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Abstract
Metal additivelymanufactured (AM) surfaces do not exhibit the same surface features asmachined
surfaces. Rather than cuttingmarks, the additive surfacemay display surface features such as spatter
particles, weld tracks, cracks, and surface breaking pores. These features are notwell described by
surface height parameters that were developed formachined surfaces. Therefore, anAM specific
surface characterisation approach is required; feature based surface characterisation is a promising
approach, but it requires surface features to bemanually segmentedwhich is a subjective process. In
this work, aU-Net spatter particle segmentation algorithm is developed that removes the subjectivity
ofmanual surface feature segmentation. AU-Netmodel is trained to segment spatter particles from
opticalmeasurements of 20 differentmetal AM samples. The performance of theU-Net segmentation
algorithm is compared to segmenting the spatter particles usingmanual thresholding. The results
show that theU-Net segmentation approach outperformsmanual segmentations for 2 of 3 test
samples considered. It is found that for 2 of 3 samples, theU-Net segmentation algorithmdetects
spatter particles that aremissed by themanual segmentation approach. It is concluded that further
training of theU-Net approach is required before it can fully supersedemanual segmentation. In the
future, itmay be possible to replace human operators that subjectively segment surface features with
robustmachine learning-based surface feature segmentation algorithms. This novel application of
U-Net for AM surface feature segmentation has the potential to automate surface characterisation for
metal AMprocess optimisation, and for quality control in production environments.

1. Introduction

Additive manufacturing (AM) enables the fabrication
of intricate metal components, however, the assess-
ment of the surface quality of AM components
remains challenging. When compared to machined
surfaces, AM surfaces tend to have higher roughness
and very different surface features, making traditional
methods of surface roughness characterisation less
meaningful. Therefore, there is a need for new
approaches to characterise AM surface quality and
relating it to the intended function of the surface.
Traditional surface roughness characterisation meth-
ods assume a random surface height distribution,

which does not align well with AM surfaces. It is
apparent that a feature-based characterisation
approach would be more logical and insightful, such
an approach involves segmenting individual surface
features and evaluating their dimensional and spatial
attributes. Currently, segmenting surface features in
AMcomponents relies on human operators who select
threshold values or employ subjective segmentation
algorithms like watershed segmentation [1]. This
subjectivity introduces variability in the surface char-
acterisation and hampers the reliability of the assess-
ment. Therefore, there is a need for a non-subjective
feature segmentation approach. In our work, we
explore the implementation of a convolutional neural
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network based segmentation algorithm to achieve a
less subjective approach to assessing the surface quality
of AMcomponents.

Feature-based surface characterisation is a well-
established approach to surface texture metrology. It
involves the isolation and dimensional evaluation of
pertinent topographic formations. Thismethod diver-
ges from techniques that offer a broad statistical over-
view of the surface, instead providing a more
comprehensive understanding of individual features.
These features can encompass elements such as peaks,
valleys, ridges, and furrows, contingent on the sur-
face’s nature. Each feature is quantified based on its
geometric properties (e.g., area, width, height) and an
entire surface can be characterised by the statistical
properties of feature aggregations [2]. By concentrat-
ing on individual features, a more detailed compre-
hension of the surface texture can be achieved.
Patterns and structures that might be overlooked by a
basic statistical analysis can be detected. This is parti-
cularly beneficial in areas like additive manufacturing
where minor variations in surface texture can sig-
nificantly impact a part’s performance, such as the
presence of a partially fused particle, or a surface
breaking crack.

Segmentation, an essential step in feature-based
characterisation, involves dividing the measured sur-
face topography into regions to separate the targeted
features from their surroundings [3]. The precision of
defining the geometric boundaries of each feature
directly influences the calculation of the feature’s geo-
metric properties [4]. Previous work has investigated
the use of morphologic segmentation algorithms for
segmenting and characterising individual surface fea-
tures [5], however, such an approach requires an
expert user to select the segmentation parameters,
which introduces subjectivity to the segmentation
process. This subjectivity can be overcome by using a
machine learning segmentation approach, where no
human judgement is required to segment surface
features.

Machine learning is increasingly used in additive
manufacturing process control: from establishing cor-
relations between process parameters and surface tex-
ture measurements [6], predicting a material’s
properties based on print parameters [7], isolating
spattered material during the AM process [8], seg-
menting particles from shadowgraphs [9], segmenting
particles from mineral samples acquired with micro-
CT [10], classifying spatter using acoustic signals dur-
ing the AMprocess [11], and predicting the porosity of
AM parts [12]. In this study, we employ the U-Net
deep learning architecture to segment and subse-
quently characterise spatter particles from areal sur-
face topography data of AM samples. We choose to
focus on the segmentation of spatter particles as they
are a well-definedmetal AM surface feature that have a
direct impact on the overall surface quality and
mechanical properties of a component [13].

U-Net, originally designed for biomedical image
segmentation [14], offers a tailored architecture opti-
mised for discerning intricate shapes and fine details in
image segmentation tasks. The U-Net architecture has
been applied for identifying layer-wise porosity defects
in metal AM processes [15], however it has not yet
been used for segmenting spatter particles for AM sur-
face quality assessment. This novel application of
U-Net for segmenting spatter particles is expected to
overcome the subjectivity associated with manual sur-
face feature segmentation, leading to improved surface
quality assessment that can be used for quality assur-
ance in production environments, or for AM process
parameter optimisation.

2.Methods

The methodology adopted is as follows: a set of metal
AM samples are fabricated with varying degrees of
surface roughness (section 2.1); the AM surfaces are
measured optically (section 2.2); a method for seg-
menting spatter particles manually is presented in
section 2.3, and the U-Net segmentation model is
described in section 2.4; results of the U-Net spatter
particle segmentation method are presented in
section 3 and compared to the manual segmentation
approach.

2.1. Test samples
A total of 23 10 × 10 × 10 mm3 test cubes are
fabricated, an example test cube is shown in figure 1.
The cubes are produced using an EOS M290 laser
powder bed fusion system (EOS GmbH from Ger-
many) and EOSAlSi10 Mgpowder.

During the printing of the test cubes, five key print
parameters are varied: infill laser power, infill scan
speed, infill hatch distance, contour laser power, and
contour scan speed. Here, we use the contour laser
power and contour scan speed to influence the surface
quality. Surface texture improves when laser power is
increased towards an optimal value as the higher laser
power gives rise to awidermelt pool [16–18], but dete-
riorates past the optimal laser power due to hump for-
mation [17]. Higher scan speeds past an optimal value
results in porosity, discontinuities and cracks, result-
ing in a rougher surface [16, 18]. The infill exposure
parameter is also varied so that the cubes can be reused
for further porosity studies, but this should not affect
the surface quality. The full exposure parameters are
presented for completeness in the table of print set-
tings in the appendix.

Three out of the 23 fabricated cubes are designated
for testing the trained U-Net model, note that the sur-
faces of the 3 test cubes are not used to train the U-Net
model. The test surfaces exhibit distinct features from
one another, enabling a comprehensive evaluation of
the model’s performance. The selected surfaces are
from the cubes: I11, I9, andG1.
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2.2.Opticalmeasurement of surfaces
The test cubes′ surfaces are measured using the
Alicona Infinite Focus G4 optical focus variation
microscope (Bruker Alicona Imaging GmbH, Aus-
tria). This high-precision system records the 3D
surface height data which is then stored as a text file of
x y z, , surface coordinates. These datasets are used to
create surface images for manual spatter segmentation
and theU-Netmodel training.

The optical measurement settings are as follows:
10 μm lateral resolution, 1 μm vertical resolution, 5×
magnification utilising coaxial illumination. A mea-
surement area of 7 mm by 7mm is extracted per scan-
ned surface for analysis.

2.3. Spatter particle segmentation usingmanual
thresholding
Spatter particle segmentation employing manual
thresholding encompasses a series of data processing
steps. Initial preprocessing involves cropping the sur-
face data into a square region of 6 mm by 6 mm.
Following this, a leveling operation is executed byfitting
a least squares plane and subtracting it from the surface.
A high pass filter is then applied to remove form and
waviness. Subsequently, the data undergoes a

thresholding process based on the z height of the
surface; this operation isolates predominant particle
features, yielding a binary mask wherein pixel values
indicate spatter particle presence or absence. In a
subsequent stage of processing, blob detection is used to
remove particles smaller than 3× 3 pixels, it is assumed
that the lateral sampling resolution of the surface
measurement is insufficient to resolve such particles.
Furthermore, particles with a circularity lower than 0.5
to 0.7 are removed, this is done based on the assump-
tion that spatter particles are approximately circular in
shape. The workflow for segmenting spatter particles
usingmanual thresholding is shown infigure 2.

2.4. Spatter particle segmentation usingU-Net
The U-Net model undergoes training using 20 of the
manually segmented datasets. The measured surface
data is converted into a 16-bit greyscale image and
then split into 100 × 100-pixel sub images. The
particle masks generated from the manual segmenta-
tion are also split into 100 × 100-pixel sub masks.
Thus, the U-Net model is trained on the sub-images
and corresponding sub-masks. Through the training
process the U-Net model learns patterns and features
in order to distinguish spatter particles in the surface

Figure 1.An example of the AM samples used to test the developedmachine learning spatter particle segmentationmethod.

Figure 2.Pipeline for segmenting spatter particles onAMsurfaces usingmanual thresholding.
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data. Once the model is trained, users simply need to
input the surface height data (without applying any
high or low pass filters), and the U-Net model will

output a spatter particle segmentationmask. The steps
taken to train and use the U-Net model for spatter
particle segmentation are illustrated infigure 3.

Figure 3. Steps taken to train theU-Netmodel using opticalmeasurements of 20AM samples, alongside using the trainedmodel to
segment opticalmeasurements of 3AM samples not used in the training step.

Figure 4.TheU-Net architecture adopted in themachine learning based spatter particle segmentationmethod.
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The U-Net architecture adopted for this applica-
tion is shown in figure 4. The loss function used is the
binary cross-entropy loss, and the activation function
used is the sigmoid activation function. Both functions
are chosen as they are commonly used for binary clas-
sification tasks. TheU-Netmodel is trained using 1008
sub-masks, 100 epochs, and a batch size of 20. Train-
ing the U-Netmodel on a laptop runningWindows 11
Pro, equipped with a 12th Gen Intel(R) Core(TM) i7-
12700H processor clocked at 2.30 GHz and 32 GB
RAM, takes approximately 6 h.

2.5. Spatter particle characterisation
The particle segmentation mask generated by the
U-Net model enables the evaluation of individual
particle characteristics alongside statistics of the

particle characteristics for the entire surface. Indivi-
dual particle characteristics include area, volume,
height and diameter, statistics include min, max,
mean, standard deviation. These statistics and particle
characteristics are evaluated from the particle segmen-
tation mask using a contour finding algorithm in
OpenCV [19].

3. Results

A comparison between manual segmentation and the
developed U-Net based segmentation of spatter parti-
cles for the 3 test samples is given.

Figure 5 shows the segmentation results for the
first test sample. The surface data is shown in

Figure 5.Comparison of segmentation result for sample I11 using themanual segmentationmethod and theU-Net based
segmentationmethod. (a) surface image of sample I11, (b) combination of themanual threshold andU-Net segmentation results, (c)
manual threshold result only, (d)U-Net segmentation result only.
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Figure 6. (a) I11 surfacewith particles included, (b) surface without particles, and (c) surfacewith the particles isolated.

Table 1. Statistics of detected spatter particles on the I11 surface using theU-Net based segmentationmethod.

Area (μm2) 80%Height (μm) Volume (μm3) Diameter (μm) Number of particles detected

Min 900.0 0.4 71.8 23.9

Max 14150.0 52.0 50800.0 94.9

Mean 3339.5 7.1 2470.0 46.1 61

StdDev 3531.3 8.9 6260.0 47.4

Total 190350.0 317.9 168000.0 348.1

Table 2. Statistics of detected spatter particles on the I11 surface using themanual segmentationmethod.

Area (μm2) 80%Height (μm) Volume (μm3) Diameter (μm) Number of particles detected

Min 1250.0 1.1 405.0 28.2

Max 11000.0 52.0 42900.0 83.7

Mean 5244.0 9.0 4850.0 57.8 18

StdDev 3303.0 12.5 9620.0 45.9

Total 94400.0 134.4 87200.0 245.1
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figure 5(a). A comparison of the manual and U-Net
segmentation is shown in figure 5(b): red indicates
particles detected by both approaches, blue indicates
particles detected using the U-Net approach only,
white indicates particles detected using the manual
approach only. The manual segmentation result is
shown in figure 5(c) and exhibits limitations in captur-
ing intricate features, as evidenced by 3 undetected
spatter particles highlighted in the figure, these 3 parti-
cles are however successfully detected by the U-Net
approach shown infigure 5(d).

Figure 6(a) shows the surface of the first test sam-
ple as a colourmap. The U-Net particle segmentation
mask is used to remove the particles from the surface,
the result is shown in figure 6(b). Removing the

particles reveals surface details that were previously
overshadowed by the particles, for example, the weld-
tracks of the surface become easier to visualise.
Figure 6(c) shows the segmented spatter particles only,
plotted as a heightmap, this is a useful visualisation of
particle height, size, and spatial distribution.

Other than facilitating visual inspection of the sur-
face, particle segmentation allows particle statistics to be
evaluated. Particle statistics for surface I11 segmented
using theU-Net algorithmare given in table 1, whist the
characteristics for I11 using manual segmentation are
given in table 2, note that an additional 41 spatter parti-
cles were detected using the U-Net algorithm. It is pos-
sible to evaluatemanymore particle statistics than those
given, but a selection is provided as an example of how

Figure 7.Comparison of segmentation result for sample I9 using the conventionalmanual segmentationmethod and theU-Net based
segmentationmethod. (a) surface image of sample I9, (b) combination of themanual threshold andU-Net segmentation results, (c)
manual threshold result only, (d)U-Net segmentation result only.
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the segmentation tool might be used to inform engi-
neering decisions about the quality of theAMsurface.

Figure 7(a) shows the surface of the second test
sample. As for the first sample, the U-Net segmenta-
tion detects particles that are missed by the manual

approach, as highlighted by the many blue coloured
particles in figure 7(b). A side-by-side comparison of
the segmentation results is given in figures 7(c) and
(d). Figure 8(a) shows the surface as a height map,
alongside the surface with the particles removed 8(b)

Figure 8. (a) I9 surface with particles included, (b) surfacewithout particles, and (c) surface with the particles isolated.

Table 3. Statistics of detected spatter particles on the I9 surface using theU-Net based segmentationmethod.

Area (μm2) 80%Height (μm) Volume (μm3) Diameter (μm) Number of particles detected

Min 900.0 0.4 1.5 23.9

Max 26600.0 70.4 51000.0 130.1

Mean 3574.0 14.7 7830.0 47.7 148

StdDev 3975.1 10.9 9242.3 50.3

Total 514650.0 1988.1 1270000.0 572.4

Table 4. Statistics of detected spatter particles on the I9 surface using themanual segmentationmethod.

Area (μm2) 80%Height (μm) Volume (μm3) Diameter (μm) Number of particles detected

Min 1000.0 1.9 242.0 25.2

Max 13000.0 55.9 41000.0 91.0

Mean 3998.6 13.6 8310.0 50.5 36

StdDev 2548.7 10.5 8700.0 40.3

Total 143950.0 421.5 299000.0 302.7
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and particles only 8(c). As before, this visualisation
reveals greater detail of the weld-tracks when the parti-
cles are removed.

Table 3 lists the characteristics of surface I9 seg-
mented using the U-Net algorithm, whilst table 4 lists
the characteristics of I9 segmented using manual seg-
mentation, note that an additional 112 spatter parti-
cles were detected using the U-Net algorithm.
Comparing the values in tables 3 and 4 to tables 1 and
2, it is seen that the surface I9 has more particles than
I11, leading to to the total particle area for the I9 sur-
face beingmuch larger.

Figure 9 presents a scenario where the U-Net seg-
mentation has missed some particles despite success-
fully capturing intricate features in the previous
examples. The third surface is shown in figure 9(a), the

particles missed by the U-Net segmentation are
coloured white in figure 9(b). A side-by-side compar-
ison of the segmentation results is given in figures 9(c)
and (d). The lower performance of the U-Net segmen-
tation may be due to the presence of a very large parti-
cle in the bottom left of the surface, perhaps this large
particle causes smaller particles to be overshadowed
and missed by U-Net due to the limited bandwidth of
the 16-bit data type used to represent the surface data.

Removing the particles using themask is not as effec-
tive for the third surface as for theprevious two, as shown
infigures 10(a) and (b). This is again due to the large par-
ticle in the bottom left of the surface; even after being
removed, its base is still high in comparison to other sur-
face features, thus not asmuch additional surface detail is
revealedwhen compared theprevious two surfaces.

Figure 9.Comparison of segmentation result for sampleG1 using amanual segmentationmethod and aU-Net based segmentation
method. (a) surface image of sampleG1, (b) combination of themanual threshold andU-Net segmentation results, (c)manual
threshold result only, (d)U-Net segmentation result only.
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The feature statistics for the third surface (G1) are
given in tables 5 and 6 for the U-Net segmentation and
manual segmentation, respectively. Note that the

manual and U-Net segmented particle characteristics
are very similar, unlike the first two surfaces, and that
the U-Net algorithm detected 2 fewer particles then

Figure 10. (a)G1 surfacewith particles included, (b) surfacewithout particles, and (c) surface with the particles isolated.

Table 5. Statistics of detected spatter particles on theG1 surface using theU-Net based segmentationmethod.

Area (μm2) 80%Height (μm) Volume (μm3) Diameter (μm) Number of particles detected

Min 950.0 0.6 77.4 24.6

Max 49050.0 40.4 24700.0 176.7

Mean 5138.1 9.7 4330.0 57.2 43

StdDev 7834.3 10.3 5997.0 70.6

Total 215800.0 369.5 195000.0 370.7

Table 6. Statistics of detected spatter particles on theG1 surface using themanual segmentationmethod.

Area (μm2) 80%Height (μm) Volume (μm3) Diameter (μm) Number of particles detected

Min 950.0 0.2 1.9 24.6

Max 67350.0 66.3 34300.0 207.1

Mean 5776.7 8.6 4450.0 60.6 45

StdDev 9952.6 11.4 7124.8 79.6

Total 259950.0 316.9 200000.0 406.8
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themanual approach. The surface has the fewest num-
ber of particles when segmented using U-Net, how-
ever it does not have the smallest total particle area,
this is because the mean particle area of the third sur-
face is larger than the first, indicating that the third
surface has fewer, but larger particles than the first sur-
face; this kind of feature based characterisation is
expected to be very useful to engineers working on
optimising the quality of additively manufactured sur-
faces by varying process parameters.

4.Discussion

A U-Net based spatter particle segmentation algo-
rithm has been developed for characterising metal
additively manufactured surfaces. The results show
that for 2 of 3 samples tested, the developed approach
can successfully segment spatter particle features that
are otherwise missed by a manual, subjective segmen-
tation approach. However, for one of the considered
samples, the U-Net approach missed some obvious
particles, thus there is room for improvement.

The appeal of the developed approach is that once
trained, the segmentation algorithm does not require
any variables to be adjusted by subjective human
operators. This means that two operators with differ-
ent levels of experience and skill can process the same
data and arrive at the same result, whist for themanual
segmentation approach used here, the operator must
select a high-pass filter wavelength, a height threshold,
and a circularity threshold, a slight change in these
parameters will influence the segmentation result.

The disadvantage of the proposed approach is the
need for sufficient, good quality training data. Gen-
erating good quality training data is a labour-intensive
process, and having sufficient training data is some-
times difficult due to limited resources.

It is desirable to determine the accuracy of the
developed method for segmenting and characterising
spatter particles, however, this would require develop-
ing an AM sample with calibrated spatter particles.
This is beyond the scope of the present work, but
developing AM samples with calibrated surface fea-
tures is highly desirable as it will allow interlaboratory
comparisons ofmeasurement instruments, this will be
considered in futurework.

In future work, we will continue to train the devel-
oped U-Net model and use it with a view to character-
ise AM surface roughness as a function of print
parameters, we expect to then be able to select print
parameters that yield the surface characteristics that
we desire. For example, minimising the number of
spatter particles, and the total particle area, alongside
minimising the mean particle height. Future work
could also include developing segmentation

algorithms for different surface features, such as
cracks, or surface breaking pores.

5. Conclusions

It can be concluded that a U-Net based spatter particle
segmentation algorithm can detect AM surface features
that are not be detectable using a manual segmentation
approach. The results showed that the implemented
U-Net algorithmdetected 43 and 112 additional spatter
particles for samples 1 and 2 respectively, however, for
sample 3 theU-Net algorithmmissed2 spatter particles.
Based on these results we recommend further training
of the U-Net approach is required before it can fully
supersedemanual segmentation.

This work demonstrates that machine learning
based segmentation algorithms are well-suited for the
segmentation of additively manufactured surfaces,
since these surfaces have well-defined and reproduce-
able surface features, such as spatter particles. The dis-
advantage of a machine learning approach is the need
for a sufficient number of high-quality training data
sets; generating such training data is a manual time-
consuming process.

This work demonstrates that the U-Net segmenta-
tion algorithm can be used to minimise user influence
in feature-based surface characterisation; users simply
need to input the surface data and the algorithm will
segment the surface automatically. Subsequent char-
acterisation of the segmentation result can also be
automated, thus removing the human operator from
the entire surface characterisation process. Such an
approach could be adopted to automate a quality con-
trol process in a production environment, or to auto-
mate process optimisation in a research and
development environment.
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Appendix

ID

Infill -

Laser

power/W

Infill - Scan

speed/

mm/s

Infill -

Hatch

distance/

mm

Contour -

Laser

power/W

Contour -

Scan

speed/

mm/s

A10 370 1400 0.273 162 1344

B03 162 800 0.063 90 1232

B12 234 1100 0.063 234 1008

C10 370 1500 0.084 162 336

D05 162 800 0.105 162 672

G01 306 1100 0.147 234 672

G04 306 500 0.189 162 336

H01 90 700 0.168 234 224

H05 90 1100 0.147 306 1008

I01 162 800 0.273 90 560

I04 162 600 0.189 162 336

I09 370 1300 0.189 306 336

I11 90 1100 0.273 162 560

J09 162 1500 0.168 234 1008

J13 234 500 0.21 162 896

K09 90 900 0.21 370 672

L04 306 600 0.126 234 784

L05 162 1200 0.273 370 672

L10 234 1400 0.147 370 672

L12 162 600 0.273 234 224

L13 306 700 0.063 370 448

M04 370 800 0.105 306 784

M12 234 1200 0.063 162 448
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