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Abstract—Beamforming is a promising anti-jamming tech-
nique for cellular-connected unmanned aerial vehicle (UAV)
system. It is challenging to design anti-jamming beamforming
vectors for moving UAV with imperfect CSI. In this paper, we
consider an uplink transmission from UAV to multi-antenna
ground base station (BS) in the presence of a malicious ground
jammer. We propose a deep learning based beamforming network
(DLBF) to maximize the average data rate for moving UAV in
the presence of a ground jammer. Complexity analysis shows that
DLBF has linear complexity, which indicates good scalability in
large antenna arrays. Extensive simulation results show that anti-
jamming DLBF improves average data rate for moving UAV. The
performance of DLBF advantage is robust under imperfect CSI
and different antenna configurations.

Index Terms—Deep learning, beamforming, unmanned aerial
vehicle (UAV)

I. INTRODUCTION

To achieve ubiquitous connectivity in the fifth generation
(5G) and beyond 5G network, cellular-connected unmanned
aerial vehicles (UAVs) have emerged to be one promising
solution due to their mobility and flexibility. By integrating
UAVs into future cellular network, a plethora of applications
such as video streaming, surveillance, and drone delivery could
be enabled. The UAV to ground base station channel, while
enjoying the benefit brought by line-of-sight (LoS) character-
istics of the air-to-ground (A2G) channel, is vulnerable to the
threat of jamming attacks [1].

Classical anti-jamming techniques such as frequency hop-
ping and spread spectrum leads to inefficient channel utiliza-
tion and thus will not be able to support high speed data
transmission requirements in the UAV applications [2].

With the development of antenna array technology,
beamforming-based physical layer security enhancement
mechanism has attracted a lot of research attention [3]–[7].
Conventional beamforming techniques such as maximal ratio
combining (MRC), zero-forcing (ZF), and minimum mean
square error (MMSE) based beamformer can be used [8].
MRC focuses on maximizing the desired signal. But it fails to
mitigate the jamming signal. ZF aims to null the jamming sig-
nal. MMSE based receiver is designed to minimize the MMSE
between the desired signal and filtered signal. ZF, MMSE are
able to provide certain anti-jamming functionality with the
assumption of perfect global channel state information (CSI).
However, their performance could be severely degraded with
imperfect CSI. It is hard to acquire perfect CSI in practice,
especially for the unknown and non-cooperative jammer. Mini-

mum variance distortionless response (MVDR) and its variants
are more adaptive algorithms [4], [5]. MVDR is designed
to minimize the variance of the residual noise at the output
while passing the desired signal without distortion. MMSE and
MVDR based beamformers involve high complexity matrix
inversion, limiting their scalability to large antenna arrays. In
more recent years, there are works which propose to solve anti-
jamming problem with the aid of intelligent reflecting surfaces
(IRS) [6]. For example, the authors in [6] proposed to utilize
IRS with beamforming to enhance anti-jamming performance
for the downlink transmission from the BS to multiple ground
IoT users. Although promising, the cost of setting up extra
IRS in the system is still high.

Deep learning (DL) technology has great potential in solv-
ing complex beamforming design problems. DL method usu-
ally has lower complexity during online inference stage and
can be more efficient with parrallel computing accelaration
using graphical processing unit (GPU). Moreover, through
extensive training, DL methods are expected to have better
robustness to imperfect CSI. There are some research attempts
in this area [9], [10]. In [9], the authors presented deep learning
based beamforming neural network (BFNN) for downlink
transmission to maximize spectral efficiency with imperfect
CSI. They considered a multiple-input single-output (MISO)
system without a jammer. In [10], the authors proposed a deep
learning based 3D robust beamforming to maximize secrecy
rate for downlink UAV system with the existence of a eaves-
dropper. This work mainly considers passive eavesdropper, and
assumes the UAV location is known and fixed.

In this paper, we propose a scalable and robust deep learning
based beamforming (DLBF) algorithm for anti-jamming in
cellular-connected UAV network. The main contributions of
our work can be summarized as follows,

• We propose a deep learning based anti-jamming beam-
forming design for multi-antenna ground base station
(BS), aiming to enhance desired signals from moving
UAV, and mitigate jamming signal from a ground jammer.

• The proposed DLBF algorithm is robust against imperfect
CSI.

• Complexity analysis shows that the proposed algorithm
has good scalibility as number of antennas increase.

• Extensive simulations are conducted to evaluate the per-
formance of the proposed DLBF algorithm under perfect
and imperfect CSI, and in different antenna configura-
tions.



Figure 1: System model.

Figure 2: Azimuth AOA and elevation AOA.

The rest of the paper is organized as follows. Section
II establishes the system model for analyzing the uplink
transmission from UAV to ground BS and gives the problem
formulation. Section III presents the design of the DLBF
network structure as well as the complexity analysis. Section
IV evaluates the performance of the proposed algorithm.
Section V concludes this paper.

II. SYSTEM MODEL AND PROBLEM STATEMENT

As shown in Fig. 1, the system consists of one ground base
station equipped with Nh × Nv uniform planer array (UPA),
where Nh is the number of antennas along the horizontal direc-
tion, and Nv denotes the number of antennas along the vertical
direction. The UPA enables 3-dimensional (3D) beamforming
capability at the BS, such that the BS can serve users from
the sky while rejecting jamming signals from the ground. The
legitimate user UAV and the ground jammer are equipped with
single antenna. We consider a flying UAV aiming to send data
back to the BS, during transmission, the ground jammer emits
jamming signal to disrupt the legitimate uplink transmission.
The legitimate communication could be severely disrupted
without proper protection design. Consequently, we aim to
design receive beamforming vector at the BS to suppress
jamming signal and enhance the desired signal.

A. Channel Model

The following subsection presents the channel model.
This work considers narrow-band transmission. Our proposed
method can be extended in a straightforward manner to
wideband frequency selective fading channels with orthogonal
frequency division multiplexing (OFDM).

1) UAV to BS channel: The uplink channel between the
UAV and BS is denoted as hu ∈ CNb×1, Nb = NhNv . the
channel between jammer to BS is denoted as hj ∈ CNb×1. The
UAV to BS channel model follows the air-to-ground (A2G)
channel model where large scale path loss fading and small-
scale Rician fading are considered.

As for small scale fading, Rician fading is used to model
both line-of-sight (LOS) and non-line-of-sight (NLOS) com-
ponent, which can be described as follows [10].

hu =

√
K

1 +K
huL +

√
1

1 +K
huN , (1)

where
• K is the Rician factor
• huN is the NLOS component of the UAV to BS channel,

whose entries are assumed to follow independent and
identical distributed (i.i.d.) circularly symmetric complex
Gaussian distribution

• huL is the LOS component, which can be expressed
in terms of receiver and transmitter steering vector as
follows.

huL = arat (2)

where ar is the steering vector of the receiver (the BS),
at is the steering vector of the transmitter (UAV). The BS
has UPA antenna, hence, the Nb×1 steering vector ar is
a function of the azimuth angle-of-arrival (AOA) φu and
the elevation AOA θu. In this paper, the elevation AOA
θ and azimuth AOA φ are defined as in Figure 2. The
k-th entry of ar can be written as follows.

akr = e−j 2π
λc

δu[(nh−1) cos θu cosφu+(nv−1) sin θu], (3)

where λc is wavelength of the center frequency. δu is
the antenna spacing at the base station, we assume the
vertical and horizontal antenna spacing are the same.
nv = 1, .., Nv is the antenna element position in the
vertical direction, nh = 1, ..., Nh is the antenna element
position in the horizontal direction, k = Nh(nv−1)+nh.
As for transmitter steering vector, since the UAV has only
one antenna, at = 1.

To model the imperfect channel state information (CSI),
we assume that huL can be determined once the location of
the UAV is known [11]. And assume the error comes from
the NLOS component, the imperfect NLOS part ĥuN can be
modeled as follows,

ĥuN =
√
αuhuN +

√
1− αuϵuN (4)

where αu is the CSI knowledge factor, huN is the actual
NLOS component, ϵuN is the estimation error whose entries
follow independent and identically distributed (i.i.d) Gaussian
distribution. With this, the overall channel model for UAV to
BS, in the presence of the imperfect CSI, could be written as,

ĥu =

√
K

1 +K
huL +

√
1

1 +K
ĥuN (5)



2) Jammer to BS channel: The jammer to BS channel
is a typical ground-to-ground(G2G) channel, which can be
modeled as [12],

hj =

L∑
l=1

Alar(θ
l
j , φ

l
j), (6)

where Al denotes the complex gain of the l-th path, ar(θlj , φl
j)

denotes the antenna array response vector of the jamming
signal at the BS, with φl

j denotes the azimuth AOA of the
jamming signal from the l-th path, θlj denotes the elevation
AOA of the jamming signal from the l-th path. l = 1 denotes
the LOS path, and l > 1 denote the NLOS paths. Similarly,
we model the imperfect CSI with similar model as for UAV-
BS. First, we rewrite the jammer-BS channel as the LOS and
NLOS part,

hj = hjL + hjN , (7)

where hjL = A1ar(θ1j , φ1
j ), and hjN =

∑L
l=2 Alar(θlj , φl

j).
Then, the imperfect jammer-BS channel estimation is modeled
as,

ĥj = hjL + ĥjN , (8)

where ĥjN =
√
αjhjN +

√
1− αjϵjN . αj is the CSI knowl-

edge factor of the jammer to BS channel. hjN is the actual
NLOS component. ϵjN is the estimation error, whose entries
follow i.i.d Gaussian distribution.

3) Receive Signal: With the above established channel
model, the received signal at the BS can be given as,

y = husu + hjsj + n, (9)

where y ∈ CNb×1 is the received signal at the BS, hu ∈ CNb×1

is the UAV-BS channel coefficient matrix, hj ∈ CNb×1 is the
jammer-BS channel coefficient matrix, su denotes the transmit
symbol from the UAV, sj denotes the transmit symbol from
the jammer, n ∈ CNb×1 is the additive Gaussian Noise.

Since the BS is equipped with UPA, the received signal will
be processed by the receive beamforming vector v, to obtain
a beamformed received signal, as follows

ỹ = vHy
= vHhusu + vHhjsj + vHn,

(10)

where v ∈ CNb×1 is the beamforming vector at the BS, {·}H
denotes the conjugate transpose.

The SINR at BS is given as,

γ =

∣∣vHhu

∣∣2∣∣vHhj

∣∣2 +∣∣vHn
∣∣2 (11)

B. Problem Formulation

Our objective is to enhance the desired signal from the UAV
and mitigate the jamming signal from the ground, by properly
designing the beamforming vector at the BS. Formally, the
problem can be formulated as the following optimization

Figure 3: Training with custom defined loss function.

problem, with the objective to maximize the system rate, with
the constraints on beamforming vector.

max
v

log2(1 + γ)

s.t. |v|2 = 1
(12)

It is challenging to solve the optimization problem (12),
because the objective function is non-convex with respect to
receive beamforming vector v. Moreover, the imperfect CSI
models further complicate the problem.

III. DEEP LEARNING BASED BEAMFORMING (DLBF)
DESIGN

Leveraging the ability of neural networks to solve complex
problem, in this section, we propose to optimize the receive
beamforming vector by a deep learning beamforming (DLBF)
network. The detail of network layers and the complexity
analysis are presented in the following.

A. DLBF Network Architecture

Figure 3 shows the DLBF network architecture, the DLBF
network consists of 3 dense layers, and 2 specially designed
Lambda layers. The 3 dense layers are used to extract the
features from the imperfect CSI input, the first Lambda layer is
designed to generate complex beamforming vector, the second
Lambda layer is used to compute custom loss function.

1) Lambda Layer 0: This layer is a custom layer to output a
complex-valued, unit-norm beamforming vector. Specifically,
the desired beamforming vector v is a Nb×1 complex-valued
vector. Since the dense layer is only capable to output real-
values. The last dense layer is designed to output 2Nb real
values. The first Nb real values will be used for the real part of
the beamforming vector, vre, and the following Nb real values
will be used for the imaginary part of the beamforming vector
vim. Then the final beamforming vector is obtained by adding
the real and imaginary parts as follows,

v = vre + jvim. (13)

2) Lambda Layer 1: This layer is another custom layer
to compute custom loss function. Since the objective is to
maximize the system rate, the loss function is designed to be
directly related to objective function in (12), which can be
described as,

Loss = − 1

M

M∑
m=1

log2(1 + γm), (14)



Figure 4: Online deployment and inference.

where M is the training batch size, and γm denotes the
SINR of the m-th sample. When computing γm, the perfect
CSI will be used. During training, minimizing the loss via
back propagation will increase the system rate. One thing to
note is that, perfect CSI is only needed for offline training.
For deployment and online inference, only imperfect CSI is
needed.

B. DLBF Offline Training and Online Inference

During the training of the DLBF, both perfect CSI and
imperfect CSI will be used at different stage of the training.
The imperfect CSI ĥu and ĥj will be normalized and feed into
the dense layers. The dense layers will extract the channel
characteristic in the imperfect CSI. After feature extraction,
the output of the dense layer will be fed to Lambda layer 0
to compute the beamforming vector. Intuitively, in the offline
training, the DLBF learns to generate a receive beamforming
vector based on features extracted from imperfect CSI, aiming
to minimize loss function computed with perfect CSI. In other
words, the use of perfect CSI in the loss function guides
the beamforming design to approach the ideal system rate as
much as possible with perfect CSI and to be robust to channel
estimation error. During the offline training stage, the perfect
CSI of the jammer can be obtained by using a legitimate
transmitter known to the BS that mimics the role of a jammer.

At the online deployment stage, as shown in Figure 4, the
DLBF will take the imperfect CSI as input and generate the
suggested beamforming vector as output without the need
to know perfect CSI. The imperfect CSI of jammer can be
obtained by blind estimation algorithms [13].

The structure parameters of DLBF network implemented in
this paper is given by Table I. It is worth noting that the DLBF
network structure is dependent on the number of antennas Nb.
More specifically, the input dimension of the first dense layer,
the output dimension of the third dense layer as well as the
Lambda Layer 0 depend on the number of antennas at the BS.
When the number of antenna changes, the network structure
should be changed accordingly.

C. Complexity Analysis

We analyze the complexity of the proposed DLBF using the
number of floating point operations (FLOPs) as the measure
for complexity. For DLBF, we only count the complexity for
online deployment stage. The complexity of online inference
stage mainly comes from the dense layers. The FLOPs of the
dense layer can be given by (2NI − 1)NO [14], where NI

is the input dimensions, and NO is the output dimensions.

Table I: DLBF implementation details.

Layer Output Dim. Activation Func.

Input Layer 2Nb × 1 N.A.

Dense Layer 512× 1 Relu

Dense Layer 256× 1 Relu

Dense Layer 2Nb × 1 Relu

Lambda Layer 0 Nb × 1 N.A.

Lambda Layer 1 1 N.A.

Table II: Simulation parameters.

Parameter Value

center frequency, fc 3.2 GHz

antenna spacing, δu 1
2
λc

noise power, σ2
n −90 dBm

Rician factor, K 1

Consider the DLBF network structure given in Table I, the
total number of FLOPs can be expressed as C1Nb+C2, where
C1 = 4c1 + 4c2 − 2, and C2 = 2c1c2 − c2 − c1, where c1, c2
are the output dimension of dense layer 1 and 2. It can be
observed that DLBF’s computation complexity grows linearly
as number of antenna grows, suggesting good scalability.

IV. PERFORMANCE EVALUATION

A. Dataset Generation

The training and testing data samples are generated using
Matlab following the models defined in (1) - (7). Specifically,
the perfect CSIs are generated following the definition in
(1) and (7), the imperfect CSIs are generated following the
definition in (5) and (8). The corresponding parameters are
listed in Table II. In our simulation, we assume that the UAV
is flying in the region that is defined by x ≥ 0, y ≥ 0, z ≥ 0,
and the jammer on the ground, which is located in the same
xy plane as the BS. The training samples covers all possible
AoAs, and the testing samples consists of CSI samples that
are generated with AoAs randomly selected in the feasible
regions. 200, 000 samples are used for training, and 100, 000
samples are generated for testing.

B. Results

We define the relative received SNR as the ratio between
the received power from UAV and the noise power, SNRr =
Pu

σ2
n

. In the following, we evaluate the performance of DLBF
by varying the number of antennas and relative SNR. Four
conventional receive beamforming algorithms are selected as
benchmarks: MRC, ZF, MMSE [8] and MVDR [3].

1) Robustness to Imperfect CSI: Fig. 5 shows the average
system rate comparison under various imperfect CSI condi-
tions. 4 × 4 UPA antenna are used, relative SNR is set to 2
dB. In Fig. 5a, we keep αj = 0.3 and vary αu from 0.1 to
1. Lower αu means worse CSI knowledge from the UAV. It



(a) Varying UAV CSI. (b) Varying jammer CSI.

Figure 5: Performance comparison under different CSI knowl-
edge.

Figure 6: Performance comparison with different antenna type.

can be observed that the proposed DLBF outperforms all the
benchmark algorithms, even when the CSI knowledge from the
UAV is poor. Specifically, when αu = 0.1, DLBF outperforms
MVDR, ZF, MMSE, MRC by 9%, 26%, 27%, 68%, respec-
tively. This shows the advantage of DLBF under imperfect
CSI condition, especially with poor CSI knowledge. In Fig.
5b, we keep αu = 0.9, and vary αj from 0.1 to 1. It can
be observed that the average rates of DLBF, MVDR, and
MRC remain relatively constant as the jammer CSI knowledge
changes. While the performance of ZF and MMSE are quite
sensitive the the change of αj . For instance, when the jammer
CSI is close to perfect (αj ≥ 0.9), ZF and MMSE achieve
better rates than DLBF. However, when the CSI knowledge
from the jammer is poor (e.g. αj = 0.1), their performance
drops significantly ( 36%). And it is worth noting that nearly
perfect CSI knowledge is hard to obtain in practice, especially
for the unknown jammer.

2) Impact of Antenna Type: Fig. 6 shows the performance
comparison for UPA and uniform linear array (ULA). All
algorithms are evaluated with imperfect CSI, where αu =
0.95, αj = 0.3. It can be observed that given the same number
of antennas, configuring the antennas in UPA gives better
performance than ULA for all algorithms. For example, when
relative SNR is 2 dB, DLBF with 4 × 4 UPA achieves 32%
improvement in data rate compared to DLBF with 16×1 ULA.
The reason is that UPA has better beamfoming flexibility in 3D
dimension, while ULA is mainly used for 2D beamforming.
Additionally, DLBF with ULA constantly outperforms other
benchmarks across different relative SNRs. Specifically, DLBF
with ULA outperforms MVDR with ULA by 24% given the
same number of antennas.

V. CONCLUDING REMARKS

In this paper, we proposed a robust DLBF algorithm for
anti-jamming in cellular-connected UAV networks. Extensive
simulation results show that our proposed DLBF algorithm
maintains good system rate with imperfect CSI, validating
its robustness to channel imperfection. Complexity analysis
shows that the complexity of DLBF grows linearly with
number of antennas, indicating that DLBF has good scalability
and is suitable for large antenna arrays. Additionally, DLBF
outperforms other benchmarks in both UPA and ULA antenna
configuration.
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