inter-user interference in the uplink SC-FDMA within the cell.

In the above, R̂k,11 is the d × d sub-matrix of R̂k, where
d is chosen to approximate the rank of Rk. The complexity
of calculating the eigenvectors and the corresponding non-
zero eigenvalues using Nyström method is O(M2), which is
smaller than O(M3) using the sample covariance [16].

Denoting all the observations in (11) available for this
estimation as Y(k) =

[
y(BS)[Pk]

]
, which is an M × |Pk|-

dimensional matrix, the algorithm using Nyström approach is
described as follows.

Algorithm 1 Spatial Correlation Estimation for User k

INPUT: Y(k), N0, and d≈ rank{Rk} from the earlier estimate.

OUTPUT: Eigenmatrix Ûk and eigenvalues λ̂
½
k of R̂k,NY S .

1: Randomly select d indexes S ⊂ {1, · · · ,M}, and denote
its complement by S .

2: Denote the row sub-matrices A = Y(k)S,: and B = Y(k)S,:
.

3: Perform the thin Singular Value Decomposition (SVD) on
A as A = UADAVH

A .

4: Construct the M × d matrix W =

⎡
⎣ 1√

|Pk|
UADA

1√
|Pk|

BVA

⎤
⎦.

5: Perform the thin SVD on W as W = UWDWVH
W

6: Obtain the results Ûk = UW and λ̂
½
k = DW −√

N0I.

The above algorithm uses random uniform selection of
subset S, which is shown to perform well in [16]. Since Rk

is likely to be low rank, the parameter d and therefore the
complexity of Algorithm 1 can be kept low.

B. Channel Dimension Reduction and User Scheduling

Considering that the antennas are placed close to one
another in massive MIMO, the channel gain tends to be
correlated. As a result, the spatial correlation matrix Rk will
have low rank. Therefore, following the PCA decomposition
in (7), and the fact that the eigenvalues λk are concentrated
on its first few diagonal elements, only some elements of h̃k is
sufficient to describe the channel, hence reducing the effective
channel dimension.

Using only Dk elements to describe hk as Ukλ
½
k h̃k, the

Mean Square Error (MSE) due to this approximation is

E[|hk − Ukλ
½
k h̃k|2] =

⎧⎨
⎩
0, when Dk ≥ rank{Rk},∑
i>Dk

λk,i, otherwise. (14)

While larger Dk is able to represent hk accurately, smaller
Dk is desirable for better tracking and multiuser scheduling
performance. In this work, Dk is chosen based on the tolerable
normalized MSE level μ, according to

Dk = min ν, s.t.
∑
j>ν

λk,j < μ
∑
i

λk,i, (15)

and the choice of μ is subject to optimization.
As far as the user scheduling is concerned, the optimal

solution requires prohibitive complexity [5], hence we resort
to propose a greedy method as described in Algorithm 2.



Algorithm 2 Greedy User Scheduling

INPUT: Current estimates of Uk, λk, and h̃k; Dk, FD.
OUTPUT: Bn,t, ∀n ∈ FD and wk, ∀k.

1: Initialize: K={1..K}, Bn,t=∅ for n∈FD, wk=
λ½

kh̃k
‖λ½

k
h̃k‖

.

2: while K �= ∅ do
3: For each n ∈ FD, search for the best user j∗n as follows

j∗n = arg
j∈K

maxΔRn(j),

where:
ΔRn(j) �

∑
k∈{Bn,t,j}

log2(1+
|h̃Hk λ½

kwk|2
∑

k′∈{Bn,t,j},k′ �=k

|h̃Hk λ½
kUkUk′wk′ |2+N0K

P

)−
∑

k∈Bn,t

log2(1 +
|h̃Hk λ½

kwk|2
∑

k′∈Bn,t,k
′ �=k

|h̃Hk λ½
kUkUk′wk′ |2+N0K

P

).

4: Find the best subcarrier n∗ with the largest rate increase
n∗ = arg

n∈FD

maxΔRn(j
∗
n).

5: Update: Bn∗,t = Bn∗,t ∪ {j∗n∗}, K = K\{j∗n∗}.
6: end while

The estimate of h̃k above is initially set to any arbitrary
value, and subsequently updated by the channel tracking
algorithm described in the next subsection, via the relation

wk=
λ½

k h̃k
‖λ½

k h̃k‖
. Compared to the approach in [5] which is based

on user clustering, each step of the iteration in our greedy
algorithm searches for the best user and subcarrier pair that
directly maximizes the sum-rate. So far, we only consider
conjugate beamforming for the steering vectors wk, which is
optimal when only one user is allocated on each subcarrier.
Furthermore, the sum-rate is calculated under the assumption
that the receivers treat interference as noise. By allowing
general steering vectors and more sophisticated multiuser
decoding at the receivers, the overall sum-rate can be increased
further, but this consideration is outside the scope of this work.

C. Principal Channel Coefficient Tracking

In order to perform beamforming, the knowledge of the
actual channel realization is needed. Therefore, we still need
to track the variation of the reduced-dimension channel vectors
h̃k over time, and adapt the steering vector wk accordingly.

In the absence of interference, the sum-rate maximizing
beamforming design problem can be formulated as

max
{wk}K

k=1

∑
k

log2

(
1 +

P

N0K

∣∣∣h̃Hk λ½
kwk

∣∣∣2) (16)

s.t. ‖wk‖2 = 1, ∀k,
the solution of which is given by the conjugate beamforming,

which corresponds to a steering vector of wk =
λ½

kh̃k
‖λ½

kh̃k‖
. This

choice maximizes the desired signal power. In the presence of
interference (for the case when more than one user is allocated
to the same time-frequency slot), maximizing the desired
signal power is not necessarily the best option, even though it
often gives good result, especially when the interference link
gain is small. Here, we propose to use a probing signal and
simple energy comparator at the MS for channel tracking.

At the BS, Q probing vectors {pi}Qi=1 are generated ran-

domly. The size Q is selected based on the amount of feedback
(log2 Q bits) available. The BS then allocates Q downlink time
slots for user k to transmit the pilot symbols (sk = 1) using the
perturbed beamforming weight vk = Uk

wk+pi
|wk+pi| , ∀1 ≤ i ≤ Q,

where wk is the current steering vector obtained in the previous
tracking period. The MS will then measure the received energy
on these Q training slots, and select the one with the largest
energy. Given that all other terms are fixed, it is apparent from
the received signal y(MS)

k in (9) that this amounts to finding

i∗k = arg
1≤ik≤Q

max

∣∣∣∣h̃Hk λ½
k

wk + pik
|wk + pik |

∣∣∣∣2 , (17)

and the best perturbation vector is the one that produces the

steering vector
wk+pi∗

k

|wk+pi∗
k
| closest to the λ½

k h̃k
‖λ½

k h̃k‖
. This optimal

index i∗k will then be modulated and sent back to the BS
via feedback link (assumed to be error free for simplicity),

and the BS updates w∗
k =

wk+pi∗
k

|wk+pi∗
k
| accordingly. Using this

approach, channel tracking is achieved without the actual
channel estimation at either BS or MS. Furthermore, only
energy comparator and index selection is needed at the MS,
resulting in low implementation complexity.

Compared to the scheme in [11], the tracking in our
approach is performed on the steering vector wk ∈ CDk rather
than the beamforming vector vk ∈ C

M itself. This significantly
reduces the dimension of the perturbation vector, which im-
proves the tracking performance and makes it applicable for
massive MIMO. Moreover, as the perturbation does not change
the subspace spanned by the beamforming vector, we do not
need to apply Gram-Schmidt orthonormalization process as in
[11], hence reducing the overall complexity. In summary, the
tracking algorithm is described as follows.

Algorithm 3 Channel Tracking for User k
INPUT: Q, Dk, and wk from the earlier tracking period.
OUTPUT: New steering vector w′

k.

1: for each tracking period do
2: BS generates Q random perturbation vectors {pi}Qi=1,

each having dimension Dk × 1 according to CN (0, I).
3: BS allocates Q downlink training slots and transmits the

perturbed beamforming pilot Uk
wk+pi
|wk+pi| on each slot.

4: At the MS k, measure the received signal power at the
Q training slots |y(MS)

k |2, and find the largest one as
i∗k = arg

1≤ik≤Q
max |y(MS)

k |2.

5: MS k sends the i∗k information back to BS via feedback
channel.

6: BS updates the new steering vector as w′
k =

wk+pi∗
k

|wk+pi∗
k
| .

7: end for

During the initial period when no prior estimate of wk is
available, such as the case where the user has just joined the
network, an initial value of wk = 1√

Dk
1 can be used.

Note: Since the received signal energy is used as the
criteria for selecting the best perturbation vector, the probing
on those subcarriers where more than one users are served



simultaneously (where |βn,t| > 1) should be done sequentially
on each of its members. As far as the tracking period is
concerned, a good choice is to set it proportional to the channel
coherence period. In the highly mobile scenario where the
channel varies very rapidly, a limiting choice of Q = 2 shall
be used. In this case, only one bit feedback per user is needed
at the expense of tracking performance. Therefore, there is an
interrelation between the feedback size, tracking performance,
training overhead, and Doppler spread of the channel, which
are subject to further investigation.

In summary, the proposed transmission strategy can be
described as follows

1) BS collects the noisy observations on the uplink time-
frequency slots Pk for k ∈ {1, · · · ,K}. This update is
performed on a long timescale of Np symbol periods.

2) BS estimates the eigenmatrix Uk and the corresponding
eigenvalues λk of the spatial correlation matrix for
all users using Algorithm 1, and utilize them for user
scheduling and beamforming.

3) For each scheduling interval, BS allocates resources ac-
cording to Algorithm 2, and transmits using the current
estimate of Uk, λk, and wk. At the same time, some
time-frequency slots are dedicated for tracking purposes,
where BS sends randomly perturbed vector

wk+pik
|wk+pik |

.

4) Each MS receives the intended messages on its allocated
time-frequency resources, and also checks the received
signal energy on the dedicated time-frequency slots. By
feeding back the best index to the BS, the steering vector
wk can be updated following Algorithm 3.

IV. SIMULATION RESULTS

To demonstrate the performance of the proposed scheme,
we consider a cellular system with one base station at the
center of the cell of radius 1 Km, equipped with M = 100
antennas arranged into a Uniform Linear Array (ULA) with
half a wavelength antenna separation, serving K = 20 users
simultaneously. The users are placed uniformly within the cell
coverage area, and they are traveling on a straight line at 60
Km/hr, which is a typical vehicular mobility speed. Each user
independently chooses the traveling direction at random, and
their movements are confined within the cell coverage area.

The transmit spatial correlation is assumed to follow one
ring model with scatterer radius of r = 10 meters, such that
the correlation coefficient between two antenna elements at
location (x1, y1) and (x2, y2) with respect to a user located at
azimuth angle θ and distance s from the BS (having an angle
spread of Δ ≈ arctan(r/s)) is given by [17]

1

2Δ

∫ Δ

−Δ

e−j 2π
λ ((x2−x1) cos(θ+α)+(y2−y1) sin(θ+α))dα. (18)

The other simulation parameters are chosen following the
3GPP LTE specifications as follows. We consider 2.6 GHz
carrier frequency with 5 MHz downlink bandwidth. The FFT
size is set to 512 with 301 usable subcarriers (including one
DC component), which are arranged into 25 resource blocks.

TABLE I
SIMULATION PARAMETERS

Coverage model 1 km-radius circular area
Tx/Rx antennas 100 Tx ULA/1 Rx antenna
Number of users 20 uniformly distributed

Delay profile 5-taps doubly exponential
FFT size 512 subcarriers

Correlation model One-ring model
Bandwidth 5 MHz

Normalized MSE threshold μ = 0.15
Feedback bits 8 bits

Resource allocation to the users is done in terms of resource
blocks, each of which spans 12 subcarriers over one subframe
(spanning 14 OFDM symbols). In LTE, the Control Channel
Element (CCE) limits the total number of users that can be
scheduled on each subframe. In the ideal case, for 5 MHz
bandwidth there can be up to 20 users, each allocated to
different resource blocks (each user can have more than one
resource blocks allocated). However, higher code rate is often
required for encoding the CCE in order to protect it against
channel impairments, hence reducing the total number of si-
multaneously supported user. In our proposed scheme, instead
of exclusively assigning each resource block to a particular
user, we allow multiple users to share the same group of
resource blocks. Furthermore, instead of performing the user
scheduling on a subcarrier basis, Algorithm 2 performs the
allocation based on the groups of resource blocks, which is
taken to be 10 in this simulation.

To model the frequency correlation, we use 5-taps doubly
exponential power delay profile with exponentially distributed
delay and power decay such as that used in [18]. For the time
correlation, the coherence time is chosen to be equal to the
subframe duration (Nc = 14), which is approximately 1 msec.
For 60 Km/hr mobile speed with 2.6 GHz carrier frequency,
this corresponds to a temporal correlation coefficient of 0.83
between subsequent resource blocks. For simplicity, the user
scheduling is performed on every 20 subframes, although any
scheduling period (e.g. 1 subframe in typical LTE systems)
can be used. The update to the estimated spatial correlation
matrix Rk is performed every Np = 300 subframes. This
choice can be justified since the location displacement for a
mobile traveling at 60 Km/hr over 300 msec is only 5 meters,
which is sufficiently small for the correlation matrix Rk to
experience only minor variation. The simulation parameters
are summarized in Table I. In order to evaluate the average
performance, 50, 000 OFDM symbols are transmitted to all
K users according to the proposed scheduling algorithm. The
available feedback bits for channel tracking is set to 8 bits.
System sum rate is used as the performance metric, and the
accuracy of spatial correlation estimation, the effectiveness of
user scheduling, as well as the channel tracking are analyzed.

Figure 1 shows the comparison between the average system
sum rate achieved with channel tracking enabled and without
channel tracking. It is apparent that the perturbation-based
channel tracking as described in Algorithm 3 is able to achieve



0 5 10 15 20
20

30

40

50

60

70

80

90

SNR (dB)

A
ve

ra
ge

 S
um

 R
at

e 
(i

n 
b/

s/
H

z)

M = 100 antennas, K = 20 users

 

 

Estimated spatial correlation information R
k

Perfect spatial correlation information R
k

Without channel tracking

With perturbation−based
channel tracking

Fig. 1. Channel tracking and correlation estimation performance

significant improvement (approximately 8 to 10 b/s/Hz in total
sum-rate). Figure 1 also shows the small gap between the
average sum rate achieved assuming perfect knowledge of
spatial correlation matrix Rk and the average sum rate when
the correlation matrix has to be estimated from the noisy
observation. The small gap between these two shows that the
proposed spatial correlation estimation using Nyström method
as described in Algorithm 1 is able to get a good estimate
of Rk. This is achieved despite the significant complexity
reduction compared to the sample covariance approach

Figure 2 shows the performance of the greedy scheduling
algorithm. Without scheduling, the users are allocated a group
of resource blocks in a round-robin manner. As such, the per-
formance is interference limited, especially when the channels
of the users sharing the same group of resource blocks spans
similar subspace. This causes the average sum-rate to saturate
in high SNR. With greedy scheduling, each user is allocated a
group of resource block as long as the interference it introduce
is minimal. Implicitly, this scheme allocates resource block to
a group of users only when their channels are as mutually
orthogonal as possible. Therefore, the saturation effect in high
SNR can be avoided.

V. CONCLUSIONS

A transmission strategy for Massive MIMO downlink FDD
systems in mobile multiusers environment is proposed. The
scheme reduces the dimensionality of the channel by con-
sidering only its principal components, and the perturbation
based tracking is used to track its variation. By exploiting the
WSSUS property of the channel, low complexity algorithm to
estimate the eigenmatrix and the eigenvalues of the channel
statistics, which are necessary for the PCA, is used. Simu-
lation results show that significant sum-rate improvement is
achieved by the tracking mechanism, and that good scheduling
performance is able to avoid the sum-rate saturation at high
SNR. Future works include consideration of a more sophisti-
cated beamforming design and the corresponding scheduling
strategy, together with the trade-off analysis of the feedback
reduction and system performance. Optimization of the MSE
threshold and the design of structured perturbation vectors are
also to be further analyzed.
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