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Abstract

In this paper, we extend unconstrained model predictive control (MPC) from setpoint stabilization to dynamic reference
tracking for continuous-time nonlinear systems. In particular, we focus on the case when the reference cannot be perfectly
tracked by the system due to dynamics and/or constraints. Under the incremental stabilizability assumption and an additional
dissipativity assumption, the practical stability of tracking the unknown optimal reachable reference trajectory is proved even
though the controller does not know such a reference explicitly.
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1 Introduction

Model Predictive Control (MPC) has become one of the
most popular control technologies in industry due to
its capability to explicitly optimize performance index
while satisfying state and input constraints. It solves a
sequence of finite horizon optimal control problems and
is implemented in a receding horizon manner to approx-
imate an infinite horizon optimization, which is usually
intractable.

In the past decades, setpoint stabilization of MPC has
been studied extensively. The stability is ensured by
properly designing terminal conditions (terminal sets
and terminal costs) or adopting a sufficiently long pre-
diction horizon without terminal conditions. For the first
type, we refer [1] for the discrete-time case and [2] for
the continuous-time case. For the second type, results
on discrete-time systems can be found in [3], [4] and
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continuous-time cases are studied in [5].

A natural generalization of setpoint stabilization is ref-
erence tracking, which aims to drive the state or output
of a system to follow a desired dynamic trajectory, and
its application can be found in batch processes [6], mo-
bile robots [7] and so on. Consequently, in recent years,
reference tracking MPC were also studied. In [8], two
robust MPC schemes have been designed for unicycle
robots subject to bounded disturbances to track a (vir-
tual) leader robot’s trajectory, which is assumed to be
reachable. The first tube based approach is an extension
of the one proposed in [9]. It combines the open loop
optimal control input with a linear feedback law based
on the deviation of the actual state from the nominal
one to force the state to evolve in a tube around the
predicted trajectory. The second MPC extends the re-
sult in [10], which uses the robustness constraint to force
the tracking error to decay at certain rate. A more com-
plicated situation in reference tracking is that the de-
sired trajectory may not be reachable by the system due
to constraints and/or dynamics. One direct approach
to overcome this issue is to calculate an optimal reach-
able trajectory offline, then the system aims to track the
reachable one instead of the original unreachable one.
A more interesting way is to integrate the offline path
planning into the online control phase, i.e., the controller
can drive the state or output of the system to the op-
timal reachable trajectory without computing it offline.
In [11], the reference could be an arbitrary periodic tra-
jectory and a single layer MPC unifying dynamic trajec-
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tory planning and tracking is proposed for discrete-time
linear systems. Another single layer MPC is proposed in
[12] for a discrete-time nonlinear system to track an ar-
bitrary piece-wise constant reference. Both works share
the same methodology, which introduces a virtual refer-
ence being optimized online and drives the system state
and/or output to the virtual one.

All of the aforementioned works rely on properly de-
signed terminal sets and terminal costs around the (vir-
tual) reference signal. In [13], MPC without terminal
conditions for setpoint stabilization has been extend to
reference tracking of discrete-time nonlinear systems.
For reachable cases, a lower bound of the prediction hori-
zon is derived to ensure that the tracking error goes to
zero. For unreachable cases, techniques from economic
MPC (EMPC) is used to ensure practical stability of
tracking the optimal reachable reference.

To the best of our knowledge, MPC without terminal
conditions for reference tracking of continuous-time sys-
tems has not been studied yet. Note that many applica-
tions involve continuous-time models. In this paper, we
extend the technique of EMPC without terminal condi-
tions used in [14] and [13] to continuous-time systems
and show the practical stability of the tracking error.
In particular, we show that how the prediction horizon
is related to the sampling time interval and provide a
theoretical lower bound of the prediction horizon which
ensures the practical stability. Compared with existing
tracking MPC using reference-dependent terminal sets
and/or terminal costs, the proposed approach does not
require complex offline design and is more flexible when
reference changes online.

The rest of this paper is organized as follows: In Section
2 we introduce an MPC tracking scheme and local incre-
mental stabilizablity condition. In Section 3, the case of
unreachable reference is studied and the practical sta-
bility of tracking the unknown optimal reachable trajec-
tory is proved. In Section 4, the results are illustrated
by a few numerical examples. Finally, some conclusions
are drawn in Section 5.

Some remarks on notations are introduced as follows.
We use R to denote the set of real numbers. Rn, Rm×n
and N denote n-dimensional Euclidean space, m × n-
dimensional Euclidean space and the set of natural num-
bers, respectively. For a matrix A ∈ Rm×n, AT denotes
its transpose. For a vector x ∈ Rn, ‖x‖ and ‖x‖Q de-
note its 2-norm and Q-norm, i.e., ‖x‖2Q = xTQx, where
Q is a positive definite matrix. For a real symmetric ma-
trix Q, its largest and smallest eigenvalues are denoted
as λmax(Q) and λmin(Q), respectively. K denotes the
set of functions α(·) : [0,∞) → [0,∞), which are con-
tinuous, strictly increasing and satisfying α(0) = 0. By
K∞ we denote the set of functions α(·) belonging to K
and satisfying limr→∞ α(r) = ∞. L denotes functions
β : [0,∞) → [0,∞), which are continuous and decreas-
ing with limr→∞ β(r) = 0.

2 Problem Formulation and Preliminaries

We consider the following nonlinear continuous-time sys-
tem

ẋ(t) = f(x(t), u(t)), t ≥ 0, (1)

where x(t) ∈ X ⊂ Rn is the system state, u(t) ∈ U ⊂ Rm
is the control input, Z , X× U is compact.

Given a reference signal (xr(t), ur(t)), the tracking error
is defined as

l(x(t), u(t), t) = ‖x(t)− xr(t)‖2Q + ‖u(t)− ur(t)‖2R, (2)

where Q = QT ∈ Rn×n is positive definite and R =
RT ∈ Rm×m is semi-positive definite. If the reference
control input is available, R can be chosen as a positive
definite matrix. R can also be set as 0 if ur is not avail-
able or ‖u(t) − ur(t)‖ is not considered as part of the
performance index.

When the given reference is reachable, the setpoint sta-
bilization [5] can be extended by incorporating the local
controllability condition. In this paper, we mainly focus
on a more difficult case when (xr, ur) is not reachable
due to the constraints and system dynamics, i.e., (xr, ur)
cannot be perfectly tracked by the system. In this case,
the control objective is to drive system (1) to a reachable
trajectory that optimizes some cost while satisfying the
constraint (x(t), u(t)) ∈ Z, t ≥ 0.

We propose the following MPC scheme to achieve our
goal. Given a sampling interval δ > 0, denote the sam-
pling time instant tk , kδ, ∀k ∈ N. At each sampling
time instant tk, the following open-loop constrained op-
timal control problem is solved:

Problem 1

min JT (x(tk), tk, u(·|tk)) =

∫ tk+T

tk

l(x(s|tk), u(s|tk), s)ds

(3)

subject to

ẋ(t|tk)=f(x(t|tk), u(t|tk)),

(u(t|tk), x(t|tk))∈Z, t ∈ [tk, tk + T ],

x(tk|tk)=x(tk),

where T > δ is the prediction horizon.

Denote the optimal solution of the above problem
as x∗(t|tk) and u∗(t|tk), t ∈ [tk, tk + T ]. The op-

timal value function is defined as VT (x(tk), tk) ,
JT (x(tk), tk, u

∗(·|tk)). Then the control law is given by

uMPC(t) = u∗(t|tk), t ∈ [tk, tk + δ).

Compared with most existing tracking MPC, we do not
use terminal cost function and terminal constraint in the
proposed optimization problem. In what follows, we are
going to derive a few sufficient conditions on the system
dynamics, reference trajectory, prediction horizon T and
sampling interval δ under which the control goal can be
achieved.

Assumption 2.1 We assume that for a given T > 0, the
infimun of Problem 1 is attained and the corresponding
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stage cost l(x∗(s|tk), u∗(s|tk), s) is piecewise continuous.

We introduce the following local incremental stabiliz-
ability, which is a continuous-time version of the one in-
troduced in [13]. A more general definition of incremen-
tal stability for continuous-time systems can be found in
[15].

Assumption 2.2 There exist a continuous control law
κ : X × Z → Rm, an ε-Lyapunov function Vε : X ×
X → R≥0, which is continuous in the first argument
and satisfies Vε(z, z) = 0 for all z ∈ X, and positive
constants cε,l, cε,u, εloc, kmax, ρ, such that for all initial
condition (x(0), z(0)) ∈ X×X with Vε(x(0), z(0)) ≤ εloc
the following properties hold:

cε,l‖x− z‖2≤Vε(x, z) ≤ cε,u‖x− z‖2, (4)

‖κ(x, z, v)− v‖≤kmax‖x− z‖, (5)

Vε(x(t), z(t))≤e−ρ(t−s)Vε(x(s), z(s)), 0 ≤ s ≤ t (6)

(z, v)∈Z,
with

ẋ = f(x, κ(x, z, v)), ż = f(z, v).

Remark 2.1 Assumption 2.2 means that (z, v) can be
perfectly tracked by using controller κ(x, z, v) when x is
sufficiently close to z. More specifically, it requires that
κ(x, z, v) can cancel out v when x is sufficiently close to
z. Sufficient conditions under which v can be canceled
out are given as follows:

Assume that system dynamics f is twice differentiable
and the first-order Taylor-approximation of f around any
point r = (z, v) ∈ Z can be written as

f(z + ∆x, v + ∆u)=f(z, v)

+Ar∆x+Br∆u+ φr(∆x,∆u),

where Ar = ∂f
∂x |(z,v), Br = ∂f

∂u |(z,v) and ‖φr(∆x,∆u)‖ ≤
M(‖∆x‖2 + ‖∆u‖2).

If for any point r = (z, v) ∈ Z, there exist a matrix
Kr ∈ Rm×n, a positive constant α and positive definite
matrices Pr, Qr ∈ Rn×n continuous in r such that

(Ar +BrKr + αI)TPr + Pr(Ar+BrKr+αI)

+Ṗr +Qr = 0,

then Assumption 2.2 can be satisfied by choosing u =
v +Kr(x− z) and Vε(x, z) = ‖x− z‖2Pr .

A similar result can be found in [2] for setpoint stabiliza-
tion problems. The difference is that the conditions in [2]
are time invariant while for tracking cases, the linearized
dynamics Ar, Br, the local feedback gain Kr and so on
are dependent on the reference trajectory.

3 Practical Reference Tracking with Economic
MPC

In order to formulate the problem properly, we focus on
reference with period Tp, i.e., (xr(t), ur(t)) = (xr(t +
Tp), ur(t+Tp)). We introduce the following optimization
problem:

Problem 2

min
x(0),u(·)

∫ Tp

0

(‖x(t)− xr(t)‖2Q + ‖u(t)− ur(t)‖2R)dt

subject to

ẋ(t)=f(x(t), u(t)),

x(0)=x(Tp),

(x(t), u(t))∈Z,
t∈[0, Tp].

Denote the optimal state and control trajectory of
the above problem as (xp(t), up(t)), the optimal value
as VTp,min, cx,sup = supt∈[0,Tp] ‖xp(t) − xr(t)‖ and

cc,sup = supt∈[0,Tp] ‖up(t) − ur(t)‖. Note that if the

given reference trajectory (xr(t), ur(t)) is reachable,
(xp(t), up(t)) = (xr(t), ur(t)), i.e., (xr(t), ur(t)) can be
perfectly tracked. Otherwise, (xp(t), up(t)) is a trajec-
tory different from (xr(t), ur(t)) but can be tracked by
the system.

Now we make a stabilizability assumption with respect
to (xp(t), up(t)).

Assumption 3.1 The optimal reachable reference tra-
jectory (xp, up) is such that Vε(x, xp) ≤ εp,ref implies

x ∈ X, κ(x, xp, up) ∈ U
with Vε and κ from Assumption 2.2 and εp,ref > 0. There
exists a function αV ∈ K such that Vε(x, xp) ≤ εp,ref and
Vε(y, xp) ≤ εp,ref implies that

|Vε(x, xp)− Vε(y, xp)| ≤ αV (‖x− xp‖+ ‖y − xp‖).
Denote ep = x − xp. We borrow the following dissipa-
tivity assumption from [16].

Assumption 3.2 There exists a storage function λ :
R× Rn → R such that

λ(t+ δ, x(t+ δ))− λ(t, x(t))

≤
∫ t+δ

t

(s(τ, x(τ), u(τ))− αl(‖x(τ)− xp(τ)‖))dτ,

for all t ≥ 0, δ > 0, with αl(·) being a class-K∞ function
and s(t, x(t), u(t)) = l(x(t), u(t), t) − l(xp(t), up(t), t).
Furthermore, λ(t, x(t)) is uniformly bounded by

|λ(t, x(t))| ≤ γλ(‖ep(t)‖), γλ ∈ K.
Remark 3.1 To explicitly construct a time-varying
storage function λ(t, x) for general nonlinear systems
with respect to arbitrary reference trajectory (xr, ur) is
difficult. Even for discrete-time setpoint stabilization,
there is no systematic way to construct λ in general [17].
However, the existence of such a storage function can be
shown by using local controllability assumption [18] and
the definition of uniform suboptimal operation in [17].
The proof of Theorem 4 in [17] can be extended to the
continuous-time tracking case directly and it is omitted
here for conciseness.

We define the rotated MPC problem as follows:

min J̃T (x(tk), tk, u(·|tk))

=

∫ tk+T

tk

(l(x(s|tk), u(s|tk), s)− l(xp(s), up(s), s))ds

−(λ(tk + T, x(tk + T |tk))− λ(tk, x(tk))) (7)

subject to

ẋ(t|tk)=f(x(t|tk), u(t|tk)),
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(u(t|tk), x(t|tk))∈Z, t ∈ [tk, tk + T ],

x(tk|tk)=x(tk),

t∈[tk, tk + T ],

Denote the optimal state and control trajectory as
(x̃∗(s|tk), ũ∗(s|tk)), s ∈ [tk, tk + T ] and the correspond-

ing optimal value function as ṼT (x(tk), tk). We assume

that Ṽ∞(x(t), t) <∞ holds for all x(t) ∈ X and t ≥ 0.

Since for a given prediction horizon T and time instant

tk,
∫ tk+T
tk

l(xp(s), up(s), s)ds is a constant, we denote

cT (tk) =
∫ tk+T
tk

l(xp(s), up(s), s)ds. Consequently, we

have

J̃T (x(tk), tk, u(·|tk))=JT (x(tk), tk, u(·|tk))− cT (tk)

+λ(tk, x(tk))−λ(tk+T, x(tk+T |tk)).

Proposition 3.1 Let Assumptions 2.2, 3.1, and 3.2 be
satisfied. Then there exist positive constants cp, γ, c̃max

and a function αu ∈ K such that for all ‖ep(tk)‖ ≤ cp,
and all T > 0, the following bounds hold

VT (x(tk), tk)≤γλmax(Q)‖ep(tk)‖2 + cT (tk) + c̃max‖ep(tk)‖
ṼT (x(tk), tk)≤αu(‖ep(tk)‖).

PROOF. Let εp = min{εloc, εp,ref} and cp =
√

δp
cε,u

.

Then we have

Vε(x(tk), xp(tk)) ≤ cε,u‖ep(tk)‖2 ≤ εp.
Consider the candidate control and state trajectory
given by

ū(t|tk)=κ(x̄(t|tk), xp(t), up(t)),
˙̄x(t|tk)=f(x̄(t|tk), ū(t|tk)),

x̄(tk|tk)=x(tk), t ≥ tk,
ēp(t|tk)=x̄(t|tk)− xp(t).
By (6), we have

Vε(x̄(t|tk), xp(t))≤e−ρ(t−tk)Vε(x̄(tk), xp(tk)) ≤ εp,ref.
According to Assumption 3.1, we have x̄(t|tk) ∈ X and
ū(t|tk) ∈ U. Therefore, the candidate trajectory is feasi-
ble. The stage cost l(x̄(s|tk), ū(s|tk), s) can be bounded
as

l(x̄(s|tk), ū(s|tk), s)

=‖x̄(s|tk)− xr(s)‖2Q + ‖ū(s|tk)− ur(s)‖2R
≤‖x̄(s|tk)−xp(s)‖2Q+‖up(s)−ur(s)‖2R+‖xp(s)−xr(s)‖2Q

+2λmax(Q)‖x̄(s|tk)− xp(s)‖‖xp(s)− xr(s)‖
+k2maxλmax(R)‖x̄(s|tk)− xp(s)‖2

+2λmax(R)‖ū(s|tk)− up(s)‖‖up(s)− ur(s)‖

≤(1 +
k2maxλmax(R)

λmin(Q)
)‖ē(s|tk)‖2Q

+2(λmax(Q)cx,sup + λmax(R)cu,supkmax)‖ē(s|tk)‖
+‖xp(s)− xr(s)‖2Q + ‖up(s)− ur(s)‖2R.

By some simple calculations, we have∫ tk+T

tk

(1 +
k2maxλmax(R)

λmin(Q)
)‖ē(s|tk)‖2Qds

≤C
ρ
‖ep(tk)‖2Q ≤ γ‖ep(tk)‖2,

where C =
λmax(Q)cε,u
λmin(Q)cε,l

(1 +
λmax(R)k2max

λmin(Q) ) and γ = C
ρ .

(4) and (6) imply that
√
cε,l‖x̄(s|tk)− xp(s)‖≤V 1/2

ε (x̄(s|tk), xp(s))

≤√cε,u‖x̄(s|tk)− xp(s)‖,
and

dV
1/2
ε (x̄(s|tk), xp(s))

ds
≤ −ρ

2
V 1/2
ε (x̄(s|tk), xp(s)),

which results in

‖ē(s|tk)‖ ≤
√
cε,u
cε,l

e−
1
2ρ(s−tk)‖ep(tk)‖,

leading to∫ tk+T

tk

2(λmax(Q)cx,sup+λmax(R)cu,supkmax)‖ē(s|tk)‖ds

≤ c̃max‖ep(tk)‖,
where c̃max = 4

ρ (λmax(Q)cx,sup+λmax(R)cu,supkmax)
√

cε,u
cε,l

.

Finally, note that∫ tk+T

tk

‖xp(s)− xr(s)‖2Q + ‖up(s)− ur(s)‖2Rds = cT (tk).

The first inequality is proved.

For the rotated cost, we have

J̃(x(tk), tk, ū(·|tk))

≤ γ‖ep(tk)‖2Q + c̃max‖ep(tk)‖+ λ(tk, x(tk))

−λ(tk + T, x̄(tk + T |tk))

≤ γ‖ep(tk)‖2Q + c̃max‖ep(tk)‖+ γλ(‖ep(tk)‖)
+γλ(‖ep(tk + T |tk)‖)
≤ γ‖ep(tk)‖2Q + c̃max‖ep(tk)‖+ γλ(‖ep(tk)‖)

+γλ(

√
cε,u
cε,l

e−
1
2ρT ‖ep(tk)‖)

≤ γλmax(Q)‖ep(tk)‖2 + c̃max‖ep(tk)‖+ γλ(‖ep(tk)‖)

+γλ(

√
cε,u
cε,l
‖ep(tk)‖)

:=αu(‖ep(tk)‖).

Lemma 3.1 Let Assumption 2.2, 3.1 and 3.2 hold.
There exist functions σ, σ̃ ∈ L, such that the following
turnpike property holds for all positive T̃ , T with T̃ ≤ T
and all ‖ep(tk)‖ ≤ cp with cp defined in Proposition 3.1:

1) There exist time intervals over [tk, tk + T ] with total

length of at least T̃ and over which

‖e∗p(s|tk)‖ ≤ σ(T − T̃ ).

2) There exist time intervals over [tk, tk + T ] with total
length of at least T ′ and over which

‖e∗p(s|tk)‖ ≤ σ̃(T − T ′), ‖ẽ∗p(s|tk)‖ ≤ σ̃(T − T ′)
hold simultaneously. The corresponding rotated open-
loop costs from tk to s satisfy

J̃s−tk(x(tk), tk, u
∗(·|tk))− J̃s−tk(x(tk), tk, ũ

∗(·|tk))
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≤2γλ(σ̃(T − T ′)) + αV (2σ̃(T − T ′)).

PROOF. 1) We first bound the rotated cost of the op-
timal solution to (3) as follows:

J̃T (x(tk), tk, u
∗(·|tk))

=VT (x(tk), tk)− cT (tk) + λ(tk, x(tk))

−λ(tk + T, x∗(tk + T |tk))

≤γλmax(Q)‖ep(tk)‖2 + c̃max‖ep(tk)‖
+γλ(‖ep(tk)‖) + γλ(‖e∗p(tk + T |tk)‖)
≤αu(‖ep(tk)‖) + C ≤ αu(cp) + C, (8)

where C = supx1,x2∈X γλ(‖x1 − x2‖). Therefore, by the

optimality of ṼT (x(tk), tk), we have

ṼT (x(tk), tk) ≤ J̃T (x(tk), tk, u
∗(·|tk))

≤αu(‖ep(tk)‖) + C ≤ αu(cp) + C.

Define

σ(T − T̃ ) = α−1l (
αu(cp) + C

T − T̃
).

Suppose that the total length of the time intervals over
which ‖e∗p(s|tk)‖ > σ(T − T̃ ) is longer than T − T̃ . By
Assumption 3.2, we know that for any interval [a, b] ⊂
[tk, tk + T ], we have∫ b

a

(l(x(s|tk), u(s|tk), s)− l(xp(s), up(s), s))ds

−(λ(b, x(b|tk))− λ(a, x(a)))

≥
∫ b

a

αl(‖x(s|tk)− xp(s)‖)ds ≥ 0.

Therefore, if we denote the union of all the time intervals
over which ‖e∗p(s|tk)‖ > σ(T−T̃ ) as T , we can write that

J̃T (x(tk), tk, u
∗(·|tk)) ≥

∫
T
αl(‖x∗(s|tk)− xp(s)‖)ds

> αu(cp) + C,

which contradicts (8). Thus, the total length of the time

intervals over which ‖e∗p(s|tk)‖ ≤ σ(T − T̃ ) is at least T̃ .

2) Similarly, the total length of the time intervals over

which ‖ẽ∗p(s|tk)‖ ≤ σ(T − T̃ ) is also at least T̃ . So, for

any given T0 <
1
2T , ‖e∗p(s|tk)‖ > σ(T0) for time intervals

with total length at most T0 and ‖ẽ∗p(s|tk)‖ > σ(T0) for
time intervals with total length at most T0. Then, the
total length of the time intervals over which

‖e∗p(s|tk)‖ ≤ σ̃(T − T ′), ‖ẽ∗p(s|tk)‖ ≤ σ̃(T − T ′)
hold simultaneously is at least T ′ = T − 2T0, where

σ̃(T − T ′) = α−1l (2
αu(cp) + C

T − T ′
).

Denote the set of time instants over which ‖e∗p(s|tk)‖ ≤
σ̃(T − T ′) and ‖ẽ∗p(s|tk)‖ ≤ σ̃(T − T ′) hold simultane-
ously as T ′ and pick arbitrary time instant s in T ′. We
have

J̃s−tk(x(tk), tk, u
∗(·|tk))

=VT (x(tk), tk) + λ(tk, x(tk))− λ(s, x∗(s|tk))

−cs−tk(tk)− VT−s+tk(x∗(s|tk), s)

≤Js−tk(x(tk), tk, ũ
∗(·|tk)) + λ(tk, x(tk))− λ(s, x∗(s|tk))

−cs−tk(tk) + VT−s+tk(x̃∗(s|tk), s)− VT−s+tk(x∗(s|tk), s)

=J̃s−tk(x(tk), tk, ũ
∗(·|tk))− λ(s, x∗(s|tk)) + λ(s, x̃∗(s|tk))

+VT−s+tk(x̃∗(s|tk), s)− VT−s+tk(x∗(s|tk), s)

≤J̃s−tk(x(tk), tk, ũ
∗(·|tk)) + 2γλ(σ̃(T − T ′))

+αV (2σ̃(T − T ′)).

Lemma 3.2 Let Assumption 3.2 hold. For any Ṽmax >
0, there exists a function σ̃Ṽmax

∈ L such that for any

x(tk) with ṼT (x(tk), tk) ≤ Ṽmax and any positive T ′, T
with T ′ < T , the total length of time intervals over which

‖e∗p(s|tk)‖ ≤ σ̃Ṽmax
(T − T ′), ‖ẽ∗p(s|tk)‖ ≤ σ̃Ṽmax

(T − T ′)
hold simultaneously is at least T ′. The corresponding
open-loop costs satisfy

J̃s−tk(x(tk), tk, u
∗(·|tk))− J̃s−tk(x(tk), tk, ũ

∗(·|tk))

≤2γλ(σ̃Ṽmax
(T − T ′)) + αV (2σ̃Ṽmax

(T − T ′)).

PROOF. For the rotated optimal value function
ṼT (x(tk), tk) we have

ṼT (x(tk), tk)=JT (x(tk), tk, ũ
∗(·|tk))− cT (tk)

+λ(tk, x(tk))− λ(tk + T, x̃∗(tk + T |tk)).

Then J̃T (x(tk), tk, u
∗(·|tk)) can be bounded as follows:

J̃T (x(tk), tk, u
∗(·|tk))

=VT (x(tk), tk)− cT (tk) + λ(tk, x(tk))

−λ(tk + T, x∗(tk + T |tk))

≤JT (x(tk), tk, ũ
∗(·|tk))− cT (tk) + λ(tk, x(tk))

−λ(tk + T, x∗(tk + T |tk))

=ṼT (x(tk), tk) + λ(tk + T, x̃∗(tk + T |tk))

−λ(tk + T, x∗(tk + T |tk))

≤Ṽmax + 2C,

where C is defined in (8). The rest of the proof follows
the same line of the proof of Lemma 3.1 with

σ̃Ṽmax
(T − T ′) = α−1l (2

Ṽmax + 2C

T − T ′
).

Assumption 3.3 For any given positive constant δ ≤
T , there exists a function αδ ∈ K satisfying that∫ tk+δ

tk

αl(‖x(s|tk)− xp(s)‖)ds≥αδ(‖ep(tk)‖),

for all feasible x(s|tk), s ∈ [tk, tk + T ], where αδ1(r) ≥
αδ2(r), if δ1 ≥ δ2.
Remark 3.2 Assumption 3.3 requires that the optimal
cost be lower bounded by a K function of the initial error
state. Construction of such a lower bound for polynomial
systems using convex optimization can be found in [19]
and for piecewise linear systems can be found in [20].

We introduce the set Sδcp = {(x, t)|ṼT (x, t) ≤ αδ(cp)}.
Theorem 3.1 Let Assumptions 2.2, 3.1, 3.2 and 3.3
hold. Then there exist T̃0 and a function θ̃ ∈ L, such
that for all T > T̃0 and all initial conditions satisfying
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(x(0), 0) ∈ Sδcp , Problem 1 is recursively feasible and
the closed-loop system satisfies

αδ(‖ep(tk)‖) ≤ ṼT (x(tk), tk)≤αu(‖ep(tk)‖), (9)

ṼT (x(tk+1), tk+1)− ṼT (x(tk), tk)≤−αδ(‖ep(tk)‖)
+θ̃(T − δ), (10)

(x(tk), tk)∈Sδcp ,
for all k ∈ N.

PROOF. By Assumptions 3.2 and 3.3, we have

ṼT (x(0), 0) ≥
∫ T

0

αl(‖x̃∗(τ |0)− xp(τ)‖)dτ ≥ αδ(‖ep(0)‖).

Since (x(0), 0) ∈ Sδcp , αδ(cp) ≥ ṼT (x(0), 0) leads to that

‖ep(0)‖ ≤ cp. Then the upper bound in (9) follows from
Proposition 3.1.

Now we take T ′ = δ + ξ for arbitrarily small ξ > 0 in
Lemma 3.1, which implies that there exists some time
instant t∗ over (δ, T ] when

‖e∗p(t∗|0)‖≤σ̃(T − T ′),
‖ẽ∗p(t∗|0)‖≤σ̃(T − T ′),
hold simultaneously. Therefore, for T > T1 , σ̃−1(cp) +
T ′, there exists t∗ ∈ (δ, T ] such that ‖e∗p(t∗|0)‖ ≤ cp and
‖ẽ∗p(t∗|0)‖ ≤ cp. A feasible solution for the optimization
problem formulated at time instant δ can be constructed
as

ū(t|δ) =

{
u∗(t|0), δ ≤ t ≤ t∗
κ(x̄(t|δ), xp(t), up(t)), t∗ < t ≤ T + δ

where ˙̄x(t|δ) = f(x̄(t|δ), ū(t|δ)). By the principle of op-
timality

ṼT (x(δ), δ)≤
∫ t∗

δ

(l(x∗(s|δ),u∗(s|δ),s)−l(xp(s),up(s),s))ds

−(λ(t∗, x∗(t∗|0))− λ(δ, x(δ)))

+ṼT+δ−t∗(x
∗(t∗|0), t∗).

Note that∫ t∗

δ

(l(x∗(s|δ), u∗(s|δ), s)− l(xp(s), up(s), s))ds

−(λ(t∗, x∗(t∗|0))− λ(δ, x(δ)))

=−
∫ δ

0

(l(x∗(s|δ), u∗(s|δ), s)− l(xp(s), up(s), s))ds

+λ(δ, x(δ))− λ(0, x(0)) + J̃t∗(x(0), 0, u∗(·|0)),

and∫ δ

0

(l(x∗(s|δ), u∗(s|δ), s)− l(xp(s), up(s), s))ds

−λ(δ, x(δ)) + λ(0, x(0))

≥
∫ δ

0

αl(‖e∗p(s|0)‖)ds ≥ αδ(‖ep(0)‖).

Applying Lemma 3.1 leads to that

ṼT (x(δ), δ)

≤J̃t∗(x(0), 0, u∗(·|0)) + λ(δ, x(δ))− λ(0, x(0))

−
∫ δ

0

(l(x∗(s|δ), u∗(s|δ), s)− l(xp(s), up(s), s))ds

+ṼT+δ−t∗(x
∗(t∗|0), t∗)

≤J̃t∗(x(0), 0, ũ∗(·|0)) + 2γλ(σ̃(T − T ′))
+αV (2σ̃(T − T ′))− l(xp(s), up(s), s))ds

−
∫ δ

0

(l(x∗(s|δ), u∗(s|δ), s)

+λ(δ, x(δ))− λ(0, x(0)) + αu(‖e∗p(t∗|0)‖)
≤ṼT (x(0), 0) + λ(δ, x(δ))− λ(0, x(0)) + θ̃(T − T ′)

−
∫ δ

0

(l(x∗(s|δ), u∗(s|δ), s)− l(xp(s), up(s), s))ds, (11)

≤ṼT (x(0), 0)− αδ(‖ep(0)‖) + θ̃(T − T ′),
where θ̃(T ) = 2γλ(σ̃(T ))+αV (2σ̃(T ))+αu(σ̃(T )). Note
that T ′ = δ + ξ. Therefore,

ṼT (x(δ), δ) ≤ ṼT (x(0), 0)− αδ(‖ep(0)‖) + θ̃(T − δ − ξ)
holds for any ξ > 0. Then by the continuity of θ̃, we have

ṼT (x(δ), δ) ≤ ṼT (x(0), 0)− αδ(‖ep(0)‖) + θ̃(T − δ).

Finally, we need to ensure ṼT (x(δ), δ) ≤ αδ(cp) such that
the proof can be concluded by induction. To this end, we
consider the quantity α−1δ (θ̃(T − δ)) and the following
two cases:

Case 1: ‖ep(0)‖ ≥ α−1δ (θ̃(T − δ)). In this case, we have

ṼT (x(δ), δ)≤ṼT (x(0), 0)− αδ(‖ep(0)‖) + θ̃(T − δ)
≤ṼT (x(0), 0)− θ̃(T − δ) + θ̃(T − δ)
≤αδ(cp).

Case 2: ‖ep(0)‖ < α−1δ (θ̃(T − δ)). In this case, we have

ṼT (x(δ), δ)≤ṼT (x(0), 0)− αδ(‖ep(0)‖) + θ̃(T − δ)
<αu(α−1δ (θ̃(T − δ))) + θ̃(T − δ)
,Θ̃(T − δ).

Therefore, if T > T2 , Θ̃−1(αδ(cp)) + δ, then for both

the cases we have ṼT (x(δ), δ) ≤ αδ(cp). In summary,
we have shown that if Problem 1 is feasible at tk = 0
and (x(0), 0) ∈ Sδcp , then inequalities (9) and (10) are
satisfied. Furthermore,Problem1 is feasible at the next
time instant tk = δ and (x(δ), δ) ∈ Sδcp . Thus, the desired
results can be derived by induction.

Theorem 3.1 ensures practical stability of tracking the
unknown optimal reachable reference trajectory when
the initial condition belongs to a possibly small region of
contraction Sδcp . The next theorem extends the practical
stability result to a larger region of contraction.

Theorem 3.2 Let Assumptions 2.2, 3.1, 3.2 and 3.3
hold. Then for any Ṽmax ≥ αδ(cp) > 0, there exist T̃1 and

a function αu,Ṽmax
∈ K, such that for all T > T̃1 and all

initial conditions satisfying ṼT (x(0), 0) ≤ Ṽmax, Prob-
lem 1 is recursively feasible and the closed-loop system
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satisfies

αδ(‖ep(tk)‖)≤ ṼT (x(tk), tk)≤αu,Ṽmax
(‖ep(tk)‖),(12)

ṼT (x(tk+1), tk+1)− ṼT (x(tk), tk)≤−αδ(‖ep(tk)‖)
+θ̃max(T − δ), (13)

with θ̃max ∈ L. Furthermore, (x(tk), tk) enters Sδcp within
a finite number of steps and stays inside thereafter.

PROOF. For any given β > 0, define

αu,Ṽmax
(r) =

{
max{αu(r), rcp Ṽmax}, if r ≤ cp
max{αu(cp), Ṽmax}+ β(r − cp), else.

Then if ‖ep(0)‖ ≤ cp, by Lemma 3.1 αu,Ṽmax
(‖ep(0)‖) ≥

αu(‖ep(0)‖) ≥ ṼT (x(0), 0). If ‖ep(0)‖ > cp, then

αu,Ṽmax
(‖ep(0)‖) ≥ Ṽmax ≥ ṼT (x(0), 0). Therefore, we

have ṼT (x(0), 0) ≤ αu,Ṽmax
(‖ep(0)‖). The lower bound

holds due to Assumption 3.2 and 3.3.

Consider the quantity c̃p = α−1u (αδ(cp)) ≤ cp and the
following two cases:

Case 1: ‖ep(0)‖ ≤ c̃p ≤ cp. In this case we can apply
Theorem 3.1 to have

ṼT (x(δ), δ)− ṼT (x(0), 0) ≤ −αδ(‖ep(0)‖) + θ̃(T − δ),
and ṼT (x(δ), δ) ≤ Ṽmax for all T > T̃0.

Case 2: ‖ep(0)‖ > c̃p. We take T ′ = δ + ξ for arbitrarily
small ξ > 0 in Lemma 3.2, which implies that there
exists some time instant t∗ ∈ (δ, T ] such that

‖e∗p(t∗|0)‖ ≤ σ̃Ṽmax
(T − T ′), ‖ẽ∗p(t∗|0)‖ ≤ σ̃Ṽmax

(T − T ′)
hold simultaneously. Therefore, for T > T3 , σ̃−1

Ṽmax
(c̃p)+

T ′ we have ‖e∗p(t∗|0)‖ < c̃p and ‖ẽ∗p(t∗|0)‖ < c̃p. Propo-
sition 3.1 ensures that

ṼT+δ−t∗(x
∗(t∗|0), t∗) ≤ αu(‖e∗p(t∗|0)‖).

Similar to Theorem 3.1, a feasible solution for the op-
timization problem formulated at time instant δ can be
constructed as

ū(t|δ) =

{
u∗(t|0), δ ≤ t ≤ t∗
κ(x̄(t|δ), xp(t), up(t)), t∗ < t ≤ T + δ

where ˙̄x(t|δ) = f(x̄(t|δ), ū(t|δ)). Using Lemma 3.2 we
can further derive that

ṼT (x(δ), δ)

≤J̃t∗(x(0),0,u∗(·|0))−αδ(‖ep(0)‖)+ṼT+δ−t∗(x
∗(t∗|0),t∗)

≤J̃t∗(x(0), 0, ũ∗(·|0)) + 2γλ(σ̃Ṽmax
(T − T ′))

+αV (2σ̃Ṽmax
(T − T ′))− αδ(‖ep(0)‖) + αu(‖e∗p(t∗|0)‖)

≤ṼT (x(0), 0)− αδ(‖ep(0)‖) + θ̃Ṽmax
(T − T ′),

where θ̃Ṽmax
(T ) = 2γλ(σ̃Ṽmax

(T )) + αV (2σ̃Ṽmax
(T )) +

αu(σ̃Ṽmax
(T )) = θ̃(σ̃−1(σ̃Ṽmax

(T ))).

For T > T4 , θ̃−1
Ṽmax

(αδ(c̃p)) + T ′, we have

θ̃Ṽmax
(T − T ′) < αδ(c̃p) < αδ(‖ep(0)‖),

and

ṼT (x(δ), δ) ≤ −ξT,T ′ + ṼT (x(0), 0) < Ṽmax, (14)

where ξT,T ′ = αδ(c̃p)− θ̃Ṽmax
(T − T ′) > 0.

Combining Case 1 and 2 leads to that for all T > T̃1 ,
max{T̃0, T3, T4},
ṼT (x(δ), δ)− ṼT (x(0), 0) ≤ −αδ(‖ep(0)‖) + θ̃max(T − T ′),
and ṼT (x(δ), δ) ≤ Ṽmax with θ̃max(T−T ′) = max{θ̃(T−
T ′), θ̃Ṽmax

(T − T ′)}. In summary, we have shown that

if Problem 1 is feasible at tk = 0 and (x(0), 0) ∈
{(x, t)|ṼT (x(t), t) ≤ Ṽmax}, then inequalities (12) and
(13) are satisfied. Furthermore, Problem 1 is feasi-
ble at the next time instant tk = δ and (x(δ), δ) ∈
{(x, t)|ṼT (x(t), t) ≤ Ṽmax}. Thus, recursive feasibility
and inequalities (12) and (13) can be derived by induc-
tion.

(14) leads to that if ‖ep(tk)‖ > c̃p,

ṼT (x(tk+1), tk+1) ≤ −ξT,T ′ + ṼT (x(tk), tk),

implying that ‖ep(tk)‖ should be less or equal to

c̃p within d Ṽmax−αδ(cp)
ξT,T ′

e steps and by Theorem 3.1,

(x(tk), tk) ∈ Sδcp for all tk thereafter.

Theorem 3.3 Let T > T̃1, and Assumptions 2.2, 3.1,
3.2 and 3.3 hold. Then the average performance satisfies
that

lim
K→∞

1

Kδ

∫ Kδ

0

l(x(t), u(t), t)dt ≤
VTp,min

Tp
+
θ̃(T − δ)

δ
,

K ∈ N.

PROOF. We first consider the case when (x(0), 0) ∈
Sδcp . By invoking (11) for states along the trajectory of
the closed-loop at all time instants iδ, i ∈ N we have

ṼT (x(tk+1), tk+1)− ṼT (x(tk), tk)

≤−
∫ tk+1

tk

l(x(s), u(s), s)ds+

∫ tk+1

tk

l(xp(s), up(s), s)ds

+λ(tk+1, x(tk+1))− λ(tk, x(tk))

Summing it from k = 0 to K − 1 results in

ṼT (x(tK), tK)− ṼT (x(0), 0)

≤−
∫ tK

0

l(x(s), u(s), s)ds+

∫ tK

0

l(xp(s), up(s), s)ds

+Kθ̃(T − T ′) + λ(tK , x(tK))− λ(0, x(0)),

leading to

ṼT (x(tK), tK)− ṼT (x(0), 0)

Kδ

≤− 1

Kδ

∫ tK

0

l(x(s), u(s), s)ds+
1

Kδ

∫ tK

0

l(xp(s), up(s), s)ds

+
θ̃(T − T ′)

δ
+
λ(tK , x(tK))− λ(0, x(0))

Kδ
.

Since (x(tk), tk) ∈ Sδcp for all k ∈ N, ṼT (x(tk), tk) and

λ(tk, x(tk)) are finite, we have

lim
K→∞

1

Kδ

∫ Kδ

0

l(x(s), u(s), s)ds
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≤ lim
K→∞

1

Kδ

∫ Kδ

0

l(xp(s), up(s), s)ds+
θ̃(T − T ′)

δ

=
VTp,min

Tp
+
θ̃(T − T ′)

δ
,

for any T ′ > δ. Then by the continuity of θ̃ we can claim
that

lim
K→∞

1

Kδ

∫ Kδ

0

l(x(s), u(s), s)ds ≤
VTp,min

Tp
+
θ̃(T − δ)

δ
.

Now we consider the case when ṼT (x(0), 0) ≤ Ṽmax. In
Theorem 3.2 we have shown that in this case (x(tk), tk)
will enter Sδcp within a finite number of steps. Suppose

that (x(tk), tk) enters Sδcp at k = K∗. Then we have

ṼT (x(tK), tK)− ṼT (x(0), 0)

Kδ

≤− 1

Kδ

∫ tK

0

l(x(s),u(s),s)ds+
1

Kδ

∫ tK

0

l(xp(s),up(s),s)ds

+
K∗θ̃Ṽmax

(T − δ)
Kδ

+
(K −K∗)θ̃(T − δ)

Kδ

+
λ(tK , x(tK))− λ(0, x(0))

Kδ
,

for K > K∗. Taking K →∞ yields the desired result.

Remark 3.3 Theorem 3.3 shows that the difference be-
tween the average tracking error of the closed-loop trajec-
tory and the optimal reachable one is upper bounded by
θ̃(T−δ)

δ . For a fixed sampling period δ, by increasing T ,
the difference decreases, which is consistent with our in-
tuition that longer prediction leads to better closed-loop
performance. On the other hand, by letting δ → 0, we
can consider the set Sδcp = {(x, t)|ṼT (x, t) ≤ αδ(cp)}.
According to Theorems 3.2, (x(tk), tk) will enter Sδcp with
in a finite number of steps and stays inside thereafter.
Note that when δ → 0, the set Sδcp shrinks to the optimal
reachable trajectory itself. Therefore, the average track-
ing performance becomes the same as that of the optimal
reachable trajectory. However, in this case, when δ → 0,
T should go to infinity according to Theorems 3.1 and
3.2.

Remark 3.4 In Theorem 3.3, we can see that when
δ → 0, T has to tend to infinity such that the average
performance is bounded. This is due to the fact that (10)
is not tight. For this inequality, when δ → 0, the left hand
side tends to zero while the right hand side tends to θ̃(T ),
which is a positive constant. One reason is that the ro-
tated cost ṼT is used to show the stability while the con-
trol input applied to the system is derived from the origi-
nal cost VT . Different from setpoint stabilization, the ro-
tated MPC problem is not equivalent to the original one.
As a consequence, an auxiliary trajectory combining so-
lutions from the rotated problem and the original prob-
lem is used for analysis. The use of such a mixed virtual
trajectory leads to some overestimate of the discrepancy.
The other reason is that the turnpike property only tells

us the existence of time instants when ‖e∗p‖ and ‖ẽ∗p‖ are
small enough. However, without terminal constraint, it
is hard to say more about those time instants, for exam-
ple, if they appear at the end of the prediction horizon or
not. Therefore, in the proof of Theorem 3.1, we cannot
precisely characterize the key parameter t∗ and have to
estimate it for the worst case. Although the first one can
be reduced by assuming that the system dynamics and the
storage function are Lipschitz continuous, the second one
seems to be much more difficult to improve.

Remark 3.5 In Theorems 3.1 and 3.2 we derive lower
bounds of the prediction horizon but their explicit forms
are unavailable in general since they depend on some
functions which exist but are unknown, e.g., γλ(·). There-
fore, Theorems 3.1 and 3.2 just show the existence of such
a sufficiently long prediction horizon to ensure practical
stability.

4 Numerical Example

The example in this section is implemented with
ICLOCS [21] and solved by IPOPT [22].

We consider the system from [23]

ẋ(t) = Ax(t) + g(x(t)) +Bu(t),

where x =

[
x1

x2

]
,A =

[
−1 2

−3 4

]
,B =

[
0.5

−2

]
and g(x(t)) =[

0

−0.25x32

]
.

The control constraint is −2 ≤ u(t) ≤ 2, ∀t ≥ 0 and the

state constraint is

[
−1.5

−1.5

]
≤

[
x1

x2

]
≤

[
1.5

1.5

]
.

The reference trajectory xr(t) is given by xr,1 = sin(ct)
and xr,2 = cos(ct) where c = 2π

8 . By solving Prob-
lem 2 we can see that this trajectory cannot be per-
fectly tracked and obtain the optimal reachable trajec-
tory xp. In this case, we apply an MPC controller defined
by Problem 1 to implicitly track the optimal reachable
trajectory xp, which is unknown to the controller.

The stage cost is defined as l(x(t), u(t), t) = ‖x(t) −
xr(t)‖2. It has been shown in [23] that u(t) = v(t) +
K(x(t) − xp(t)) with K = [−1.3693 5.1273] can stabi-
lize the system to the reachable trajectory xp(t). We fur-
ther verify that it satisfies Assumptions 2.2 and 3.1 with
Vε(x, xp) = 1

2‖x− xp‖
2, cε,l = cε,u = 0.5, kmax = 5.307,

ρ = 0.8314, εp,ref = 0.055.

The sampling period and the prediction horizon are cho-
sen as 0.1 and 2, respectively. In Fig. 1 the reference
(unreachable) trajectory xr, the optimal reachable tra-
jectory xp and the closed-loop trajectory x are plotted.
We can see that the system can almost perfectly track
the optimal reachable trajectory even though it is not
explicitly known to the controller.
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Fig. 1. Tracking the unreachable reference (practically track
the optimal reachable reference)

5 Conclusion

In this work, we have extended the unconstrained MPC
from setpoint stabilization to dynamic reference tracking
for continuous-time nonlinear systems. Compared with
most existing tracking MPC, the proposed algorithm
does not require offline design of terminal costs or ter-
minal sets. In particular, we focus on the case when the
reference trajectory is not perfectly trackable. For such
case, the technique for EMPC without terminal condi-
tions in [14] and [13] has been extended to continuous-
time cases and the practical tracking stability with re-
spect to the optimal reachable reference has been proved
even though the optimal reachable reference is not ex-
plicitly known by the controller. Compared with the
discrete-time case [13], we have shown that how the re-
quired prediction horizon T is related to the sampling
period δ, which provides guidance on practical imple-
mentations for continuous-time systems.
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