
Supplementary Material

S1. NoTeacher Method: Additional Details/Theory

S1.1. Derivation of NoT weights
In this appendix we derive the marginal density distri-

bution of the network outputs when the consensus func-
tion is integrated out. Subsequently, the loss multipli-
ers {λL

y,1, λ
L
y,2, λ

L
1,2, λ

U
1,2} will be derived as functions of the

hyperparameters {σ2
1, σ

2
2, σ

2
y}. Given the NoT graphical

model, it is necessary to integrate fc out of the joint den-
sity distribution of the graph, because fc is a latent vari-
able. Consider a more general model, where there are M
networks, each outputs a posterior, i.e., { fm}Mm=1. Graphi-
cally, each posterior is represented by a random variable
connected only to the consensus function fc via a zero-
mean Gaussian potential

fm − fc ∼ N
(
0, σ2

m

)
. (8)

Technically, even the target y can be considered as a pos-
terior with potential y − fc ∼ N

(
0, σ2

y

)
. The joint density

distribution function of the general graph is as follows
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where the normalizing factor Z1 is a constant w.r.t.
fc, f1, . . . , fM and

ψ =

M∑
m=1

1
σ2

m
φ =

M∑
m=1

fm
σ2

m
χ =

M∑
m=1

−
f 2
m

2σ2
m
. (11)

Notice that ψ, φ, χ are constants w.r.t. fc. In addition,
we have the following integration rule
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where a is positive. With this rule, knowing that ψ > 0,
we can integrate fc out of the joint distribution in (10) to

obtain the following marginal likelihood as follows
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whereZ2 is another constant w.r.t. fc, f1, . . . , fM , and
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This result implies that the marginal likelihood can be fac-
torized as a product of

(
M
2

)
components, each component

is a Gaussian distribution on the difference between a pair
of posteriors ( fm, fk) with zero mean and variance λ−1

m,k.
The NoT graphical models are special cases of this

general model. For a labeled sample, we have M = 3,
i.e., there are three observed variables f1, f2 and y. Thus,
we use {λL

y,1, λ
L
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L
1,2} as shorthand notations to denote

{λ f1,y, λ f2,y, λ f1, f2 } respectively. By applying (18), they can
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Similarly, for an unlabeled sample, there are M = 2 ob-
served variables f1 and f2, the formula of λU

1,2 is therefore
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) . (22)

24



S1.2. Derivation of NoT-GA loss function
The NoT-GA graphical model can be divided into two

cases: (i) a labeled sample when z = 1 and (ii) an un-
labeled sample when z = 0. Thus, we can compute the
likelihood separately for labeled and unlabeled data. The
joint distribution of a sample is

p
(
z, y, fc, f1, f2

)
=γy p ( fc, y, f1, f2) , if z = 1(

1 − γy

)
p ( fc, y, f1, f2) , if z = 0

, (23)

where we use γy to denote the γk value corresponding to
the target label, i.e., y = k. By integrating out fc – the
latent consensus function, we obtain the data likelihood
as

p
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)
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Note that in (24), the ground-truth label is unobserved for
the case z = 0, thus an additional integration over y is
required. By taking the integration over fc as performed
in Subsection S1.1, the log likelihood can be computed.
For a labeled sample, it is

log
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]
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For an unlabeled sample, it is
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Notice that in equation (25), the last term is a constant
w.r.t. the observed variables and can be removed from the
optimization. By combining the negative log likelihood
functions over all labeled and unlabeled samples in the
dataset, we obtain the NoT-GA loss function in (5).

S1.3. Connections to Other Methods
The training process of MT and NoT are compared in

Figure S1, with the networks in NoT no longer being con-
nected by the EMA update. Mean Teacher (MT) sets up
two neural networks with identical architecture: a student
model FS and a teacher model FT . Given a batch x of
training data, MT employs random augmentations ηS , ηT

to generate augmented inputs xS and xT for the student
and teacher models correspondingly. During the feed-
forward pass, MT computes a weighted sum of a super-
vised classification loss and a consistency loss

LMT = CE
(
y, fL

S

)
+ λconsMSE (fS , fT ) , (27)

where fS , fT are posterior outputs from the student and
teacher networks, fL

S is the student’s posterior output on
the labeled data, and λcons is a consistency weight hy-
perparameter. The classification loss is usually cross-
entropy (CE), while the consistency loss is typically
mean-squared error on the posteriors (MSE). The student
model backpropagates directly using gradients from the
loss LMT. In the meantime, the teacher model is updated
via computing an exponential moving average (EMA)
over the parameters of the student network. Recent papers
have adapted MT for medical imaging tasks such as MR
segmentation (Yu et al., 2019; Perone and Cohen-Adad,
2018) and nuclei classification (Su et al., 2019). We note
that fS , fT are similar to the views f1, f2 of NoT, except
that MT uses the EMA update to compute fT , while NoT
uses backpropagation to update both views.

Figure S2 illustrates the iterative process of co-training,
a multi-view learning technique.

S2. Additional Experiment Setup Details
We summarize the data split statistics for the NIH-14

Chest X-Ray, RSNA Brain CT and Knee MRNet datasets
in Table S1. We also provide the hyperparameters used
for the different labeling budgets, methods and datasets
in our experiments in Table S2. Finally, we provide the
adapted pipeline for the 3D MRNet classification task in
Figure S3.

S3. Additional Results: Comparisons to Baselines
For ease of assessment on quantitative results, we pro-

vide the detailed breakdown of AUROC scores for each
dataset, labeling budget and method in Table S3. We
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Figure S1: Training process of (a) MT and (b) NoT on a batch of semi-supervised data. Solid and dotted arrows denote forward and backward
passes, respectively. Double-line arrows denote random data augmentations, while double dashed arrow represents EMA update.

Table S1: Data statistics for the NIH-14, RSNA-CT and MRNet datasets.
Dataset LT : LV Split Patients Scans Images

NIH-14 70 : 10
Train 21528 78468 78468
Val. 3090 11219 11219
Test 6187 22433 22433

RSNA-CT 60 : 20
Train 10247 10247 352839
Val. 3416 3416 117986
Test 3416 3416 117907

MRNet 64 : 16
Train 904 904 31156
Val. 226 226 7622
Test 120 120 4118

Figure S2: The iterative process of co-training in a two-view setup. This
process continues until two views achieve a high level of agreement on
unlabeled data.

also highlight comparisons to previously published state-
of-the-art results where available. We note that, for the
NIH-14 Chest X-Ray dataset, our fully-supervised base-
line outperforms the numbers reported in the SRC-MT
paper (Liu et al., 2020). We suspect that this is be-
cause we report the best results from either the trained
model or its EMA copy. Also we highlight that the re-
sults of GraphXNET (Aviles-Rivero et al., 2019) and SRC-
MT (Liu et al., 2020) are not directly comparable as they
report metrics on a subset of the classes we considered
and/or employ different backbones.

S4. Additional Results: NoT-GA Experiments

We have designed two other variants of the “DM-3311”
setups, namely “DM-1133” and “DM-1313”. First, the
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Table S2: Hyperparameter tuning based on average validation AUROC. For VAT, multi-task KL divergence (KLmt) offers > 10% AUROC boost.
Other implementation details of NoT match with MT.

NIH-14 RSNA-CT MRNet
Train Val. Test Train Val. Test Train Val. Test

Labeling budget (%) 1-5 10-20 25-100 0.25-0.5 1-2.5 5-100 1-10 15-25 30-100

MT α ∈ {0.91, 0.93, . . . , 0.99} 0.91 0.95 0.99 0.93 0.97 0.97 0.99
λcons ∈ {1, 2, . . . , 196} 196 100 10

VAT ε ∈ {1, 2, . . . , 6} 2 3
LDS ∈ {KL,MSE,KLmt} KLmt

NoT σ2
1 = σ2

2 = 2−2

σ2
y ∈ {2

−2, 2−3 . . . , 2−7} 2−2 2−7 2−6

Early stopping 15 7 3 15 7 3 11 8 5
Reduce learning rate patience 5 3 1 5 3 1 5 4 3
Min no. of validation samples 113 268 25

MRI Scan
d1

MRI Scand2

AlexNet Backbone

Slice-level features
256 x (d1+d2)

Scan level features
(256 x 2)

Indexed
Max-pooling Layer Linear Layer

Output
(1 x 2)

Figure S3: Adapted MR-Net Training Pipeline. As the MRI scans have variable slice depths, the original MR-Net can process only one scan at
a time. We extend this architecture using indexed max-pooling, where the maximization is performed on the depth dimension of the scan. This
allows us to process a batch of scans at a time.

“DM-1133” has a class imbalance ratio ofαααL ∝ [3, 3, 1, 1]
on labeled data and a class imbalance ratio of αααU ∝

[1, 1, 3, 3] on unlabeled data, which is the reverse setup
of “DM-3311”. In contrast to the earlier setups, No Find-
ing and Infiltration are now the classes with higher γ val-
ues. Second, the “DM-1313” has a class imbalance ratio
of αααL ∝ [3, 1, 3, 1] on labeled data and a class imbalance
ratio of αααU ∝ [1, 3, 1, 3] on unlabeled data, which inten-
tionally mixes up the (naturally) rare and common classes
together. By comparing NoT against NoT-GA on these
new setups, we further strengthen our understanding of
the NoT-GA behaviors. The results are reported in Ta-
ble S7, Table S8, Figure S4 and Figure S5.

S5. Additional Results: MT vs. NoT

We provide additional plots from various seeds for the
disagreement count comparison between MT and NoT.
Figure S6 shows results on NIH-14 and Figure S7 shows
results on RSNA Brain CT.
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Table S3: Average AUROC scores (multiplied by 100) vs. labeling budget (%) for NIH-14 (top) and RSNA Brain CT (center) and Knee MRNet
(bottom). At the best case budgets (bolded) of 5% in NIH-14, 1% in RSNA-CT and 25% in MRNet, NoT has 2.5%, 2.2% and 1.2% higher AUPRC
than other SSL methods respectively. We include the average AUROC scores reported for SRC-MT (Liu et al., 2020) and GraphXNET (Aviles-Rivero
et al., 2019).

NIH-14
Budget SUP PSU VAT MT NoT GraphXNET SRC-MT

(Images)
1.3 (1177) 66.53 ± 0.38 66.48 ± 0.43 69.56 ± 0.17 68.97 ± 0.63 70.69 ± 0.15 — —
2 (1569) 66.85 ± 1.45 67.64 ± 0.70 69.63 ± 0.23 70.42 ± 0.58 72.60 ± 0.18 53.00 66.95
5 (3923) 70.68 ± 1.31 70.93 ± 0.99 73.94 ± 0.14 73.60 ± 0.70 77.04 ± 0.22 58.00 72.29
10 (7846) 75.69 ± 1.17 76.00 ± 0.67 77.15 ± 1.06 76.98 ± 0.02 77.61 ± 0.54 63.00 75.28

20 (15693) 77.19 ± 0.75 78.06 ± 0.47 79.38 ± 0.10 78.66 ± 0.64 79.49 ± 0.89 78.00 79.23
50 (39234) 80.57 ± 0.68 81.46 ± 0.34 82.01 ± 0.14 81.78 ± 0.11 82.10 ± 0.05 — —

100 (78468) 83.33 ± 0.38 — — — — — 81.75
RSNA-CT

Budget SUP PSU VAT MT NoT GraphXNET SRC-MT
(Slices)

0.25 (749) 70.77 ± 3.52 72.19 ± 1.81 71.07 ± 2.72 74.86 ± 2.23 76.53 ± 1.84 — —
0.5 (1777) 80.55 ± 0.97 80.89 ± 1.43 82.50 ± 0.60 82.15 ± 1.43 83.57 ± 0.98 — —
1 (3495) 80.01 ± 1.19 81.53 ± 0.32 81.41 ± 2.17 80.90 ± 1.91 84.50 ± 1.86 — —

2.5 (6744) 86.13 ± 1.10 87.01 ± 0.15 87.22 ± 0.40 86.26 ± 0.58 89.81 ± 0.23 — —
5 (17242) 91.31 ± 0.29 91.84 ± 0.37 90.53 ± 0.38 91.24 ± 0.18 91.79 ± 0.73 — —

10 (33560) 92.74 ± 0.38 93.27 ± 0.03 92.84 ± 0.44 92.62 ± 0.64 93.31 ± 0.80 — —
100 (352839) 96.69 ± 0.11 — — — — — —

MRNet
Budget SUP PSU VAT MT NoT GraphXNET SRC-MT
(Scans)
5 (32) 66.26 ± 3.13 67.31 ± 3.72 71.37 ± 2.42 68.36 ± 2.70 73.25 ± 2.78 — —

7.5 (55) 68.51 ± 6.09 73.81 ± 3.57 75.38 ± 5.23 73.33 ± 2.27 77.54 ± 2.11 — —
15 (137) 83.72 ± 2.08 85.63 ± 1.27 85.75 ± 2.85 87.12 ± 0.44 88.35 ± 1.38 — —
25 (227) 85.07 ± 5.50 85.94 ± 5.39 85.12 ± 3.12 85.15 ± 3.86 89.19 ± 0.89 — —
50 (452) 89.81 ± 1.08 90.47 ± 1.31 90.23 ± 0.47 90.89 ± 1.72 91.49 ± 0.90 — —
100 (904) 91.03 ± 0.33 — — — — — —

* For GraphXNET (Aviles-Rivero et al., 2019), the average AUROC scores were reported from 8 labels, namely Atelectasis, Cardiomegaly,
Effusion, Infiltration, Mass, Nodule, Pneumonia and Pneumothorax, whereas the rest of the methods were averaged over all of the 14 labels.

* While the rest of methods use a DenseNet-121 backbone, the SRC-MT reports its results using a DenseNet-169 backbone and the GraphXNET

utilizes graph based representation.
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Table S4: Validation AUC while training on 5% annotation budget on the Chest-XRay14 dataset for the selection of best loss function
LDS divergence function

eps MSE KL Multiclass KL
2 0.7425 0.7503 0.6532
4 0.7436 0.7499 0.5297
6 0.7269 0.7450 0.6510
8 0.7484 0.7472 0.5346
10 0.7393 0.7457 0.5459

Table S5: Class Distribution Mismatch: Average Per-Class AUPRC scores (multiplied by 100)
Methods No Finding Infiltration Pneumothorax Mass Average

SUP 61.18 ± 0.66 44.58 ± 1.48 33.44 ± 2.37 19.99 ± 2.77 39.80 ± 1.82
MT 60.93 ± 1.53 45.31 ± 1.18 35.58 ± 1.41 22.91 ± 3.92 41.18 ± 2.01
VAT 61.58 ± 0.88 45.10 ± 1.02 34.75 ± 0.87 20.74 ± 2.54 40.54 ± 1.33
NoT 62.30 ± 0.83 48.27 ± 0.61 41.71 ± 1.25 34.81 ± 3.17 46.77 ± 1.47

NoT-GA 62.79 ± 0.71 48.83 ± 0.52 42.33 ± 1.13 38.66 ± 2.75 48.15 ± 1.28
Fully Supervised 65.51 ± 1.22 55.05 ± 0.88 46.30 ± 0.70 41.44 ± 1.05 52.08 ± 0.96

Table S6: Results on DM-3311 Setup
Metric Method No Finding Infiltration Pneumothorax Mass Average

AUPRC NoT 51.25 ± 0.68 53.39 ± 0.68 50.04 ± 1.26 46.7 ± 1.89 50.34 ± 1.13
NoT-GA 51.07 ± 0.45 53.36 ± 0.77 53.28 ± 0.74 60.58 ± 2.75 54.57 ± 1.18

Precision (threshold 0.5) NoT 0.585 ± 0.033 0.638 ± 0.081 0.283 ± 0.021 0.216 ± 0.028 –
NoT-GA 0.517 ± 0.01 0.548 ± 0.002 0.431 ± 0.028 0.527 ± 0.053 –

Recall (threshold 0.5) NoT 0.16 ± 0.076 0.115 ± 0.082 0.803 ± 0.021 0.792 ± 0.034 –
NoT-GA 0.497 ± 0.03 0.419 ± 0.05 0.705 ± 0.018 0.619 ± 0.025 –

Table S7: Results on DM-1133 Setup
Metric Method No Finding Infiltration Pneumothorax Mass Average

AUPRC NoT 28.31 ± 0.83 30.72 ± 1.63 70.75 ± 1.15 64.48 ± 2.18 48.57 ± 1.45
NoT-GA 26.67 ± 0.45 30.68 ± 1.12 72.66 ± 0.81 67.02 ± 1.45 49.26 ± 0.96

Precision (threshold 0.5) NoT 0.174 ± 0.018 0.177 ± 0.027 0.788 ± 0.034 0.886 ± 0.069 -
NoT-GA 0.239 ± 0.024 0.315 ± 0.025 0.693 ± 0.022 0.714 ± 0.051 -

Recall (threshold 0.5) NoT 0.606 ± 0.054 0.541 ± 0.054 0.279 ± 0.123 0.090 ± 0.058 -
NoT-GA 0.497 ± 0.048 0.4358 ± 0.047 0.614 ± 0.019 0.430 ± 0.087 -

Table S8: Results on DM-1313 Setup
Metric Method No Finding Infiltration Pneumothorax Mass Average

AUPRC NoT 23.03 ± 1.03 55.7 ± 1.68 47.51 ± 3.02 57.99 ± 6.84 46.06 ± 3.15
NoT-GA 25.97 ± 0.62 58.57 ± 1.42 55.59 ± 0.68 63.76 ± 1.93 50.97 ± 1.16

Precision (threshold 0.5) NoT 0.161 ± 0.008 0.552 ± 0.311 0.259 ± 0.015 0.641 ± 0.360 -
NoT-GA 0.203 ± 0.022 0.618 ± 0.033 0.396 ± 0.028 0.640 ± 0.018 -

Recall (threshold 0.5) NoT 0.700 ± 0.024 0.035 ± 0.021 0.823 ± 0.052 0.082 ± 0.053 -
NoT-GA 0.549 ± 0.062 0.303 ± 0.047 0.781 ± 0.031 0.385 ± 0.051 -
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Figure S4: Results on DM-1133 Setup: Average confusion matrix (threshold 0.5) over 5 seeds with vanilla NoT (a) and with NoT-GA (b).
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Figure S5: Results on DM-1313 Setup: Average confusion matrix (threshold 0.5) over 5 seeds with vanilla NoT (a) and with NoT-GA (b).
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Figure S6: Performance as a function of training as indicated by AUROC scores on the validation set (left vertical axis) and disagreement statistics
(right vertical axis). Results are from NIH-14 Chest X-Ray with 5% labeling budget, X = 40, τ = 0.25 with various seeds.
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Figure S7: Performance as a function of training as indicated by AUROC scores on the validation set (left vertical axis) and disagreement statistics
(right vertical axis). Results are from RSNA Brain CT with 2.5% labeling budget, X = 40, τ = 0.2 with various seeds.
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