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Abstract—Yield improvement is a critical component of semi-
conductor manufacturing. It is done by collecting, analyzing,
identifying the causes of defects, and then coming up with
a practical solution to resolve the root causes. Semiconductor
components such as Through Silicon Vias (TSVs) and other
package interconnects are getting smaller and smaller with
the ongoing miniaturization progress in the industry. Detecting
defects in these buried interconnects is becoming both more
difficult and more important. We collect both 2D and 3D X-Ray
scans of defective TSVs containing defects such as voids. We
label the data in 3D and perform registration between 2D and
3D scans. We use this registration information to locate the TSVs
and void defects in these 2D X-ray scans which would be difficult
to label manually as these voids look very fuzzy in 2D scans.
Thereafter we use a state-of-the-art deep-learning segmentation
network to train models to identify foreground (TSV, void defects)
from the background. We show that our model can accurately
identify the TSVs and their voids in images where it is impossible
to locate the defects manually. We report a dice score of 0.87 for
TSV segmentation and a dice score of 0.67 for void detection. The
dice score for voids demonstrates the capability of our models to
detect these difficult buried defects in 2D directly.

Index Terms—Deep-Learning, 2D Segmentation, X-Ray Anal-
ysis, Defect Detection

I. INTRODUCTION

Through-Silicon Vias (TSVs) play a vital role in die-
stacking configuration. Despite careful planning and principled
approaches, non-systematic defects such as voids are still
inevitable during fabrication. Failure analysis is a critical step
in improving semiconductor manufacturing yields. Industry
4.0 tools have brought an increased focus on digital technology
to improve yield across front-end and back-end manufacturers.
With the increasing miniaturization of Through-Silicon Vias
(TSVs) and other package interconnects, detecting defects in
these buried interconnects becomes more challenging and is
gaining prominence.

This research is supported by Economic Development Board (EDB),
Singapore under its IAF-ICP Grant no. I1901E0048 and administered by the
Agency for Science, Technology and Research (A*STAR).

Optical analysis using color or IR sensors can only provide
information about surface defects, whereas X-Ray machines
usually focus on image sub-surface defects. 2D X-Ray scans
are the de-facto preference by industry for in-line inspection
today due to their wider field of view and higher throughput
than 3D X-ray microscopy (XRM). However, it is sometimes
difficult to get complete picture of the via clearly as 2D
X-Rays provide incomplete information about sub-surface
defects. Thus, it is difficult to infer what the 3D surface looks
like from a 2D image. Moreover, depending on the projection
angle and resolution of these 2D scans, the problem gets
exponentially harder. As such, discovering buried attributes
becomes cumbersome from the viewpoint of the process
engineer.

To overcome this challenge, recently, data is acquired non-
destructively with a 3D X-ray microscope to obtain 3D vox-
elized data [1]. 3D XRMs are more granular and powerful
enough to visualize these defects, but also come with the
expense of limited coverage and longer scanning time. This
data is manually analyzed to identify defects such as voids
that may be present in different structures. Recently machine
learning techniques are being used to automatically identify
the structures and segment out different components such as
solder, Cu-Pillar (CuP) and Cu-Pads. Artificial Intelligence
(AI) has had significant impact on several technologies such as
visual surveillance, predictive maintenance, object detection,
and now, the semiconductor industry is seeing its influence.
The unique combination of copious amount of data from
2D/3D XRM and data-hungry deep-learning has the potential
to revolutionize automated failure analysis for certain struc-
tures such as TSVs.

The focus of this paper is to leverage the rich information of
3D XRM along with the speed and wider field of view of 2D
X-ray imaging to perform in-line inspection on TSVs to detect
buried voids that may be difficult to identify manually. We will
use the 3D XRM scans to identify buried structures and defects
and use its coordinate projection to aid in developing defect



Fig. 1: Our approach for generating groundtruth labels for
TSVs and voids is to use 3D annotations and project them
onto 2D. We use the 2D labels along with 2D raw scans to
train segmentation models for automated defect detection.

detection system in the relatively obscure 2D raw scans. 3D
XRM datasets are typically generated from raw 2D cone beam
X-ray projections using algorithms such as FDK reconstruc-
tion. The projections are spread over the selected angle range
of -3◦ to 183◦, with the additional 6◦ serving as fan angles to
cover the field of view. The voids will be identified in 3D XRM
scans and we will use the projection-angle table along with
the projection parameters containing information such as focal
length and optical center for registering the locations of TSVs
and voids in corresponding 2D scans. These projections of
3D groundtruth attribute coordinates onto the 2D projections
will provide the required supervision to train deep-learning
models to detect voids in the raw 2D scans directly. We show
our results on defective and non-defective TSVs and compare
our void detections with state-of-the-art techniques currently
used in the industry.

Our approach attempts to fuse the strengths of 2D mature
detection techniques with accurate 3D information. As shown
in Fig. 1, we locate and annotate the TSVs and voids in 3D
scans and computationally register these 3D scans with raw
2D x-ray images. Once the registration is performed, the 3D
information is projected onto 2D to create binary masks for
TSVs and voids. Thereafter, we train a 2D segmentation model
for automatically segmenting the TSVs and voids in each 2D
X-ray scan. We show that our deep-learning based models are
even capable of identifying voids accurately that may not be
possible to locate by an experienced engineer.

II. RELATED WORK

One of the most important tasks in AI based defect detec-
tion is of automated image segmentation. This can be either
multi-class semantic segmentation or binary segmentation. In
this work we are primarily interested in binary segmentation
that consists of foreground-background segmentation. While
2D segmentation techniques have matured covering accuracy

(a) TSV fabrication process.

(b) 3D XRM scan of fabricated
TSV containing voids.

(c) Raw 2D XRM scan of fab-
ricated TSV containing voids.

Fig. 2: Our approach for fabricating and scanning defective
TSVs to generate 2D and 3D data. Voids are colored in yellow.

and inference speed over the past few years [2]–[6], 3D
techniques are still being improved significantly [1], [7],
[8]. Historically, an image is usually analyzed using various
features such as edges, colors, size, and histograms at various
scales. Such images are processed to obtain a foreground-
background (binary) region. With the popularity of machine
learning, various techniques such as U-Net [9], SegNet [10],
and Mask-RCNN [11] have improved binary and multi-class
segmentation over such traditional hand-crafted techniques. U-
Net based segmentation has become the industry gold-standard
for binary segmentation related tasks both in 2D and 3D. It
contains a encoder that analyzes the entire image. The encoder
contracts over 4 similar sequences of convolution, activation,
and pooling layers. A bridge joins the encoder to a decoder.
This is followed by a decoder that produces an accurate
segmentation of the object of interest. The decoder, like a
mirror image of encoder, expands over 4 similar sequences of
deconvolution, convolution, and activation layers. The standard
U-Net architecture usually expects a smaller image resolution
such as 256 × 256 to perform image segmentation. Thus,
images are first downsampled to perform image segmentation.
Thereafter, the segmented masks are interpolated to the orig-
inal resolution to produce final segmentation.

AI based 3D segmentation for defect detection has recently



Fig. 3: The sample is rotated and 2D signals of projected X-rays are recorded at the detector. The are eventually captured as
raw 2D XRM scans and saved for offline processing.

garnered a lot of interest both in research and industry [1],
[7]. However, the results are still not up to industry standards
and require lots of 3D data which is exponentially more
difficult to obtain and annotate. The advantage of using 3D
data for defect analysis is that buried defects such as voids
are easier to identify and locate accurately. Engineers can
use geometrical and temporal information to identify these
buried defects accurately in 3D scans which may not be visible
properly in 2D X-ray scans to humans.

III. DATA FABRICATION AND GENERATION

In this section we will briefly describe our approach to
fabricate and scan our custom 2.5D test vehicles. The test vehi-
cles have been specifically designed to represent contemporary
High-Performance Computing packages. These test vehicles
utilize a silicon interposer with Through Silicon Vias (TSVs).
One of the major requirements for an AI based defect detection
solution is to having access to enough defective data so as
to identify and measure these defects such as solder voids.
Our TSVs are fabricated on 300mm silicon wafers using
standard 2.5D manufacturing processes. As shown in Fig. 2,
a conformal plating process was used to fill the TSVs. This is
because using conformal plating allows us to create TSVs with
voids that is desired to generate defective data for training our
deep-learning based segmentation models. For more details on
TSV fabrication, the readers can refer to [1].

3D X-ray microscopy is used to inspect and scan the
TSVs. The benefit of 3D microscopy is that unlike SEM
analysis we can inspect the test vehicles non-destructively.
The test vehicles are mounted on sample holders, placed
on the XRM autoloader and rotated incrementally from -3◦

through 183◦. Raw 2D X-ray scans are imaged each time the
sample is rotated about 0.22◦. These 2D scans along with
geometrical information is used in a propriety algorithm to
computationally obtain 3D X-Ray scans. This process, also
known as computational tomography, allows the datasets to
be visualized and processed in 3D where buried structures

can be imaged at a high resolution. For more details on data
generation, readers can refer to [1], [7]. The data output is
approximately 1, 000×1, 000×1, 000 voxels for 3D scans and
1, 015× 1, 015 for 2D scans consisting of about 800 images.

IV. 2D-3D RELATIONSHIP

In this section, we describe our approach to finding the
projection relation between the 3D XRM scans and raw 2D
XRM scans. Internally in the XRM tool, the raw 2D scans are
used to generate the 3D XRM scans. This is usually done using
feature matching, 2D-3D registration, and bundle adjustment
[12]. As this algorithm is proprietary and we do not have
access to it, we approach this problem from another angle.
Instead of generating a 3D scan from raw 2D images, we
formulate the problem as finding the projection relationship -
how the 3D scan can be projected onto each raw 2D image
as accurately as possible.

Lets assume sample frame of reference is c and X-ray frame
of reference is w. We can transform the sample coordinate
frame of reference into X-ray frame of reference using a
Rotation matrix Rc,w and translation tc,w vector:

Xw = Rc,wXc + tc,w (1)

where tc,w =

txty
tz


c,w

. As the sample is rotated with a known

angle φ, we can compute the Rc,w as:

Rc,w =

 cos(φ) 0 sin(φ)
0 1 0

− sin(φ) 0 cos(φ)


c,w

(2)

As can be seen in Fig. 3, we can use similar triangles to
obtain the projection of each 3D point Xw onto detector plane
as follows:



Xp = αXw; α =
ds,o + ds + do,d

Zw
(3)

where Zw refers to the Z co-ordinate of Xw. Once we obtain
the 3D coordinate of each point on detector plane, these can
be transformed onto each 2D XRM raw image as follows:

x =

uv
1

 = KXp (4)

where

K =

f 0 cx
0 f cy
0 0 1

 (5)

Here, parameters - f, cx, cy, tx, ty, tz are unknowns. This
is based on the assumption that we have all the information
regarding positions of TSVs known (Xc). In the 3D scans
obtained, we only have access to the layer number (voxelized
planes) for the TSVs. This further introduces more unknown
parameters that we need to estimate. One should note that all
these parameters are static across all different 2D scans as the
rotation Rc,w for each scan is known.

Each of our defective 3D TSV XRM scans consist of nine
TSVs. We annotate the 3D scans by recording the top-most and
bottom-most point of TSVs. We also annotate the 2D scans
by recording the left most (corresponding to top part) and
right most (corresponding to bottom part) of each TSV. This
provides us with 18 3D-2D correspondences per annotated
image. We only need to annotate the 3D scan once. We
annotate 10 2D scans for varying φ from 0◦ to 169◦. Some
of the annotations in 2D are shown in Fig. 4

V. 2D SEGMENTATION NETWORKS

Once the groundtruth pixels corresponding to TSVs and
Voids are mapped onto the 2D scans using the annotated 3D
scan as reference, we train a neural network to learn how
to segment the two components, taking into consideration
the different angles and slightly different resolution of the
samples. Specifically, we use a modified version of the U-
Net [9] architecture, having residual skip connections [13] and
instance normalization [14] for better model convergence. Our
architecture, shown in Fig. 5, consists of a shared encoder
module with separate decoder modules for TSV and Void
segmentation. The 2D scans are processed by repeated resnet
blocks up to depth of 3, downsampled using convolution
layers with stride of 2. The shared encoded representation
is then branched into two decoders, each having upsampling
and resnet blocks. These are concatenated by skip connections
taken from the corresponding depth of the encoder. A single
1×1 convolution filter is then applied on top of the individual
decoders for the network to predict the TSV and Void masks.
All convolution filters in encoder are set to be 64, whereas
in decoder, we set 8 filters for TSV branch and 64 filters
for Void branch. The reduction in TSV filters is to prevent
TSV segmentation from overfitting and dominating the Void

(a) φ = 11.19◦ (b) φ = 52.94◦

(c) φ = 127.6◦ (d) φ = 155.43◦

Fig. 4: Our manual annotations in 2D scans for each TSV at
varying projection angles. Best seen in color.

segmentation. From hereon, we will call this modified U-Net
as standard U-Net.

For optimizing the network, we employ Dice loss given by,

Ldice = 1− 2

∑Ni

i=1

∑Nj

j=1 pijrij + ψ∑Ni

i=1

∑Nj

j=1(pij + rij) + ψ
(6)

where < i, j > represents the 2D pixel coordinate pair, pij is
the predicted probability by the network at that pixel, rij is
the groundtruth at that pixel. ψ, set to 1, provides numerical
stability while also avoiding situations where denominator is
zero.

VI. EXPERIMENTS

We fabricated and scanned 3 sets of TSV datasets. Each
set contains 9 TSVs spread out in a 3 × 3 grid pattern.
Every TSV contains void zones in them. We first annotate
the TSVs and voids in 3D data manually. Then we use our
2D-3D registration formulation to project these labels onto 2D
scans and create binary masks for TSVs and voids as shown
in Fig. 6. We created 280 binary masks per component for
each TSV dataset resulting in a total of 840 binary masks per
component for all 3 TSV datasets. All experiments were run
using 64GB RAM and RTX Titan GPU, and results obtained
were averaged over three runs.

A. 2D-3D registration

We annotated 10 2D scans along with 3D scan for each of
the three TSV datasets. As each dataset consists of different



Fig. 5: U-Net architecture with shared encoder (center) and dual decoder branches for 2D (i) TSV (right), and (ii) Void (left)
segmentation.

parameters for projections, we estimate three sets of projec-
tions parameters ψi, i ∈ {1, 2, 3}.

ψ = {f, cx, cy, tx, ty, tz, φ, xm, ym, zm} (7)

where, f, cx, cy refer to the focal length, and optical center
of our 2D XRM image. tx, ty, tz, φ refer to the translation
vector and rotation of the sample coordinate frame with respect
to world coordinate frame. xm, ym, zm refer to the center of
sample coordinate frame which is also unknown parameter for
us.

ε =
1

N ∗M

N∑
i=1

M∑
j=1

√
(ui,jp − ui,jg )2 + (vi,jp − vi,jg )2) (8)

where ε refers to the average projection error in pixels, up, vp
refer to the x and y coordinate of projected point while ug, vg
refer to the corresponding groundtruth. N refers to the number
of images annotated and M refers to the points annotated
per image. We iteratively optimize for these parameters by
minimizing the euclidean distance between projected corners
and actual corners using Levenberg–Marquardt algorithm [15].
We report the average projection error (in pixels) in Table I.

TABLE I: Our average projection error, in pixels, after opti-
mization for 2D-3D registration.

Avg Error TSV1 TSV2 TSV3
ε 1.4734 1.949 1.201

B. 2D segmentation

Original 2D scans of bad TSV of dimension 1015 × 1015
were resized to 256 × 256 due to limited training size and
hardware capacity. The U-Net network was trained using
90%− 10% training and validation split, for 100 epochs with
a batchsize of 16. Modelcheckpoint and early stopping were
also included to save the best model based on lowest vali-
dation loss. For augmentation we employed random vertical
or horizontal flip, scaling with a factor of 0.1, and rotation
with factor of 30◦. Each sample had a 0.5 probability of
being augmented every epoch. Introducing random brightness
and contrast deteriorated performance of both training and
validation, which is likely due to the inability of the network
to distinguish void and background under different settings.
Since there was already presence of significant noise in each



(a) A Sample raw 2D scan. (b) A Sample raw 2D scan.

(c) Binary TSV ”groundtruth”
mask.

(d) Binary TSV ”groundtruth”
mask.

(e) Binary void ”groundtruth”
mask.

(f) Binary void ”groundtruth”
mask.

Fig. 6: Some samples of our binary groundtruth generated
masks using 3D to 2D projection formulation and 3D annota-
tions.

slice, further addition of Gaussian noise also did not improve
our results.

Results on training with original 2D scans are provided in
Table II and with augmentation in Table III. As seen from
the two tables, augmentations certainly improve the scores
by 2 − 4%. Furthermore, we observed severe overfitting in
the training and validation scores when training on original
data. This was mitigated completely after augmentation. Given
the 3 bad TSV samples, we employed hold-one-out strategy
for test sample while including the other two. Due to subtle
differences between the 3 samples, in terms of resolution,
intensity and void size, we observe slight differences in the
predicted dice scores. Additionally, we also combined together
(denoted as Mix) and sampled randomly an equivalent amount
of test slices. Dice score improved greatly for void, attributed
to homogeneity of the combined dataset. Current results can

(a) Good Sample TSV pre-
dicted mask from U-Net.

(b) Good Sample TSV overlay
mask with original scan.

(c) Good Sample Void pre-
dicted mask from U-Net.

(d) Good Sample Void overlay
mask with original scan.

Fig. 7: TSV and void segmentation masks and overlay for the
Good sample. Network prediction on unseen data with varying
resolution and TSV placement, as observed, most of the TSVs
are segmented correctly with minimal false void positives.

be further improved with more training data.
Figure 8 provides a visual demonstration of the TSV and

void segmentation masks. Groundtruth and predicted masks
are compared together for an enlarged region of interest. We
also show the overlay of both groundtruth and prediction on
the TSV and void components to highlight the boundary of
detected components. Green denotes the groundtruth, and red
denotes prediction. Their intersection is given by yellow. We
can observe yellow overlay in most regions. This indicates the
predicted masks are well aligned with the groundtruth.

We also tested our network performance on a new TSV
sample, different in terms of resolution, number of TSVs in the
image, and no voids (all are good). This was done to observe
the number of false void positives predicted by the network.
Fig. 7 shows the segmentation masks as well as the overlay.
It is observed that our network can segment almost all the
TSVs, while avoiding a lot of false void positives. Reducing
the small presence of predicted void patches can be improved
with more samples during training.

VII. CONCLUSION

In this paper, we have presented a novel framework to utilize
3D information along with 2D dataset for deep-learning based
automated defect detection. We leverage on visible buried
defects in 3D XRM scans and use geometrical information
to project this information onto 2D scans. Thereafter, we train



Fig. 8: Bad TSV and Void overlay for 3 Bad TSV samples. (Left) Region of interest is zoomed to a single TSV, and (right) the
groundtruth and predicted mask are compared together for both TSV and Void. Overlay of the two masks are also presented
to show their boundary intersection. Green denotes groundtruth, red denotes corresponding prediction and yellow denotes
intersection of groundtruth and our prediction.

TABLE II: Our 2D dice scores for our 2D segmentation for
defective Raw TSV scans without augmentations.

w/o Aug TSV Void
Test Set Train Val Test Train Val Test

TSV1 0.9198 0.8942 0.7347 0.7853 0.6720 0.3921
TSV2 0.9405 0.9107 0.7873 0.8870 0.7918 0.4231
TSV3 0.8772 0.8578 0.8301 0.7426 0.6426 0.5247
Mix 0.8631 0.9198 0.8737 0.6773 0.6165 0.6354

TABLE III: Our 2D dice scores for our 2D segmentation for
defective Raw TSV scans with augmentations.

w/ Aug TSV Void
Test Set Train Val Test Train Val Test

TSV1 0.7677 0.7556 0.7840 0.3410 0.4034 0.4184
TSV2 0.7539 0.8169 0.7849 0.4030 0.3716 0.4445
TSV3 0.7309 0.7535 0.8632 0.4365 0.4181 0.4180
Mix 0.8593 0.9016 0.8716 0.6525 0.6086 0.6658

accurate 2D segmentation models to automatically segment out
TSVs and voids that may be present in them. We hope that this
work showcases the potential of using 2D and 3D information
together where we utilize their individual strengths together.
In future, we intend to collect more data as we see major
overfitting in our segmentation models. We also hope to apply
this approach to other buried structures such as memory and
logic die.
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